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Abstract

Despite upper extremity function playing a crucial role in maintaining one’s independence in activities of daily
living, upper extremity impairments remain one of the most prevalent post-stroke deficits. To enhance the upper
extremity motor recovery and performance among stroke survivors, two training paradigms in the fields of robotics
therapy involving modifying haptic feedback were proposed: the error-augmentation (EA) and error-reduction (ER)
paradigms. There is a lack of consensus, however, as to which of the two paradigms yields superior training effects.
This systematic review aimed to determine (i) whether EA is more effective than conventional repetitive practice;
(i) whether ER is more effective than conventional repetitive practice and; (iii) whether EA is more effective than ER
in improving post-stroke upper extremity motor recovery and performance. The study search and selection process
as well as the ratings of methodological quality of the articles were conducted by two authors separately, and the
results were then compared and discussed among the two reviewers. Findings were analyzed and synthesized
using the level of evidence. By August 1st 2017, 269 articles were found after searching 6 databases, and 13 were
selected based on criteria such as sample size, type of participants recruited, type of interventions used, etc. Results
suggest, with a moderate level of evidence, that EA is overall more effective than conventional repetitive practice
(motor recovery and performance) and ER (motor performance only), while ER appears to be no more effective
than conventional repetitive practice. However, intervention effects as measured using clinical outcomes were
under most instance not ‘clinically meaningful’ and effect sizes were modest. While stronger evidence is required to
further support the efficacy of error modification therapies, the influence of factors related to the delivery of the
intervention (such as intensity, duration) and personal factors (such as stroke severity and time of stroke onset)
deserves further investigations as well.
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Background
Stroke, also referred to as cerebrovascular accident
(CVA), is one of the leading causes of disablement
among adults [1, 2]. It is estimated that stroke costs the
Canadian, United States and United Kingdom economy
around $3.6 billion [3], $34 billion [4] and £9 billion [5]
a year respectively in medical services, personal care and
lost productivity. The disabilities resulting from stroke
can affect all aspects of life including gross and fine
motor ability, walking, activities of daily living (ADLs),
speech and cognition [6]. Motor impairments are some
of the most prevalent issues post stroke and restoring
upper extremity function is one of the top priorities of
people with stroke [7]. Compared to the lower extremity
impairments, the upper extremity impairments are more
likely to result in activities limitations (see International
Classification of Functioning, Disability and Health (ICF)
in Appendix 1) because tasks that involve the arm and
hand often require a high level of fine motor control [8].
In fact, severe upper extremity impairments post-stroke
often hinder the ability to take care for oneself and per-
form ADLs [9]. Although restoration of upper extremity
motor functions is crucial for stroke patients to regain
their independence, studies have shown that only 35 to
70% of people with stroke recover to the level of arm abil-
ity that is considered functional [10-12] while more than
50% have persistent upper extremity impairments [13].

Studies in both human and animal models demon-
strate the importance of motor learning in the process
of motor recovery following an acquired brain lesion as
both learning and recovery processes can induce cortical
changes and reorganization [14]. Motor learning, which
is “a set of processes associated with practice or
experience that leads to relatively permanent changes in
the ability to produce skilled action” [15], relies on an
experience-dependent neural plasticity that is modulated
by various factors such as task specificity, repetition,
intensity, timing, salience, etc. [16]. Amongst different
factors influencing the acquisition of motor skills,
feedback is believed to be one of the key factors [15].
Feedback is the information that an individual receives
as a result of his or her performance [17]. It can be
either intrinsic or extrinsic, where intrinsic feedback is
that experienced by the performer (e.g. sensory, visual
feedback, etc.) and extrinsic (augmented) feedback is
that provided by an external source, such as a therapist
providing verbal or physical guidance [18, 19]. Extrinsic
feedback can inform the performer about a success or
failure on a task (knowledge of results) or about the
quality of movement or task performance (knowledge of
performance) [15].

Robotics is one of the advanced technologies that is
increasingly used in post-stroke upper extremity re-
habilitation [20]. Compared to conventional approaches,
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it offers the advantages of high convenience when
providing task-oriented practice, as well as high accuracy
in measuring outcomes of motor performance (e.g.
trajectory straightness, movement speed, range of joint
movement [21]). The latter outcomes can in turn be
used to provide knowledge of performance as a source
of feedback [22]. Two main paradigms of training on the
use of feedback, arising from the literature on robotics,
were proposed and tested as means to facilitate motor
learning and improve motor performance: the error re-
duction (ER) paradigm and error augmentation (EA)
paradigm. The ER paradigm, also known as haptic guid-
ance, is to reduce the performance errors of a subject
during a motor task [23], namely via the assistance pro-
vided by a robot so that the performer can stay within
the optimal movement trajectory determined by the
non-paretic arm or by the therapist [24]. This approach
is based on the hypothesis that by demonstrating the
correct movement trajectory to a person, he/she will be
able to learn it by imitation [25]. The discovery of
“mirror neurons” that were first identified using micro-
electrode recordings of single neurons in area F5 of
monkey premotor cortex [26] prompted the researchers
to believe that a similar mirror neuron system exists in
humans, and that this mirror neuron system could play
an important role in learning through imitation [27].
Furthermore, the theory of reinforcement-based learning
suggests that positive/successful feedback is essential for
motor learning to occur [28]. The ER paradigm also as-
sumes that there is a unique optimal movement trajec-
tory and any deviation from it is considered to be an
error. According to the principle of abundance and the
theory of use-dependent learning, however, having vari-
ance in how a motor action is performed does not ne-
cessarily impede the overall motor performance [29, 30].

