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Abstract

Background: Advances such as targeted muscle reinnervation and pattern recognition control may provide
improved control of upper limb myoelectric prostheses, but evaluating user function remains challenging. Virtual
environments are cost-effective and immersive tools that are increasingly used to provide practice and evaluate
prosthesis control, but the relationship between virtual and physical outcomes—i.e., whether practice in a virtual
environment translates to improved physical performance—is not understood.

Methods: Nine people with transhumeral amputations who previously had targeted muscle reinnervation surgery
were fitted with a myoelectric prosthesis comprising a commercially available elbow, wrist, terminal device, and
pattern recognition control system. Virtual and physical outcome measures were obtained before and after a 6-week
home trial of the prosthesis.

Results: After the home trial, subjects showed statistically significant improvements (p < 0.05) in offline classification
error, the virtual Target Achievement Control test, and the physical Southampton Hand Assessment Procedure and
Box and Blocks Test. A trend toward improvement was also observed in the physical Clothespin Relocation task and
Jebsen-Taylor test; however, these changes were not statistically significant. The median completion time in the virtual
test correlated strongly and significantly with the Southampton Hand Assessment Procedure (p = 0.05, R = − 0.86),
Box and Blocks Test (p = 0.007, R = − 0.82), Jebsen-Taylor Test (p = 0.003, R = 0.87), and the Assessment of Capacity for
Myoelectric Control (p = 0.005,R = − 0.85). The classification error performance only had a significant correlation with
the Clothespin Relocation Test (p = 0.018, R = .76).

Conclusions: In-home practice with a pattern recognition-controlled prosthesis improves functional control, as
measured by both virtual and physical outcome measures. However, virtual measures need to be validated and
standardized to ensure reliability in a clinical or research setting.

Trial registration: This is a registered clinical trial: NCT03097978.
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Background
Major upper-limb amputation affected over 40,000
Americans as of 2005 [1], with over 11,000 additional
wrist disarticulation or higher-level amputations between
2005 and 2013 [2]. The impairment of bimanual dexterity
caused by amputation interferes with basic activities of
daily living; routine activities such as driving, household
work, and leisure activities; and limits employment oppor-
tunities. Currently, the most effective treatment is use of a
prosthesis, and recent advances in prosthetic technology,
including myoelectric devices with multi-articulating
hands, pattern recognition–based control systems, and
surgical techniques such as targeted muscle reinnervation
(TMR) [3] have been developed to improve prosthetic
function. However, a functional performance remains
challenging.
As prosthetic limbs and control systems become more

advanced and costly it is important to quantify perform-
ance benefits that these technology improvements pro-
vide to users. Outcome measures may also be useful to
help track progress through rehabilitation protocols and
indicate specific areas which required additional therapy.
The Academy of Prosthetics and Orthotics Upper Limb
Prosthetics Outcome Measure committee provided
recommendations for measuring functional effective-
ness of prosthetic treatment/occupational therapy [4].
Rather than relying on a single test across all patients
and phases of device development, they recommended
using multiple test formats to capture all aspects of
performance. Promising tests included the Assessment
for Capacity of Myoelectric Control (ACMC), the
Southampton Hand Assessment Procedure (SHAP), a
modified Box and Blocks test, the Jebsen-Taylor Test,
and a Clothespin Relocation task. Of these tests, only
the ACMC has been validated and demonstrated to
have good test-retest reliability for the field of
upper-limb prosthetics [5]. The remaining tests have
been identified as promising tests to use, particularly
when performing research and development studies in
the field of upper-limb prosthetics [6].
An alternative method of assessing performance is

to use virtual environments or serious gaming—video
games or virtual environments designed for training
purposes. Proponents of these tools promote their
economic benefits, their manageable and rapid devel-
opment, and the availability of powerful computing
and processing technologies as factors driving the re-
cent success and popularity of simulated environ-
ments for clinical and research applications. Virtual
tools have been developed for stroke rehabilitation
[7], assessment of children with cerebral palsy [8],
and for other neuromuscular disorders [9]. Several
virtual environments have been proposed for myoelec-
tric control applications.

