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Abstract

Background: Cerebral palsy (CP) is the most common physical disability among children (2.5 to 3.6 cases per 1000
live births). Inadequate physical activity (PA) is a major problem effecting the health and well-being of children with
CP. Practical, yet accurate measures of PA are needed to evaluate the effectiveness of surgical and therapy-based
interventions to increase PA. Accelerometer-based motion sensors have become the standard for objectively
measuring PA in children and adolescents; however, current methods for estimating physical activity intensity in
children with CP are associated with significant error and may dramatically underestimate HPA in children with
more severe mobility limitations. Machine learning (ML) models that first classify the PA type and then predict PA
intensity or energy expenditure using activity specific regression equations may be more accurate than standalone
regression models. However, the feasibility and validity of ML methods has not been explored in youth with CP.
Therefore, the purpose of this study was to develop and test ML models for the automatic identification of PA type
in ambulant children with CP.

Methods: Twenty two children and adolescents (mean age: 12.8 ± 2.9 y) with CP classified at GMFCS Levels I to III
completed 7 activity trials while wearing an ActiGraph GT3X+ accelerometer on the hip and wrist. Trials were
categorised as sedentary (SED), standing utilitarian movements (SUM), comfortable walking (CW), and brisk walking
(BW). Random forest (RF), support vector machine (SVM), and binary decision tree (BDT) classifiers were trained with
features extracted from the vector magnitude (VM) of the raw acceleration signal using 10 s non-overlapping
windows. Performance was evaluated using leave-one-subject out cross validation.

Results: SVM (82.0–89.0%) and RF (82.6–88.8%) provided significantly better classification accuracy than BDT
(76.1–86.2%). Hip (82.7–85.5%) and wrist (76.1–82.6%) classifiers exhibited comparable prediction accuracy, while the
combined hip and wrist (86.2–89.0%) classifiers achieved the best overall performance. For all classifiers, recognition
accuracy was excellent for SED (94.1–97.9%), good to excellent for SUM (74.0–96.6%) and brisk walking (71.5–86.0%),
and modest for comfortable walking (47.6–70.4%). When comfortable and brisk walking were combined into a
single walking class, recognition accuracy ranged from 90.3 to 96.5%.

Conclusions: ML methods provided acceptable classification accuracy for detection of a range of activities
commonly performed by ambulatory children with CP. The resultant models can help clinicians more effectively
monitor bouts of brisk walking in the community. The results indicate that 2-step models that first classify PA type
and then predict energy expenditure using activity specific regression equations are worthy of exploration in this
patient group.
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Background
Cerebral palsy (CP) is the most common physical disabil-
ity of childhood with a prevalence of 2.5 to 3.6 cases per
1000 live births [1]. Inadequate physical activity is a major
problem impacting the health status, functional mobility
and well-being of children with CP [2, 3]. Moreover, low
levels of physical activity may contribute to the develop-
ment of disabling secondary conditions such as obesity,
chronic pain, fatigue, and osteoporosis [4, 5]. In light of
this evidence, strategies and goals for rehabilitation ser-
vices have shifted from a focus on developmental motor
skills to interventions to improve functional mobility and
habitual physical activity (PA) [2, 3, 6]. To evaluate the ef-
fectiveness of such interventions, researchers and clini-
cians have relied on self-reports of PA. Although
self-reports are low-cost and convenient to complete, they
are subject to considerable social desirability and recall
bias, and therefore may not be sufficiently valid or reliable
for assessment of clinically important changes in PA [7].
Given the limitations of self-reports, accelerometer-based

motion sensors have become the method of choice for
assessing PA in children and adolescents [8]. However, des-
pite their widespread use among children with typical de-
velopment, calibrating accelerometer output to units of
energy expenditure or physical activity intensity in youth
with CP presents significant methodological challenges.
The motor impairments and decreased mechanical effi-
ciency of children with CP mandates that algorithms to de-
lineate physical activity type or intensity from
accelerometer output be specifically developed for the CP
population [9].
To date, a number of investigators have completed stud-