A whole body of literature also suggests that motor
learning can be an error driven process, a postulate that
can be explained and supported by motor control theor-
ies such as the internal model theory [31] and the equi-
librium point hypothesis [32]. In the internal model
theory, it is hypothesized that subjects form an ‘internal
model’ based on their anticipation of the effects of the
environment on their motor actions, therefore the in-
ternal model acts as a feed-forward component of the
motor control [31]. The detection of errors that occur
during the motor performance play the role of a feed-
back component, as errors prompt the existing internal
model to adapt in order to reduce errors [33-36]. In the
equilibrium point hypothesis, the errors occur in the
subsequent movements following a change in the envir-
onment, but the motor system is able to correct these
errors by adjusting the control variables based on
information about the current motor system, joint posi-
tioning of the limbs, etc., thus resetting the activation
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thresholds (A\) of muscle and forming a new equilibrium
point [32, 37]. Given the role of errors in motor learning, it
was hypothesized that artificially increasing the perform-
ance error would cause learning to occur more quickly
[25], an idea that is the foundation of the EA paradigm. In
robotics, one of the commonly used technique to artifi-
cially increase performance error is to create a force-field
that disturbs the limb motion during the movement [38].

While the theories and ideas that support ER vs. EA par-
adigms are distinct, both are currently being used, primar-
ily in the form of haptic feedback, as part of clinical
intervention studies for populations with deficits in motor
recovery. Until this day, there is no consensus as to which
of the two paradigms provides superior treatment effects
in upper extremity motor recovery and performance
among stroke survivors. Furthermore, while systematic re-
views on the use of error modification in upper extremity
rehabilitation after stroke were published in the recent
years [39, 40], these exclusively focused on the EA para-
digm and did not allow for a comparison between the two
approaches. In this study, we conducted a systematic re-
view on the use of EA and ER paradigms in the form of
haptic feedback to enhance upper extremity motor recov-
ery and performance in stroke survivors. The main re-
search questions that were addressed are listed in PICO
format (Population, Intervention, Comparison, and Out-
come) and read as follows:

1. Among stroke survivors (P), to which extent do
interventions involving EA paradigm (I;) or ER
paradigm (I;) compared to interventions without
error modification (C) enhance the upper extremity
motor recovery and performance respectively (O).

2. Among stroke survivors (P), to which extent does
the EA paradigm (I) compared to ER paradigm (C)
enhance the upper extremity motor recovery and
performance (O).

For the purpose of clarification, the comparison com-
ponent of the first research question, “training without
error modification,” refers to standard repetitive practice
that does not involve any external force (reducing or
amplifying errors) that provides feedback on the per-
formance. The outcomes of both research questions,
“upper extremity motor recovery and performance,” can
include clinical measures of both upper extremity im-
pairment and disability and kinematic measures of
motor performance (for more details, refer to the section
of inclusion and exclusion criteria).

Methods

Search strategy

The following databases which are available through
McGill University library were systematically searched
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using their online search engines: Ovid MEDLINE,
CINAHL, EMBASE, AMED, Psycholnfo, and PEDro.
There was not a start date limit on the search criteria of
the database, and the end date was August 1st 2017. The
overall search strategy which was determined by the two
reviewers (L.Y.L. and Y.L.) involved multiple search
entries with keywords listed in the following, and the
corresponding Medical Subject Headings (MeSH) terms
were selected and ‘exploded’ (* for truncation):

e Search 1: error amplifica*, error augment®, error
enhance*, error enhancing, negative viscosity, haptic
guidance, haptic*, active assist* (all keywords were
combined with OR operator).

e Search 2: stroke/ or stroke rehabilitation (MeSH),
post-stroke (all keywords were combined with
OR operator).

e Search 3: upper extremity/or arm (MeSH),
upper-extremity, upper arm, motor learn®, reaching
(all keywords were combined with OR operator).

e Final search: all three previous searches were
combined with AND operator.

Following the electronic database search, a manual
search of all relevant studies was performed to ensure
the completeness of the search.

Study selection process

All search results found in the databases were saved into
EndNote X7 reference manager (1988-2013 Thomson
Reuters), and the duplicates were removed by the soft-
ware. Each of the two reviewers carried out the study se-
lection process separately. In addition, the study selection
process involved the following steps: (1) Screen the
remaining articles by their titles and abstracts; (2) Remove
studies that do not meet the inclusion criteria or meet the
exclusion criteria; (3) Review the full text of the remaining
articles and; (4) Remove studies that do not meet the in-
clusion criteria or meet the exclusion criteria. Following
step 4, the two reviewers compared their results. They
discussed about the discrepancy between the results and
decided together which articles were to be selected and
the process of data extraction began.

Inclusion and exclusion criteria
The following were the inclusion criteria:

1. The population of the study is people with stroke
who have upper extremity hemiparesis. The severity
and onset of stroke may vary.

2. The design of the studies can be randomized
controlled trial, crossover trials, quasi-experimental
trials and pilot studies. The studies have to be
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intervention-oriented and not observation-oriented
or review-oriented.

3. The upper-extremity tasks involved in the
experimental procedure can be reaching, moving
arm in circular trajectory, timing-oriented, grasping,
or other functional movements.

4. The interventions of the studies have to involve
either EA, ER or both paradigms. If the
interventions only contain feedback and not any
error modification, they are not included.

5. The interventions have to be mainly based on
haptic feedback, but other feedback such as visual
and auditory can be used as supplement. The
reason to focus on haptic feedback is because based
on previous review papers, most studies on EA and
ER paradigms were in the field of robotics and
haptic feedback was mainly involved. Therefore, to
facilitate the comparison process only studies
involving haptic feedback are included.

6. The studies can either compare EA to ER or
compare either EA or ER to standard repetitive
practice training that does not involve error
modification.

7. The outcomes of the studies can be either kinematics
or clinical outcomes. The kinematic outcomes have
to measure the quality of movement such as
trajectory straightness, smoothness, timing error, etc.
The clinical outcomes can measure either the
impairment level (i.e: range of motion, spasticity, level
of motor recovery) or the motor disability level. The
assessment tools have to be validity-proven such as
Fugl-Meyer Assessment [41], Chedoke-McMaster
Stroke Assessment [42], etc.

The following were the exclusion criteria:

1. The language of publication is not English.

The age of population studied is under 21 years old.
Stroke in pediatric population may differ in
aetiology, presentation and response to intervention
and including this age range could introduce several
confounding variables in this study.