Virtual environments for myoelectric control have
evolved from rudimentary graphical user interfaces to
more life-like virtual avatars and real-time practice envi-
ronments, with performance tasks such as virtual
clothespin movement tasks [10], posture matching tasks
[11], or Fitts-law style target acquisition tasks. Alterna-
tive approaches have abstracted the experience away
from controlling a prosthetic limb, instead using myo-
electric signals as inputs to engage in commercially
available video games, such as Guitar Hero™ [12] or
custom-designed serious games [13].
Intuitively, one would expect improved performance

or testing scores within a virtual environment to trans-
late into better prosthesis control, which would in turn
lead to better functional outcomes. However, this as-
sumption has not been thoroughly tested. Powell et al.
[14] showed that upper limb prosthesis users could con-
trol a virtual prosthesis better after practicing pattern
recognition control in a virtual environment across mul-
tiple days; however, functional tests with a physical pros-
thesis were not reported. Recently van Dijk et al. [13]
demonstrated transfer of myoelectric control skills after
serious gaming, but only if the game was designed to en-
courage behaviors specific to controlling a prosthesis. In
addition, van Dijk’s study was limited in that it was per-
formed with able-bodied subjects.
The primary objective of this study was to determine

the relationship between performance on a virtual
test—the Target Achievement Control (TAC) test—and
performance with a physical prosthesis. The secondary
objective was to determine whether, after extensive oc-
cupational therapy, allowing subjects to practice with a
pattern recognition–controlled prosthetic arm during a
6-week home trial would further improve functional
outcomes.

Methods
Nine individuals with transhumeral level amputations
who had previously undergone targeted muscle reinner-
vation (TMR) surgery were recruited for the study
(Table 1). All subjects, with the exception of P9, were
myoelectric prosthesis users prior to enrolling into the
study but not all routinely used their prosthesis.
TMR has previously been described in detail [3]. In

this surgical procedure, severed motor nerves that previ-
ously controlled arm and hand function, are transferred
onto denervated target muscles—muscles that no longer
serve a biomechanical function after amputation. After
reinnervation, target muscles serve as biological ampli-
fiers of the motor control commands intended for the
missing arm and thus provide physiologically appropri-
ate EMG control signals, making prosthesis control in-
tuitive. For example, after reinnervation of a segment of
biceps muscle by the transferred median nerve,
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contraction of that muscle—as the user attempts to close
their missing hand—generates EMG signals that close
the motorized hand, conversely, reinnervation of a seg-
ment of triceps by the transferred distal radial nerve
generates EMG signals that control hand open.
A custom-fabricated prosthesis was created for each

subject using a Boston Digital Elbow (Liberating
Technologies Inc.), a Wrist Rotator (Motion Control Inc.),
and a single degree-of-freedom (DOF) terminal device of
their choice (Table 1). The prosthesis was capable of the
following powered movements: elbow flexion (EF), elbow
extension (EE), wrist pronation (WP), wrist supination
(WS), terminal device open (TDO), terminal device close
(TDC), in addition to no movement (NM). All subjects,
except P9, were fit with custom-fabricated thermoplastic
elastomeric gel liners (Alps Inc.). P9 was fit with a custom
rolled silicone liner to minimize length of the prosthesis.
Stainless steel electrodes were embedded into the wall of
the liners, and EMG signals were transmitted, through
stretchable conductive fabric leads, to the electronics at
the distal end of the liner. A grid of electrodes was used,
as described in previous work [15], rather than placing
electrodes over specific muscles. Briefly, signals were amp-
lified and digitized using a Texas Instruments ADS1299
chip, sampled at 1000 Hz, and transmitted to an embed-
ded controller. The pattern recognition algorithm, de-
scribed in detail in Kuiken et al. [16], interpreted the
signals and sent appropriate commands to the prosthesis.
Amplifier gains were set on a subject-specific basis, with a
typical value of 2000, and data were digitally filtered be-
tween 70 and 450 Hz. A recalibration switch was lami-
nated into the outer wall of each socket so that the users
could recalibrate the pattern recognition system, using
prosthesis-guided training [16], whenever they desired. An
example of the EMG signal patterns collected during a
representative recalibration sequence are shown in Fig. 1.
Seven of the nine subjects were naïve to pattern recogni-