ies deriving CP-specific intensity-based thresholds or
cut-points for categorising processed accelerometer out-
put (activity counts) as sedentary (SED), light (LPA), or
moderate-to-vigorous physical activity (MVPA) [10–14].
While cut-point methods have enabled researchers and
clinicians to objectively measure and describe HPA levels
in youth with CP, recent work suggests that existing
cut-points for children and adolescents with CP are asso-
ciated with significant misclassification error and may dra-
matically underestimate the HPA levels of children with
more severe mobility limitations [14]. Accordingly, there
is a critical need to explore new accelerometer data pro-
cessing methods that have the potential to provide more
accurate assessments of HPA in youth with CP.
Pattern recognition methodologies, such as those utilis-

ing machine learning approaches, have the potential to
significantly improve the accuracy of accelerometer-based
assessments of PA. Studies involving children with typical
development have shown that standard machine learning
algorithms provide accurate predictions of activity type
and intensity [15–18]. Importantly, the energy expenditure
prediction errors associated with these models are 25 to

50% smaller in magnitude than those obtained with
regression-based cut-point methods [16]. Two-step
models that first classify activity type and then predict en-
ergy expenditure using activity specific regression equa-
tions may be more accurate than standalone regression
models [19–21]. However, to our knowledge, no previous
study has evaluated the feasibility and validity of machine
learning methods to predict physical activity type in chil-
dren with CP.
To address this gap in knowledge, the purpose of this

study was to develop and test machine learning models to
predict physical activity type in ambulant children and ad-
olescents with CP. Three state-of-the-art supervised learn-
ing algorithms were evaluated – binary decision trees,
support vector machines, and random forests. If physical
activity type can be detected with acceptable accuracy in
this patient group, then 2-step models employing
activity-specific energy expenditure prediction equations
may be a viable alternative to conventional cut-point
methods. To determine the effects of accelerometer place-
ment on recognition accuracy, we compared models
trained on accelerometer data collected on the hip, wrist,
and the combination of the hip and wrist.

Methods
Participants
Participants were recruited from the outpatient CP
clinics at Franciscan Children’s Hospital, and Nemours
AI duPont Hospital for Children. The inclusion criteria
were as follows: diagnosis of CP at Gross Motor Func-
tion Classification System (GMFCS) level I, II, or III; be-
tween the ages of 6–20 years; and able to follow
directions. Parents and/or health care providers (doctors
or therapists) verified that participants were able to fol-
low directions and complete the study protocols. Partici-
pants were excluded from the study if they had:
undergone orthopaedic surgery within the last 6 months
of the study start date; received lower extremity botu-
linum toxin injections within 3 months of the study start
date; or experienced a recent musculoskeletal injury or
had a medical condition limiting their ability to
complete the physical activity protocol. A total of 22 am-
bulatory youth with CP participated in the study. De-
scriptive characteristics are displayed in Table 1. The
study was approved by the university’s institutional re-
view board (1111000396). Prior to participation, parents
provided written consent and children written assent.