3. The number of participants is less than 5, in order
to control the statistical certainty of the results.
Therefore, case studies are excluded.

4. The articles that are listed as conference abstracts
are excluded.

5. The main outcomes are not related to motor
performance (as defined in the introduction) or
recovery of upper extremity.

Methodological quality assessment
The Physiotherapy Evidence Database (PEDro) scale [43]
was chosen for the quality assessment of all articles
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selected, as studies have shown that the validity and reli-
ability of PEDro scale are well established [44—46]. The
scale consists of 11 items: eligibility criteria specified,
randomized allocation, concealed allocation, baseline
similarity, blinded subjects, blinded therapists, blinded
assessors, adequate follow-up, intention to treat analysis
(an analysis was performed as if the subjects received
the treatment as allocated even if they received a differ-
ent treatment), comparison between groups, point esti-
mates and variability [45]. One point is awarded when a
criterion is clearly satisfied, except the first criterion ‘eli-
gibility criteria specified” which is not considered for the
calculation of score, therefore the total score is out of
10. PEDro scores are interpreted as follows: 6—10 indi-
cates high methodological quality, 4-5 corresponds to
fair quality, and less than 4 indicates poor quality [47].
The two reviewers (L.Y.L and Y.L) rated each of the se-
lected studies separately, and the agreement among the
two was calculated using Cohen’s kappa for each of the
eleven items of PEDro scale. Then they compared and
discussed their scores to decide the final score for each
of the articles.

Risk of bias assessment

The risk of bias was evaluated using the Cochrane
Collaboration’s risk of bias tool [48] by the reviewer
L.Y.L. This tool was developed in 2005 by the Cochrane
Collaboration’s Methods Group as the new strategy for
addressing the quality of randomized trials [49]. The
Cochrane Collaboration’s risk of bias tool involves the
assessment of the risk of bias arising from each of six
domains: random sequence generation, allocation con-
cealment, blinding of participants and personnel, blind-
ing of outcome assessment, incomplete outcome data,
selective reporting and other biases [48, 49].

Data extraction

The studies selected were divided into three categories
based on their interventions and comparisons: (1) EA
compared to training without error modification, (2) ER
compared to training without error modification and (3)
EA compared to ER. For each category of studies, a
description table was used. The following data were
abstracted from the selected studies:

e Study design, and in case of a clinical trial,
indicating if the trial is registered in
ClinicalTrials.gov (run by the United States National
Library of Medicine)

e Number of participants in the experimental and
control groups

e Demographic and clinical information of the
participants

e Equipment used
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e Experimental protocol including the parameters
of training

e Main outcomes measures and assessment tools used

e Results of the study including the significant levels
and interpretations

e Effect sizes of the results

e Methodological quality scores of the study
calculated using the PEDro scale.

Data analysis and synthesis

Outcomes were considered as significant if: (1) the re-
ported p-value was less than 0.05 or (2) the 95% confi-
dence interval did not contain 0. To calculate the effect
size, the Cohen’s d formula: d = Meang,up1-Meang qupa/
standard deviationygoeq Was used. If d is between 0.2 and
0.5, the effect size was considered small; between 0.5 and
0.8, it was medium and above 0.8, it was large [50]. If the
numerical values of the results were not reported in a par-
ticular study, a textual explanation would be stated in the
results column or effect size column of the tables. In order
to synthesize the results, ratings of level of evidence from
Evidence Based Medicine were used (Appendix 3) [51].
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Results

Study selection

Figure 1 illustrates the selection process of the studies
included in this paper using the PRISMA 2009 flow-
chart. The overall search results consisted of 259 articles
from the databases, and 10 from the manual search.
Among the 269 studies, 80 duplicates were removed
using EndNote X7, and 138 were excluded based on title
and abstract screening. Furthermore, following full text
reviews, 44 studies were excluded (see Appendix 2) such
that 13 remaining articles were retained for the data ex-
traction and synthesis. Among these 13 articles, 6 com-
pared the effects of EA to training without error
modification, 3 compared the effects of ER to training
without error modification, and 4 compared EA to ER.

Study designs

Table 1 (EA only), Table 2 (ER only) and Table 3 (EA
and ER) described all 13 studies as well as their results.
Among the 13 selected studies, there are six randomized
controlled trials (RCT) [52-57], five crossover studies
[52, 54, 58—60], one quasi-experimental study [24], two

Records identified through
database searching
(n =259)

Additional records identified
through manual search

(n=10)

e Medline: 96
e CINAHL: 19
e EMBASE: 92
e AMED: 12

e Psycholnfo: 10
e PEDro: 30

|

A4

(n=189)

Records after duplicates removed in EndNoteX7

|

Records screened

Records excluded following title and

(n=189)

A 4

abstract screening
(n=138 )

Full-text articles reviewed

A4

for eligibility
(n=57)

Full-text articles excluded:
(n = 44) (refer to Appendix Il for details)

I

Studies selected for data
extraction
(n=13)

e EAonly:6
e ERonly:3
e EAandER:4

Fig. 1 The selection process of studies using PRISMA 2009 flowchart
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randomized comparative study [61, 62] and one pilot
study [63]. Among all thirteen studies, only four could
be found in clinical trials registry [52, 56, 57, 63].