tion control. While their prosthesis was being constructed,

an occupational therapist taught these subjects the con-
cepts of pattern recognition and instructed them how to
make repeatable and distinct muscle contractions [17].
During this initial training phase, subjects were given
visualization exercises to strengthen their muscles, which
has been shown to improve users’ ability to make repeat-
able and distinct contractions for pattern recognition con-
trol [18], but received no real-time control feedback. Once
all subjects could perform consistent contractions for each
intended prosthesis movement, EMG data from four repeti-
tions of each prosthesis movement, held for 3 s, were col-
lected used to train the pattern recognition algorithm. A
series of images presented on a computer monitor were
used to guide subjects through the data collection proced-
ure. Immediately after data collection, subjects performed
three blocks of the TAC Test [11]. The user was required
to move a flesh-colored virtual limb to match the posture
of a translucent grey-colored virtual target limb in real time,
within a 15-s time frame, essentially a timeout ceiling that
limited the length of the trials. Each block comprised a set
of 12 postures. Target limb postures were selected such that
the subject had to control each DOF of the prosthesis
through 75% of its range of movement, stop within the pos-
ture location (±5° of each DOF), and maintain the target
posture location for 2 s. Outcome metrics for this virtual
outcomes test included (i) the number of postures success-
fully acquired within their allotted 15-s time frames, and (ii)
the median completion time required to match the set of
postures in a block. Median completion time was used ra-
ther than the mean, as the data were skewed by the 15-s
timeout ceiling. Immediately after completion of the three
blocks, data from four repetitions of each movement, held
for 3 s, were collected and used to evaluate the classifica-
tion error rate of the pattern recognition system.
Subjects were then fit with the physical prosthesis and

received occupational therapy over 3–4 consecutive days
for approximately 6 h per day. Subjects then performed
a set of outcome measures (pre-home trial testing) that

Table 1 Patient demographics

Patient Age (years) Time since
amputation (years)

Time since TMR (years) Side Gender Etiology Terminal device

P1 35 4 3 R M Trauma (military) Hook-ETD

P2 45 2 1 R M Trauma (train) Hand

P3 54 6 < 1 L M Trauma (military) Hook-ETD

P4 58 5 1 L M Sarcoma Hook-ETD

P5 25 6 6 L M Trauma Hook-ETD

P6 31 8 7 L M Trauma (military) Hook-Greifer

P7 27 2 1 R M Trauma (crushing) Hook-Greifer

P8 31 1 1 R M Trauma (MVA) Hook-ETD

P9 44 1 < 1 R F Trauma (MVA) Hand

PGT Prosthesis Guided Training
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included the Southampton Hand Assessment Protocol
(SHAP), the Jebsen-Taylor Test of Hand Function, three
repetitions of the Box and Blocks test, and three repeti-
tions of the Clothespin Relocation task. These measures
were chosen to evaluate hand, wrist, and elbow function
and were activities that could be reasonably completed
with a physical prosthesis.
Individuals then took the device home for a minimum

of 42 days (6 weeks) of home use. If the prosthesis
needed to be repaired, or if the user had a valid, docu-
mented reason for not wearing a myoelectric pros-
thesis—e.g., an extreme sports competitions, a beach
vacation, being sunburned—then additional time was
added to ensure at least 6 weeks of usage. The controller
logged the amount of time that the prosthesis was pow-
ered on and the number of times the patient recalibrated
the control system. After completion of the home trial,
subjects returned to the laboratory and repeated the vir-
tual and physical outcome measures described above
(post-trial testing), in addition to completing the ACMC.
For the SHAP and the classification error rate mea-

sures, where only a single pre- and post-trial score was
available, a one-tailed paired = t-test was used to com-
pare differences. For other outcome measures where
multiple trials were recorded, a repeated measures
ANOVA with the subject as random factor, and pre/post
trial condition and trial number were fixed factors. A

correlation analysis using the Pearson coefficient was
used to determine relationships between virtual and
physical outcome measures.