Data collection
Participants completed seven standardized activity trials
while wearing an ActiGraph GT3X+ tri-axial accelerom-
eter (ActiGraph Corporation, Pensacola, FL) on the hip
and wrist that they used most in activities of daily living
[14]. A complete description of each trial and the data
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collection protocols have been published previously [22,
23]. The activity trials were completed in a single
two-hour session and comprised the following sequence
of activities: 1) Supine rest (lying down resting but not
sleeping); 2) Seated handwriting (sitting in a chair at a
desk, using a pencil or pen to transcribe a standardized
written script to a pad of paper); 3) Wiping down a
countertop (walking from side to side in front of a 2 m
long countertop spraying and wiping to clean the entire
surface); 4) Folding laundry (loading a laundry bag with
five towels and carry it 3 m; dumping out the towels,
folding them, loading them back in the bag, carrying it
back to the original starting spot, and repeating); 5)
Comfortable walk (walking at a comfortable self-selected
speed after receiving the instructions “walk at a comfort-
able pace like when you are at the mall or walking in
your neighbourhood or at school but not in a hurry”); 6)
Brisk walk (walking at a brisk speed after receiving the
instructions “this time we want you to walk a little faster
so please walk at a faster pace like when you are hurry-
ing to get to class after the bell has rung”); 7) Fast walk
(walking at a fast speed after receiving the instructions
“this time we want you to walk as fast as you possibly
can without falling or running”). All walking trials were
completed on a 25m course marked with two cones.
Prior to each walking trial, participants completed a brief
practice test to help them select an appropriate walking
speed. Additionally, during each walking trial, a physical
therapist walked alongside each participant to help them
maintain a consistent pace throughout the walking trial.
Activity trials 1 to 4 were 5 min in duration, while trials
5 to 7 were 6 min in duration. For the purpose of devel-
oping the physical activity classifiers, the activity trials
were categorized into four activity classes: sedentary
(SED) (supine rest, seated handwriting); standing utilitar-
ian movements (SUM) (wiping down countertop, folding
laundry); comfortable walking (CW) (comfortable walk);
and brisk walking (BW) (brisk walk and fast walk). All
data collected during the wiping down the countertop
trials and laundry trial were annotated as SUM activities
even though they included brief episodes of walking.

Instrumentation
The ActiGraph GT3X+ measures acceleration along
three perpendicular axes ranging in magnitude from
+/− 6 G. The accelerometer output is sampled at a
user-specified rate between 30 and 100 Hz and stored in
non-volatile flash memory for downloading and post
processing. For the current study, a sampling frequency
of 30 Hz was used. The acceleration signal from each
axis was transformed into a single dimension vector
magnitude (VM) using the equation:

VM ¼ √ x2 þ y2 þ z2
� �

Data pre-processing and feature extraction
Standard visual data screening tools (e.g., histograms, box-
plots) were used to identify missing data or potential out-
liers. No missing or abnormal values were found. Features
from the VM were extracted from 10 s non-overlapping
windows. We extracted features from non-overlapping win-
dows of 10 s duration to replicate classifiers developed in
typically developing children [16, 24]; and to provide suffi-
cient time resolution to detect the intermittent activity pat-
terns of children. A total of 27 time and frequency domain
features shown to be beneficial in previous activity recogni-
tion studies were extracted [24, 25]. The selected time do-
main features were as follows: minimum, maximum, sum,
power, log energy, peak to peak, lag one autocorrelation,
mean, standard deviation, coefficient of variation, median
crossings, percentiles (10th,25th,50th,75th,90th), and inter-
quartile range. The selected frequency domain features in-
cluded signal entropy between 0.25 and 5.0 Hz and the top
3 dominant frequencies, magnitudes, and frequency power
ratios (the percentage of the total signal power accounted
for by the dominant frequency) between 0.25 and 5.0 Hz.

Machine learning algorithms
Three supervised learning algorithms were used to build
the activity classifiers: Binary Decision Tree (BDT), Ran-
dom Forest (RF), and Support Vector Machine (SVM).
Each algorithm is briefly described below. A more de-
tailed description of these algorithms can be found else-
where [26–28].
BDT’s use a recursive partitioning technique for classi-

fication. The tree begins with a single root node and
splits into branches, leading to further nodes until a leaf
node is reached. Every non-leaf node is associated with a
binary decision which determines which branch to fol-
low. The decision tree is built by identifying a feature
value that split the training data into subgroups with the
greatest class purity. The splitting continues in each
node until the class subgroups reach a minimum size or
until a stop condition is reached. In the current study,
splits were based on the information gain index which

Table 1 Participants Characteristics

Boys Girls Total

N 11 11 22

Age (years) 13.1 ± 3.3 12.6 ± 2.8 12.9 ± 3.0

Height (cm) 151.2 ± 16.1 145.7 ± 14.4 148.5 ± 15.2

Weight (kg) 45.2 ± 12.8 40.8 ± 12.6 43.0 ± 12.6

GMFCS:

I 5 8 13

II 6 1 7

III 0 2 2
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identifies the split point providing the greatest reduction
in entropy or label impurity. The complexity parameter,
which prevents overfitting by regulating the depth of the
tree, was optimised during cross-validation. BDT was se-
lected because it is relatively easy to implement and the
results can be translated into rules that can be applied
by most researchers and clinicians.
RF is an ensemble of multiple decision trees. Each tree

is learned on a bootstrap sample of training data and
each node in the tree is split using the best among a ran-
domly selected set of features. The decisions from each
tree are aggregated and a final model prediction is based
on majority vote [27]. The RF model requires very little
pre-processing of the data, as the features do not need
to be normalized and feature selection procedures are
not required because the algorithm effectively does this
on its own. Additionally, the model is resistant to over
fitting the training data because each tree within the for-
est is independently grown to maximum depth using a
randomly selected subset of features.
SVM’s perform classification tasks by mapping features

onto a multidimensional space and constructing decision
boundaries, called hyperplanes, which maximise the
margin between observations of different activity classes.
The margin is determined by the distance between “sup-
port vectors”, which are observations that lie in an area
of space which creates a boundary between activity clas-
ses. New observations are mapped onto the multidimen-
sional space and assigned a class prediction based on
which side of the hyperplane it lies [26]. We chose to
use an SVM model because it performs well with high
dimensional data, is robust to noise, and it is able to
classify non-linearly separable feature vectors using Ker-
nel functions. The SVM classifiers were configured using
a radial basis kernel function, and the cost parameter
was optimized in the course of cross-validation. The cost
parameter or soft margin adjusts the width of the hyper-
plane. For implementation of the SVM models, features
were normalized to a mean of zero and scaled to unit
variance by subtracting the corresponding mean and div-
iding by the standard deviation.

Model training and cross-validation
Models were trained and cross-validated using the “ker-
nlab”, “randomForest”, “rpart”, and “caret” packages
within R (Version 3.3.2) [29]. Model fit was evaluated
using leave-one-subject-out (LOSO) cross-validation.
With LOSO cross validation, a model is trained on data
from all participants except one, who is “left out” and
used as a test dataset. The process is repeated until each
participant has been used as a test dataset, and the re-
sults are aggregated. The cross-validation performances
of the classifiers were evaluated by computing overall ac-
curacy and F-scores.

Overall accuracy was calculated as:

correctly classified observations

total observations
� 100

F-score was calculated as:

2 � Precision � Recallð Þ
Precisionþ Recallð Þ � 100

Recall measures the proportion of observations that
were correctly classified (equivalent to sensitivity), while
precision measures the proportion of predicted observa-
tions that were correct (equivalent to positive predictive
value). F-scores were calculated because it is based on
the harmonic mean of precision and recall and is less
biased by class size imbalances [30]. F-scores were calcu-
lated for each activity class and averaged to provide an
overall F-score for each classifier. Additionally, for each
model, confusion matrices were generated to summarise
patterns of misclassification for each classifier.

Statistical analysis
Differences in overall accuracy and F-scores were tested
for statistical significance using Friedman nonparametric
tests as described by Stopor [31]. When the test statistic
was significant, pair-wise tests with a Bonferroni correc-
tion for multiple comparisons was used to determine the
location of significant differences. An alpha level of 0.05
was used as the level of significance.