Participants

Besides two studies that included healthy subjects in their
control groups [24, 60], all other studies only included
stroke survivors [52—-59, 61-63]. Eleven out of thirteen
selected studies [24, 52—57, 59—62] recruited participants
with a chronic stroke (i.e. more than six months post-
stroke’ [64]) with a mean value of 74.5 + 46.8 months, one
study [63] recruited participants with an acute stroke (i.e.
less than a month post-stroke [65]), and one study did not
specify in which stage of stroke the participants were situ-
ated [58]. The number of participants varied from study
to study, ranging from 7 [63] to 34 [61] with a mean value
of 19.6. The age of the participants varied greatly among
studies, and almost every study included young as well as
seniors who were 65 and above. The mean age of all 13
studies is 55.04 + 11.3 years. In terms of baseline clinical
assessments, nine studies used Fugl-Meyer (FM) assess-
ment scores [24, 52, 53, 56, 57, 60—63], three studies used
Chedoke-McMaster Stroke Assessment (CM) scores
[54, 55, 58], and one did not include any baseline clinical
information [59]. Among the studies that used FM scores,
five studies included stroke survivors with the average FM
scores ranging between 30 and 40 (the lowest being 15
and the highest being 50) [24, 52, 53, 60]. One study [63]
recruited participants with stroke with a mean FM score
around 53-54, which indicated a higher functional level.
Four other studies used the Arm Motor Fugl-Meyer
(AMFM) scores which correspond to the upper extremity
section of the FM and reported mean AMFM scores be-
tween 30 and 40 [62], 40-50 [56], 50—60 [57], and 60—66
[61]. Among the studies that used CM (scores ranging
from 1 (lowest) to 7 (highest)), the mean CM stages were
respectively 3.3 [55], 4.4 [58], and 4.56 [54].

Experiment protocols

Among the five crossover studies, two [52, 60] involved
a protocol in which participants crossed between
experimental intervention (all of them are related to EA
paradigm) and control intervention (no distorted error
feedback); two studies [54, 58] had participants crossing
between EA interventions and ER interventions; one
study had participants crossing between EA force alone
and EA combined with positive limb inertia [59]. One
study [56] divided the participants into two groups, the
first one receiving ER throughout the experiment and
the second one receiving the control intervention (no
assistance) for the first half of the experiment and ER for
the second half of the experiment. In the study of Patton
and colleagues (2006) there were three groups: stroke
experimental, stroke control and healthy experimental.
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Half of the stroke experimental group experienced EA
and the other half experienced ER, but it was unclear
which intervention the healthy experimental group re-
ceived [24]. Rozario and colleagues (2009) also recruited
healthy subjects in the study as control group, but like-
wise, it was unclear which interventions did the healthy
subjects receive [60]. The duration of the experiment
varied greatly among the studies. Eight studies had pro-
tocols that involved multiple sessions over three to eight
weeks [52, 54, 5658, 60, 62, 63]. Four studies only had
one single session [24, 53, 55, 61] and one study had
three session in total [59].

Outcomes measures

All studies included clinical outcome assessments ex-
cept two (Patton et al. 2006; Huang and Patton 2013
[59, 61]). The AMFM and CM impairment inventory
were the most frequently used clinical assessment scale, as
they were used in nine [24, 52, 53, 55-57, 60, 62, 63] out
of eleven studies that included clinical outcome measures.
The Box and Blocks Test was used in three studies
[52, 56, 60], the Wolf Motor Function Test (WMFT -
functional ability scale (FAS) and time measures) in two
studies [52, 60], range of motion (ROM) in two studies [52,
58], Motor Status Score (MSS) in two studies [54, 58],
Modified Ashworth Scale (MAS) in two studies [24, 58] and
Action Research Arm Test (ARAT) in two studies [56, 57].
For data analysis and synthesis purposes, clinical scales are
prioritized in the following way: (1) for motor impairments,
AMFM>CM > MSS > MAS > ROM,; (2) for motor disabil-
ities, WMFT>MAL > Motor Assessment Scale>ARAT>
Box and Blocks. Eight studies [24, 53-55, 58, 59, 61, 63]
further included kinematic outcomes. While the kinematic
outcomes used were different from study to study, most
of them were related to spatial, timing or velocity devi-
ation errors [24, 53, 59, 61, 63]. One study used movement
accuracy and smoothness as its main kinematic outcome
[58], and one study included trajectory of movement [54].
Other kinematic outcomes such as distance of reach [55]
and speed of movement [55] were also used. It is to be
noted that Takahashi and colleagues (2008) included elec-
tromyography (EMG) and functional magnetic resonance
imaging (fMRI) as outcome assessment tools, but the re-
sults of the imaging techniques were not the focus point
of this review and will not be discussed.

Methodological quality of trials

The information on the agreement between the two re-
viewers using Cohen’s kappa can be found in Table 4.
The meantl standard error of Cohen’s kappa of all
items of PEDro scale was 0.423+ 0.202, which could only
be considered “moderate” [66] although the mean ob-
served agreement percentage (P,) was high (78.32%).
This could be due the fact that the mean expected
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agreement percentage (P.) was 63.15% which is also con-
sidered to be medium-high. Table 5 summarizes the final
score of PEDro scale of the selected studies after a com-
parison of results and discussion between the two re-
viewers. Five studies [52, 54, 57, 61, 62] were
considered to be of ‘high quality’ which represents a score
of 6/10 or above [47]. Four studies [53, 55, 56, 60] were
considered to be of ‘fair quality’ which indicates a score be-
tween 4/10 and 5/10 [47]. At last, four studies [24, 58, 59,
63] were considered of ‘poor quality’ due to having a score
less than 4/10 [47]. The parameters that received the lowest
scores were ‘blinded therapists’ (one out of fourteen stud-
ies), ‘concealed allocation’ (two out of fourteen studies), and
‘intention to treat analysis’ (three out of fourteen studies).
Total scores on the quality of trials were also included in
Tables 1, 2 and 3.

Assessment of risk of bias

The risk of bias of the selected studies was assessed
using Cochrane Collaboration’s risk of bias tool (Table 6).
It is to be noted that two studies [24, 63] had high risk
of bias in four of the six domains and four studies
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[55, 56, 58, 59] were considered of having high risk
of bias in three of the six domains. The domain that
received the highest risk of bias is ‘allocation conceal-
ment’ (twelve out of fourteen studies). In the domain
of ‘other bias, two most common biases were ‘small
sample size’ which was present in seven of the thir-
teen studies [53-56, 58, 60, 63] as well as ‘short
training protocol’ which was found in five of the thir-
teen studies [24, 53, 55, 59, 61].