Results
In the BDT models, the complexity parameter was opti-
mized at 0.01. The complete BDT models for each place-
ment configuration are displayed in Additional file 1. The
RF models were built with 500 trees and the number of
features randomly sampled at each split was optimized at
3 for the wrist and hip models and 6 for the combined hip
and wrist model. For the SVM models, the cost parameter
was optimized at 3.0.
Classification accuracy for each supervised learning al-

gorithm and accelerometer configuration are displayed
in Fig. 1. The Friedman nonparametric test provided
statistical evidence of a significant difference in classifi-
cation accuracy across the nine models (F8,168 = 14.1, p
< .0001). For all three placement configurations, SVM
and RF exhibited significantly better classification accur-
acy than BDT. For BDT, the combined hip and wrist
classifier exhibited significantly higher classification ac-
curacy than the hip classifier, with the hip classifier, in
turn, providing significantly higher classification than
the wrist. For SVM and RF, the combined hip and wrist
classifiers exhibited significantly higher classification ac-
curacy than the hip or wrist classifiers. Although SVM
and RF classifiers trained on hip data exhibited higher
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classification accuracy than those trained on wrist data,
the differences in overall accuracy were small (1.9–3.3%)
and not statistically significant.
Average F-scores for each supervised learning algo-

rithm and accelerometer configuration are displayed in

Fig. 2. The Friedman nonparametric test provided statis-
tical evidence of a significant difference in average
F-scores across the nine models (F8,168 = 11.5, p < .0001).
At the wrist location, RF exhibited significantly better
performance than BDT. However, for the hip and

Fig. 1 Overall accuracy performance for hip, wrist, and combined hip and wrist classifiers. BDT = Binary Decision Tree, RF = Random Forest, SVM
= Support Vector Machine, h+w = hip and wrist, * = significantly different from RF and SVM at a given placement location, † = significantly
different from wrist for a given algorithm, § = significantly different from hip or wrist for a given algorithm

Fig. 2 F-score performance for hip, wrist, and combined hip and wrist classifiers. BDT = Binary Decision Tree, RF = Random Forest, SVM =
Support Vector Machine, h+w = hip and wrist, * = significantly different from RF at a given placement location, † = significantly different from
wrist for a given algorithm, § = significantly different from hip or wrist for a given algorithm

Ahmadi et al. Journal of NeuroEngineering and Rehabilitation          (2018) 15:105 Page 5 of 9



combined hip and wrist, average F-scores for BDT, SVM
and RF classifiers were not statistically significant. For
BDT, the hip and combined hip and wrist classifiers ex-
hibited significantly better performance than the wrist
classifier. For SVM and RF, the combined hip and wrist
classifiers exhibited significantly better performance than
the hip or wrist classifiers. SVM and RF models trained
on hip data exhibited higher average F-scores than those
trained on wrist data; however, the performance differ-
ential was not significantly different.
Confusion matrices for the RF, SVM, and BDT classifiers

are presented in Tables 2, 3 and 4, respectively. Recogni-
tion accuracy for SED activities was excellent (94.1–
97.9%), good to excellent for SUM (74.0–96.6%) and BW
(71.5–86.0%), but modest for CW (47.6–70.4%), particu-
larly for the wrist classifiers. The combined hip and wrist
models provided consistently higher recognition accuracy
for each activity class than the individual hip and wrist
classifiers. For all three learning algorithms, a significant
percentage of comfortable paced walking instances (21.1–
39.9%) were misclassified as fast paced walking, with the
misclassification rate being highest for classifiers trained
on wrist data. However, when the comfortable- and
brisk-paced walking classes were combined into a single
walking class, the average recognition accuracy for walk-
ing ranged from 90.3 to 96.5%.

Table 2 Confusion matrices for Binary Decision Tree, Random
Forest, and Support Vector Machine classifiers trained on wrist
data

Activity
Class

Binary Decision Tree

Observed

Prediction SED SUM CW BW

1. SED 1294 [0.95] 70 [0.05] 0 [0.00] 0 [0.00]

2. SUM 47 [0.03] 1009 [0.74] 124 [0.09] 184 [0.13]

3. CW 7 [0.01] 90 [0.12] 370 [0.48] 310 [0.40]

4. BW 18 [0.01] 197 [0.13] 163 [0.10] 1176 [0.76]

Random Forest

1. SED 1311 [0.96] 47 [0.03] 0 [0.00] 6 [0.00]

2. SUM 30 [0.02] 1267 [0.93] 16 [0.01] 51 [0.04]

3. CW 7 [0.01] 75 [0.10] 442 [0.57] 253 [0.33]

4. BW 20 [0.01] 135 [0.09] 242 [0.16] 1157 [0.74]

Support Vector Machine

1. SED 1327 [0.97] 37 [0.03] 0 [0.00] 0 [0.00]

2. SUM 51 [0.04] 1242 [0.91] 28 [0.02] 43 [0.03]

3. CW 9 [0.01] 112 [0.14] 467 [0.60] 189 [0.24]

4. BW 17 [0.01] 170 [0.11] 256 [0.16] 1111 [0.71]

Numbers represent observation counts. Percentage of observations for a given
class reported in brackets. Values in bold face indicate number and proportion
of observations within each class correctly classified
SED sedentary, SUM standing utilitarian movements, CW comfortable walk, BW
brisk walk

Table 3 Confusion matrices for Binary Decision Tree, Random
Forest, and Support Vector Machine classifiers trained on hip
data

Activity
Class

Binary Decision Tree

Observed

Prediction SED SUM CW BW

1. SED 1294 [0.95] 70 [0.05] 0 [0.00] 0 [0.00]

2. SUM 149 [0.11] 1138 [0.83] 72 [0.05] 5 [0.00]

3. CW 7 [0.01] 57 [0.07] 534 [0.69] 179 [0.23]

4. BW 17 [0.01] 66 [0.04] 255 [0.16] 1216 [0.78]

Random Forest

1. SED 1304 [0.96] 59 [0.04] 1 [0.00] 0 [0.00]

2. SUM 127 [0.09] 1193 [0.87] 26 [0.02] 18 [0.01]

3. CW 7 [0.01] 65 [0.08] 471 [0.61] 234 [0.30]

4. BW 16 [0.01] 51 [0.03] 168 [0.11] 1319 [0.85]

Support Vector Machine

1. SED 1310 [0.96] 51 [0.04] 1 [0.00] 2 [0.00]

2. SUM 149 [0.11] 1138 [0.83] 72 [0.05] 5 [0.00]

3. CW 7 [0.01] 57 [0.07] 534 [0.69] 179 [0.23]

4. BW 18 [0.01] 47 [0.03] 188 [0.12] 1301 [0.84]

Numbers represent observation counts. Percentage of observations for a given
class reported in brackets. Values in bold face indicate number and proportion
of observations within each class correctly classified
SED sedentary, SUM standing utilitarian movements, CW comfortable walk, BW
brisk walk

Table 4 Confusion matrices for Binary Decision Tree, Random
Forest, and Support Vector Machine classifiers trained on
combined hip and wrist data