Data analysis and synthesis

EA compared to training without error modification

As shown in Table 1, two high quality [52, 62], two fair qual-
ity [53, 60] and two poor quality [59, 63] studies investigated
the effectiveness of EA compared to standard repetitive prac-
tice. In the first high quality RCT of Abdollahi and col-
leagues (2014) [52], the EA group showed significantly
higher improvement with a medium effect size over the con-
trol group in AMFM score during the first phase of training.
In the second phase, the difference was of low effect size and
not significant [52]. When examining the results of WMFT
FAS, the EA group showed higher improvement in the first

Table 5 Methodological quality assessment of the studies using PEDro scale

Eligibility Randomized Concealed Baseline Blinded Blinded  Blinded Adequate Intention Comparison Point Total
criteria allocation allocation  similarity subjects therapists assessors follow-up to treat  between estimates
specified analysis  groups and
variability
Abdollahi Yes 1° 0 0 1 1 0 1 1 1 7/10°
et al. [52]
Bouchard Yes 1 0 1 1 1 1 1 1 1 8/10
et al. [61]
Cesqui Yes 0 0 0 1 0 0 0 1 1 3/10
et al. [58]
Givon-Mayo  Yes 1 0 0 1 0 0 0 1 0 3/10
et al. [63]
Huang and No 1 0 0 0 0 0 0 1 1 3/10
Patton [59]
Kahn Yes 1 0 0 0 1 0 0 1 1 4/10
et al. [55]
Majeed Yes 1 0 0 1 1 1 0 1 1 6/10
et al. [62]
Patton Yes 1 0 0 1 1 1 0 0 1 5/10
et al. [53]
Patton Yes 0 0 0 0 0 0 0 1 0 1/10
et al. [24]
Rozario Yes 1 0 0 1 1 1 0 0 0 4/10
et al. [60]
Takahashi Yes 1 0 1 1 0 1 0 1 0 5/10
et al. [56]
Timmer-mans  Yes 1 1 1 0 1 1 1 1 1 8/10
et al. [57]
Tropea Yes 1 0 1 0 1 1 0 1 1 6/10
et al. [54]

2ltems that were not reported were scored as 0, and reported items were scored as 1. Evaluation was conducted by two reviewers. Interpretation of scores: high

quality- 6 points or more, fair quality- 4-5 points, poor quality- less than 4 points
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Table 6 Assessment of risk of bias of the studies using Cochrane Collaboration’s risk of bias tool

Random Allocation Blinding of Blinding of Incomplete Selective Other bias
sequence concealment  participants and outcome outcome data reporting
generation (selection bias) personnel assessment (attrition bias)  (reporting bias)
(selection bias) (performance bias) (detection bias)
Abdollahi Low? High® Low Low Low Low Low
et al. [52]
Bouchard Low High Low Low Low Low Short training period
et al. [61]
Cesqui High High Unclear® High High High Small sample size, baseline
et al. [58] differences between groups
Givon-Mayo  Low High High High High Unclear Very small sample size,
et al. [63] baseline differences
between groups
Huangand  Low High High High Low Low Short training period
Patton [59]
Kahn Low High High Low Unclear High Small sample size, short
et al. [55] training period
Majeed Low High Low Low Low Low Low
et al. [62]
Patton Low High High Low Low Low Short training period, small
et al. [53] sample size
Patton High High High High Low Low Short training period
et al. [24]
Rozario Low High High Low Low Low Small sample size
et al. [60]
Takahashi Low High Low High High Low Small sample size
et al. [56]
Timmermans Low Low High Low Low Low Low
et al. [57]
Tropea Low High High Low Low High Small sample size
et al. [54]

2Low: low risk of bias; bHigh: high risk of bias; “Unclear: unclear risk of bias

phase, but the opposite was seen in the second phase [52],
and this might be due to the EA training having a stronger
cross-over effect. The effect size of both phases were
medium, but the levels of significance were unknown. The
results of WMFT timing measures were in favor of the EA
group in both phases, but the effect sizes were low/very low
and the levels of significance were unknown. In the Box and
Block Test, no significant difference was found [52]. In the
second high quality study of Majeed and colleagues (2015)
[62], the AMFM scores were not found to be different be-
tween the EA and control group. It is to be noted that in this
study, the training period was considerably shorter than the
one in Abdollahi et al. (2014). However, the EA group
showed significantly better retention in AMFM at one week
follow-up with a medium effect size [62].

In the two fair quality studies, Patton and colleagues
(2006) and Rozario and colleagues (2009) [53, 60], the
EA group showed higher improvement than the control
group in movement and ROM errors. The effect sizes
were medium, but the levels of significance were un-
known (possibly insignificant because the sample sizes of
the two studies were small: 15 and 10).

In the pilot study of Givon-Mayo and colleagues (2014)
[63], the EA group showed higher improvement of medium
effect size over the control group in Motor Assessment
Scale scores, but the level of significance was unknown
(possibly insignificant because the sample size was really
small: 7). It was demonstrated that the EA group also im-
proved greatly over the control group in velocity deviation
error (a measure of velocity error expressed as deviation
from the optimal smooth acceleration), and the result had a
very large effect size and was significant [63]. In the study
of Huang and Patton (2013), the EA group was the only
group to have a significant improvement in radial deviation
(a measure of movement error expressed as the distance
between handle and template track in a circular movement
task) compared to the control and the EA combined with
inertia groups, though the effect size was small [59].

In summary, the following conclusions were drawn:

1. There is moderate evidence (Level 1b) from one
high quality study [52] that the EA training
paradigm is more effective than standard repetitive
practice without error modification at improving
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upper extremity motor impairments (as measured
by AMFM) among people with chronic stroke.

2. There is moderate evidence (Level 1b) from one
high quality study [62] that the EA training
paradigm shows more retention of improvement
than standard repetitive practice without error
modification for upper extremity motor
impairments (as measured by AMFM) among
people with chronic stroke.

3. There is moderate evidence (Level 1b) from one high
quality study [52] and one pilot study [63] that the
EA training paradigm is more effective than standard
repetitive practice without error modification at
improving upper extremity functional disability (as
measured by WMFT and Motor Assessment Scale)
among people with chronic stroke.

4. There is limited evidence (Level 2a) from two fair
quality studies [53, 60], one pilot study [63], and one
poor quality study [59] that EA training paradigm is
more effective than standard repetitive practice without
error modification at improving reaching trajectory
deviation and control (measured by kinematic
outcomes such as movement errors, velocity errors,
etc) among people with chronic stroke.

ER compared to training without error modification

One high quality RCT [57] and two fair quality RCTs
[55, 56] were included when comparing ER to training
without error modification (Table 2). In the high quality
study of Timmermans and colleagues (2014) [57], the
control group consistently showed more improvement
than the ER group at every outcome measure (AMFM,
ARAT, and Motor Activity Log), but the differences in
scores between the two groups were not significant and
the effect sizes were either small or very small.

In the fair quality study of Kahn and colleagues (2006)
[55], the ER group showed more improvement than the
control group in supported fraction of range (the reach-
ing range of the affected arm, while supported by the ro-
botic device, normalized to the same measure of the
unaffected side) and supported fraction of speed (the
reaching speed of the affected arm normalized to the
same measure of the unaffected side), but the opposite
result was seen in unsupported fraction of speed (the
reaching speed of the affected arm without the support
of the robotic device) and CM assessment. All results
in the study had small or very small effect sizes, and
none was significant [55]. However, in another fair
quality study of Takahashi and colleagues (2008), the
full ER group had higher improvement of very large ef-
fect size over the half ER/half control group at ARAT
and AMFM scores, and the differences were significant
[56]. In that same study, no change was found in the
Box and Block Test.
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The following conclusions were drawn:

1. There is moderate evidence (Level 1b) from one high
quality study [57] that the ER training paradigm is
not more effective than standard repetitive practice
without error modification at improving upper
extremity motor impairments (as measured by
AMEFM) or at improving upper extremity functional
disability (as measures by ARAT and MAL) among
people with chronic stroke.

2. There is limited evidence (Level 2a) from one fair
quality study [55] that ER training paradigm is not
more effective than standard repetitive practice
without error modification at improving reaching
trajectory control (measured by kinematic
outcomes such as supported range and supported
speed) among people with chronic stroke.

EA compared the ER

Two high quality studies [54, 61] as well as two poor
quality studies [24, 58] were included in the analysis
(Table 3). In the high quality study of Bouchard and col-
leagues (2016) [61], the ER group had an improvement
in absolute timing errors while the EA group had a de-
terioration, but the difference between the two groups
was not significant and the effect size was small. In the
high quality study of Tropea and colleagues (2013) [54],
the ER group had a non-significant difference of im-
provement in Modified Ashworth Scale (MAS) and
Motor Status Score (MSS) compared to the EA group,
and the effect sizes were small to medium. However, the
EA group had a significantly smoother and straighter
trajectory than the ER group [54].

In the study of Cesqui and colleagues (2008) [58], simi-
lar results were found in terms of difference between EA
and ER groups in MAS and MSS as in the study of Tropea
et al. (2013). In the quasi-experimental study of Patton
and colleagues (2006), the EA group showed a very large
effect size at improvement in initial direction error over
the ER group, and the result was significant [24].

The following conclusions were drawn:

1. There is moderate evidence (Level 1b) from one high
quality study [54] that the EA training paradigm is
not more effective than the ER training paradigm at
improving upper extremity spasticity (as measured by
MAS) and motor impairment (as measured by MSS)
among people with chronic stroke. It is to be noted
however, that in this study the baseline stroke
severity between the two groups was different.

2. There is moderate evidence (Level 1b) from one high
quality study [61] that the EA training paradigm is
not more effective than ER training paradigm at
improving movement timing (measured by absolute
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timing error) during a wrist flexion movement
among people with chronic stroke.

3. There is moderate evidence (Level 1b) from one high
quality study [54] and one quasi-experimental study
[24] that the EA training paradigm is more effective than
ER training paradigm at improving reaching trajectory
control (as measured by kinematic outcomes such as
trajectory smoothness, straightness and initial
direction errors) among people with chronic stroke.

Overall, results suggested that EA induces larger improve-
ment in clinical and kinematic outcomes compared to
standard repetitive practice without error modification. Fur-
thermore, results also unveiled the new findings that (i)
there is a lack of evidence supporting the superiority of ER
over standard repetitive practice in terms of improvement in
clinical and kinematic outcomes; and (ii) EA is only superior
to ER at improving kinematic outcomes. These findings
were supported, globally, with a moderate level of evidence.

Discussion

This study completed, for the first time, a systematic re-
view of interventions studies that compared the effective-
ness of the EA training paradigm to standard repetitive
practice without error modification, the ER paradigm to
standard repetitive practice, and EA to ER at enhancing
upper extremity motor recovery and performance in indi-
viduals with stroke. Thirteen studies were included in the
review. The reason why EA was found to more effective
than standard repetitive practice while ER was not could
be due to the fact haptic guidance and assistive therapy are
more effective in the initial stage of motor learning while
error-based learning is more used in the later stage of
learning. Indeed, it has been shown that in the initial stage
of motor learning, motivation and positive reinforcement
are believed to play a much more important role than be-
ing able to identify errors [28]. Since most participants in
the reviewed studies are people with chronic stage of
stroke, it is believed that they have already gone through
the initial stage of motor relearning.