Activity
Class

Binary Decision Tree

Observed

Prediction SED SUM CW BW

1. SED 1284 [0.94] 80 [0.06] 0 [0.00] 0 [0.00]

2. SUM 45 [0.03] 1243 [0.91] 70 [0.05] 6 [0.00]

3. CW 4 [0.01] 62 [0.08] 547 [0.70] 164 [0.21]

4. BW 10 [0.01] 74 [0.05] 185 [0.12] 1285 [0.83]

Random Forest

1. SED 1326 [0.97] 36 [0.03] 0 [0.00] 2 [0.00]

2. SUM 20 [0.01] 1317 [0.97] 11 [0.01] 16 [0.01]

3. CW 4 [0.01] 52 [0.07] 511 [0.66] 210 [0.27]

4. BW 10 [0.01] 43 [0.03] 164 [0.11] 1337 [0.86]

Support Vector Machine

1. SED 1335 [0.98] 27 [0.02] 1 [0.00] 1 [0.00]

2. SUM 34 [0.02] 1316 [0.96] 7 [0.01] 7 [0.01]

3. CW 4 [0.01] 71 [0.09] 529 [0.68] 173 [0.22]

4. BW 7 [0.00] 50 [0.03] 176 [0.11] 1321 [0.85]

Numbers represent observation counts. Percentage of observations for a given
class reported in brackets. Values in bold face indicate number and proportion
of observations within each class correctly classified
SED sedentary, SUM standing utilitarian movements, CW comfortable walk, BW
brisk walk
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Discussion
To our knowledge, this is the first study to develop and
test machine learning models for the automatic identifica-
tion of physical activity type in ambulant children with
CP. Our classifiers trained on features from the VM of the
raw acceleration signal from the hip, wrist, and combin-
ation of the hip and wrist achieved acceptable recognition
accuracy for a range of physical activities that are routinely
performed by ambulant children with CP. Notably, our
classifiers were able to accurately detect bouts of brisk
walking, which is an important motor activity to promote
function and participation, and a predictor of clinically im-
portant changes in quality of life [2, 32]. Further, our clas-
sifiers developed for children with CP displayed
comparable performance accuracy to those trained in typ-
ically developing children [17, 24, 33–35]. These findings
support the feasibility and utility of machine learning ap-
proaches to accelerometer data processing in children
with CP and indicates that 2-step models that first classify
the activity type and then predict energy expenditure
using activity specific regression equations are worthy of
future exploration in this patient group.
The RF and SVM classifiers exhibited significantly

overall higher classification accuracy than the BDT clas-
sifiers. This finding is consistent with the results of a
study involving typically developing children in which
RF and SVM classifiers outperformed BDT in relation to
recognition of seven commonly performed child activ-
ities [33]. Although intuitive and easy to implement, de-
cision trees generally exhibit lower classification
accuracy than more sophisticated machine learning algo-
rithms [36]. This is because the strictly horizontal and
vertical decision boundaries created by decision trees
lack precision, resulting in variable predictions and in-
creased error when applied to new data. RF models en-
deavour to overcome this limitation by building large
numbers of decision trees using different sets of boot-
strapped training data, randomly selecting subsets of fea-
tures, and basing final class predictions on majority vote.
SVM models provide more precise decision boundaries
through the use of regularisation parameters which allow
“soft margins” and specialised kernel functions which
transform features into a higher dimensional space. This
enables SVM models to linearly separate data points that
would otherwise not be linearly separable, providing su-
perior performance in noisy and high-dimensional data.
Although RF and SVM models outperformed BDT in
the current study, it is important to consider the “no free
lunch theorem” which states that there is no one model
that works best for every problem [37]. Consequently,
future studies should evaluate the utility of other super-
vised learning algorithms or consider implementing a
customised ensemble in which the decisions of multiple
classifiers are fused [33, 38].

The results demonstrate that activity classifiers trained
on data from a single accelerometer worn on the hip or
wrist can accurately detect activity type in ambulatory
children with CP. Although accuracy for the hip classi-
fiers were, on average, 3.9 percentage points higher than
the wrist classifiers, performance differences between
the hip and wrist were not statistically significant (with
the exception of BDT which exhibited the lowest per-
formance of the three supervised learning algorithms).
The performance differential for the hip and wrist classi-
fiers is similar to that observed in a previous investiga-
tion comparing hip and wrist classifiers in typically
developing children [24]. In that study, regularized logis-
tic regression classifiers trained on hip and wrist acceler-
ometer data displayed a difference in recognition
accuracy of just under 3%, although the number of tar-
get classes was higher. The practical significance of the
small performance differential in favour of the hip is not
clear, particularly if the activities with favourable detec-
tion accuracy at the hip location account for a relatively
small portion of the monitoring day [39].
Consistent with the results of studies conducted in

adults [40] and typically developing children [17], the
combined hip and wrist classifiers provided consistently
higher recognition accuracy than the single sensor classi-
fiers. Inspection of the confusion matrices revealed that
the wrist classifiers were superior at detecting activities
involving significant arm movement (e.g. wiping down a
countertop), while the hip classifiers were better at de-
tecting locomotor activities. Therefore, by mitigating the
weaknesses one sensor location may have for detection
of certain activities, the fusion of features from multiple
sensor locations resulted in improved activity recogni-
tion across a range of activity types.
In the current study, the activity recognition models