While some differences in clinical outcomes between
training paradigms were statistically significant, it is also
important to assess their clinical relevance and effect size
in order to address the objectives of this review. Amongst
clinical tests that assess motor recovery, the AMFM shows
a minimal detectable change (MDC) of 5.2 [67] and a min-
imally clinically important difference (MCID) of ranging
from 4.25 to 7.25 [68]. None of the reviewed studies on
EA presented intervention gains that met the MDC or
MCID for this test. In fact, only Takahashi and colleagues
(2014) [56] who compared ER to standard practice had re-
sults that met the MDC and MCID for the AMEM, in
both intervention groups. For the WMFT FAS and the
WMET time measure which reflect motor abilities in
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functional and timed tasks, none of the studies reviewed
met the MCID (WMFT FAS ranging from 0.2 to 0.4 point;
WMFT time measure ranging from 1.5 to 2.0 s [69]). The
MCID for the ARAT (5.7 [70]) was attained only in
Timmermans and colleagues’ study (2014) [57], both by
the ER and standard practice groups. It is to be noted that
no established MCID was found in Motor Assessment
Scale, Motor Activity Log and Motor Status Score. Spasti-
city, as measured by the MAS, showed intervention in-
duced changes that reached the MCID (1 point [71]) for
ER and EA in two studies that compared the latter two ap-
proaches [54, 58]. The Box and Blocks test and ROM did
not see any significant change in any of the intervention
groups in the thirteen studies reviewed, presumably be-
cause arm trajectory control was specifically targeted in
the interventions, as opposed to manual dexterity and joint
mobility. In addition, the effect sizes of the differences in
clinical outcomes in all thirteen studies were for most mod-
erate or small. Collectively, these observations suggest that
while EA was found to have superior effects over standard
repetitive practice to improve upper extremity motor im-
pairments and functional disability, it yet has to demonstrate
that it can yield clinically meaningful changes in clinical out-
comes of motor impairment and function. Such observa-
tions also raise important questions, being whether the
intervention was delivered optimally (e.g. in terms of train-
ing intensity, duration, feedback sensory modality, stroke
chronicity and baseline level of motor recovery, etc.) and
whether the selected outcomes were actually best suited to
capture the improvements brought up by the intervention.
To that effect, the EA training paradigm was further
found to be more effective at improving kinematic out-
comes that measure reaching trajectory control compared
to both ER and standard repetitive practice. Indeed, two
studies showed very large effect sizes on the difference be-
tween EA and standard repetitive practice, and between EA
and ER [24, 63]. Furthermore, when comparing EA to ER,
the only statistically significant difference that emerged was
in the kinematic outcomes which were in favor of the EA
group. In fact, although EA showed larger improvement
than standard practice and although ER did not show sig-
nificant difference compared to standard practice in terms
of clinical outcomes, EA surprisingly did not appear to be
better than ER at improving clinical outcomes. It has been
shown that kinematic variables are highly responsive to
changes in motor performance following training interven-
tion [72] and that they can capture the quality of the move-
ment which is another important aspect of motor abilities
[73]. In the context of this study, this could suggest that EA
is actually better than ER at improving the quality of move-
ment which is mostly measured by the kinematic outcomes,
but such improvement could not be detected by most of
the examined clinical outcomes. From a broader perspec-
tive, these observations emphasize the need to deeply
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understand the mechanisms of action of error modification
interventions and select outcome measures accordingly.

Besides factors related to the intervention itself (intensity,
duration, etc), personal-related factors such as the site of
lesion, stroke severity and chronicity also are factors that
may have influenced the results of studies reviewed in this
manuscript and ensuing conclusions. Unfortunately, most
studies did not provide information on brain lesion loca-
tion. Among the three studies that did provide this infor-
mation [24, 52, 53], participants suffered stroke in a variety
areas (e.g. cortical, sub-cortical, thalamus, basal ganglia,
brain stem, etc.) and the distribution of the different sites
of lesion amongst groups was not reported, making it im-
possible to analyse the effects of lesion location. As for
stroke severity, among the studies that compared EA to re-
petitive practice, baseline AMFM scores did not seem to
influence the results because participants who had AMFM
scores ranging from 15 to 55 [52, 53, 60, 62, 63] all demon-
strated larger improvement with the EA training. However,
it was difficult to draw definite conclusions on ER vs.
standard repetitive practice and EA vs. ER, as the number
of studies in these two categories was small and studies
used different outcome measures to assess stroke severity.
Lastly, most of the studies only recruited chronic stroke
survivors, making it difficult to appraise the effects of
stroke chronicity while limiting the generalization of find-
ings mainly to chronic stroke survivors.

Results of this review also highlighted contradictions
across studies which could be due to an influence of par-
ticipants’ personal factors on intervention outcomes. For
instance, Takahashi and colleagues (2008) [56] suggested
that full ER practice was better than half ER/half stand-
ard repetitive practice at improving AMFM and ARAT
scores, a finding that was in contradiction with that of
other studies [55, 57]. The full ER group, however, had
an average onset of stroke of 1.2 years compared to
4.8 years for the other intervention group, and this sug-
gests that time of stroke onset might be a factor that in-
fluences the motor recovery [56]. Moreover, the full ER
group also had nine points less in baseline average
AMFM scores compared to the other group [56], pos-
sibly leaving more room for improvement in the former
group. We therefore suggest that at this point in time, a
deeper investigation of patient-related factors on the
intervention outcomes is warranted.

This systematic review has some limitations. The risk of
bias among the selected studies is high as most of the se-
lected studies have either short training period or small
sample size. Another limitation lies in the fact that many
studies did not provide numerical values for the standard
deviations of their results, or the standard deviations had
to be estimated from tables or figures, which may have af-
fected the calculation of some effect sizes. Only one out of
13 studies [57] reported the effects of intervention on the
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arm use which is an important predictor of upper extrem-
ity motor recovery. It should also be noted that 6 out of
10 studies involving EA trainings may come from the
same research group [24, 52, 53, 59, 60, 62]. Moreover, the
main methodological quality assessment was done using
the PEDro scale. Like many checklist-style appraisal tools,
PEDro has a disadvantage of giving the same weighing
(1 point) to every category of source of bias. However,
depending on the types of study, not all sources of bias
affect the internal validity equally. Finally, before starting
this systematic review, the authors have planned to con-
duct experimental studies on the use of EA and ER on
motor learning in the future, therefore this could act as a
source of bias, although unwillingly.

Conclusion

In response to the research questions posed in this paper,
the following conclusions were drawn with regards to the
population of chronic stroke: (1) Interventions involving an
EA paradigm were more effective compared to interven-
tions without error modification at improving upper ex-
tremity impairments, disabilities and reaching trajectory
control; (2) Interventions involving ER paradigm were not
more effective compared to interventions without error
modification at improving upper extremity impairments
and disabilities and; (3) Interventions involving an EA para-
digm were more effective compared to interventions involv-
ing an ER paradigm to improve reaching trajectory control.
While these conclusions hold true at a statistical level, how-
ever, this review further demonstrates that EA and ER, like
standard repetitive practice, induced changes in clinical out-
comes of motor recovery and function that did not reach
the minimal clinically important difference. Nevertheless,
this review showed that EA paradigm has promising effects
for post-stroke upper extremity rehabilitation.

In the future, clinical trials of strong methodological qual-
ity which include sensitive outcomes that capture changes
in movement quality and patient functioning in activities of
daily living are needed to further demonstrate the effects of
error-modification therapies with a stronger level of evi-
dence and to possibly achieve clinically meaningful
changes. The influence of intervention-related factors such
as training intensity and duration, as well as personal fac-
tors such as the site of lesion, severity of stroke and stroke
chronicity on the error-modification intervention para-
digms should further be explored. Finally, the emergence of
virtual reality makes other modalities, namely visual and
auditory feedback, potential alternatives to haptic feedback.
These modalities could be cheaper and easier to implement
than robotics, and it appears that more and more studies
have begun to examine the effect of these feedback on
motor learning. Therefore, the use of different modalities of
feedback, such as visual, auditory and/or a combination of
multiple sensory modalities, could also be investigated.
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Fig. 2 ICF model. Figure modified from WHO [74]

Appendix 2
Table 7 Articles excluded following full-text review

Abdollahi et al. (2011) [75] This study is a pilot study of Abdollahi et al. (2014) [52].

Agostini et al. (2011) [76] This study lack of control group.

Arab Baniasad et al. (2014) [77] It is a conference abstract, possibly lack of control group as well.

Badia et al. (2008) [78] It is the same study as the one of Cameirao et al. (2008)

Basteris et al. (2014) [79] [t is a review

Beling et al. (2015) [80] It is a conference abstract, and it does not have the intervention of interest

Broeren et al. (2007) [81] [t does not have the intervention of interest.

Cameirao et al. (2012) [82] [t does not have the intervention of interest.

Cameirao et al. (2008) [83] [t is a review.

Casadio et al. (2009) [84] It does not have the intervention of interest and lacks of a control group.

Chemuturi et al. (2013) [85] This study only recruited healthy subjects and it does not have an the intervention of interest.

Chemuturi et al. (2013) [86] This study by the same authors as above also only recruited healthy subjects and it does not have an the
intervention of interest.

Coote et al. (2008) [87] This study lacks a control group of interest.

Crocher et al. (2012) [88] This study does not have interventions of interest or results of interest.

De Santis et al. (2015) [89] This study does not have a control group and it lacks outcomes of interest.

Fasoli et al. (2004) [90] This study does not have a proper control group.

Fischer et al. (2016) [91] This study does not have the intervention of interest.

Fluet et al. (2011) [92] It is a conference abstract.

Fluet et al. (2012) [93] It is a book.

Fluet et al. (2014) [94] This study does not have the intervention of interest.

Hachisuka et al. (2014) [95] [t is a conference abstract.
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Table 7 Articles excluded following full-text review (Continued)

Housman et al. (2009) [96]
Huang and Patton(2011) [97]
Israely and Carmeli (2016) [40]
Krebs et al. (2008) [98]

Lam et al. (2008) [99]

Lambercy et al. (2011) [100]
Lemmens et al. (2012) [101]

Liao et al. (2012) [102]

Lin et al. (2015) [103]

Milot et al. (2016) [104]

Oblak et al. (2010) [105]
Orihuela-Espina et al. (2016) [106]
Patton and Mussa-lvaldi (2004) [107]
Perry et al. (2011) [108]

Phyo et al. (2016) [109]

Squeri et al. (2014) [110]

It is the same study as the one of Rozario et al. (2009) [60].

It has the same results as the one of Huang and Patton(2013) [59].

[tis a review.

This study does not have the intervention of interest.

This study only has healthy subjects, and it lacks of the intervention of interest.
This study lacks of a control group.

It is a conference abstract.

This study does not have the intervention of interest.

This study does not have the intervention of interest.

This paper is about design and implementation, and not intervention-oriented.
This paper is not intervention-oriented.

This study does not have the intervention of interest.

This study only recruited healthy subjects.

This study is not intervention-oriented.

This study lacks of the intervention and results of interest.

This study lacks of a control group.

Stein et al. (2004) [111]
Timmermans et al. (2012) [112]
Timmermans et al. (2012) [113]
Turolla et al. (2013) [114]
Waldner et al. (2009) [115]
Ziheri et al. (2010) [116]
Zondervan et al. (2013) [117]

It is a conference abstract.

This study contains subjects under 21 years old.

It is another conference abstract by the same author as above.
This study does not have a control group.

This study is not intervention-oriented.

This study does not have the intervention or control of interest.

This study does not have the intervention of interest.

Appendix 3

Table 8 Ratings of level of evidence from Evidence
Based Medicine

Level of evidence

Evidence level Study type

Ta (Strong) Well-designed meta- analysis, or 2 or more “high”
quality RCTs (PEDro Scale scores >6) that show

similar findings

1b (Moderate) One RCT of “high” quality (PEDro Scale score >6)

2a (Limited) At least one “fair" quality RCT (PEDro Scale
score = 4-5)
2b (Limited) At least one well-designed non-experimental study:

Non-randomised controlled trial; quasi-experimental
studies; cohort studies with multiple baselines;
single subjects series with mutiple baselines

3 (Consensus) Agreement by an expert panel, a group of
professionals in the field or a number of pre-post

design studies with similar results

4 (Conflicting) Conflicting evidence of two or more equally

designed studies

5 (No Evidence) No well-designed studies: “Poor” quality RCTs
with PEDro scores <3; only case studies/case
descriptions, or cohort studies/single series with no

multiple baselines)

Table taken from Sackett (2000) [51]
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