exhibited high recognition accuracy for brisk walking
(72–86%). This is an important finding with significant
implications for clinical practice because the majority of
youth with CP have difficulty walking due to associated
impairments such as spasticity, weakness, and decreased
postural control [41]. Goals of therapy are to improve
activity limitations (i.e., decreased walking speed and en-
durance), increase gait speed, and promote function and
greater participation [41, 42]. Physical therapy interven-
tions such as exercise, treadmill and overground ambu-
lation training are often used to improve gait speed and
endurance [41, 42]. Therefore, automatic recognition of
brisk walking in free-living contexts is critical in moni-
toring the effectiveness of therapeutic interventions to
promote efficient gait speed for increased HPA, function,
and participation.
The present study had several limitations that should

be acknowledged. First, the classifiers were evaluated
under controlled activity trials which may not fully
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represent activity patterns in free-living conditions. Con-
sequently, additional research is needed to evaluate the
generalizability of these models in a free-living environ-
ment. Second, only two of the 22 participants were clas-
sified as GMFCS level III. The inclusion of more study
participants with severe motor impairments would have
strengthened the study design and increased the general-
isability of the resultant classification models. Third,
relative to brisk walking, recognition of comfortable
paced walking was modest. This could be due to the lim-
ited set of features used to build the classifiers. It may be
that other features from the acceleration signal not in-
cluded in the current study could more accurately differ-
entiate comfortable walking from brisk walking. Another
reason for the low classification accuracy of comfortable
walking could be that the SUM activities also included
brief episodes of walking. Alternatively, the misclassifica-
tion of comfortable walking and brisk walking may be
related to our use of self-selected walking speed. Not-
ably, the range of walking speeds achieved by children
with more severe impairments (GMFCS II & III) during
the brisk/fast walking trials (32.9–77.8 m/min) over-
lapped considerably with the comfortable walking speeds
of children with less impairment (GMFCS I) (38.3–77.4
m/min). Consequently, future studies should investigate
the prediction of other metrics related to locomotor per-
formance such as walking speed, which can be used
across all ambulatory GMFCS levels.
This study had a number of strengths. It is the first

study to develop and evaluate machine learning activity
recognition models for ambulatory youth with CP. Sec-
ond, the study protocol comprised a mix of lifestyle and
ambulatory activities commonly performed by children
and adolescents. Third, a feature fusion method was im-
plemented to develop a combined hip and wrist classifier
that demonstrated higher classification accuracy than
single hip and wrist models. Fourth, the study included
participants with GMFCS levels I, II, and III, thus repre-
senting the full spectrum of ambulatory ability in CP.

Conclusion
In summary, machine learning classifiers trained on ac-
celerometer features from the wrist, hip and combined
hip and wrist can be used to detect PA type in ambulant
children and adolescents with CP. The RF and SVM
classifiers consistently outperformed the BDT classifiers.
The fusion of hip and wrist accelerometer features
yielded significantly better performance, although single
accelerometer classifiers trained on data from the hip or
wrist provided acceptable classification accuracy. The re-
sults support the feasibility of machine learning ap-
proaches to accelerometer data processing in children
with CP and the potential utility of 2-step models which
first classify activity type and then predict energy

expenditure using activity specific regression equations.
Future studies should therefore: 1) develop classification
models that, in addition to the activity classes examined
in the current study, recognise activities performed by
children with less severe motor impairments such as
stair climbing and running; and 2) develop and test ac-
tivity specific energy expenditure prediction models that
account for the motor impairment and decreased mech-
anical efficiency of children with CP. If shown to be
more accurate than single regression models or existing
cut-point methods, the resultant models will enable re-
searchers and clinicians to more effectively monitor the
PA levels of their patients.

Additional file

Additional file 1: AR.CP decision trees. (PDF 85 kb)
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