Results
All subjects wore the device at home, and could success-
fully recalibrate the device (Table 2). Subject P2 typically
removed the prosthesis while it was still powered on,
and thus it was not possible to accurately determine
wear-time for this subject. The occasional recalibration
failures observed were primarily due to broken wires.

Table 2 Prosthesis usage during home trial

Patient Number of successful/
attempted PGT sessions

Total number of
days worn

Total wear
time (hrs)

P1 7/7 9 45

P2 39/39 18 –

P3 73/77 41 181

P4 56/57 58 365

P5 10/10 36 88

P6 20/20 14 28

P7 18/18 20 127

P8 38/38 28 69

P9 60/60 32 88

Designates statistical significance at the p < 0.05 level. CRT Clothespin
Relocation Test. PGT Prosthesis Guided Training

Fig. 1 Representative data from a prosthesis-guided training sequence. Data labels are provided by prosthesis movement; the resulting EMG
patterns are used to train a pattern recognition system as described by Kuiken et al. [16]
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Classification error rates are frequently reported to
characterize the performance of upper-limb pattern
recognition control systems. Pre-trial classification
error and TAC test data were available from six of the
nine subjects: two subjects had prior experience con-
trolling the virtual prosthesis so they did not complete
pre-home trial virtual environment testing, and data
from one subject was lost due to a computer malfunc-
tion. Post-trial data were available from all nine
subjects.
After the home trial, average classification error

across subjects dropped from 13.4 to 8.3%, which was
significantly lower (p = 0.03) (Fig. 2). All TAC test per-
formance metrics also improved significantly after the
home trial: failure rate improved from 19.9 to 3.7% to Y
(p = 0.001), and completion time dropped from 7.5 to
5.5 s (p = 0.007).
All nine subjects completed the outcome measures

using the physical prosthesis. All outcome measures for
use of the physical prosthesis tended to improve after
the home trial; however, only the SHAP (p = 0.001) and
the Blocks and Box test (p = 0.03) showed statistically
significant improvements.
We performed Pearson correlation analyses to inves-

tigate the relationship between TAC test outcome
measures and physical outcome measures (Table 3).
We found strong and statistically significant correla-
tions between TAC completion times and several of
the physical outcome measures for the post home-trial
outcomes (Fig. 3). Correlations between TAC comple-
tion time and the SHAP, Box and Blocks test, and
ACMC were negative, i.e., faster completion times
were associated higher test scores, indicating better
performance in these physical measures. The correl-
ation between completion time and the Jebsen-Taylor
test was positive, i.e., faster completion times were as-
sociated with faster test times, indicating better phys-
ical task performance. We also found that the
classification error rate, which is an offline measure of

performance, did not show statistically significant cor-
relations with any virtual measure, but did correlate
strongly with performance in the Clothespin Relocation
task (p = 0.018).

Discussion
Pattern recognition–based myoelectric control systems
have seldom been systematically evaluated outside of a
controlled laboratory environment. Most studies are
performed to evaluate control algorithm classification
error rates, or to evaluate ways to make classification
error rates more robust to environmental factors, pro-
longed use, or non-ideal conditions [18–20]. However,
initial clinical case series evaluating commercially avail-
able pattern recognition systems have reported positive
patient experiences [21]. Our results show that users
are capable of using pattern recognition–controlled
myoelectric limbs within their home environment. Al-
though the amount of time the prosthesis was worn
and the frequency with which the control system was
recalibrated was variable, the results of outcome tests
using the pattern recognition–controlled prosthesis
were equivalent or superior to measures recorded after
subjects used the same prosthesis during an equivalent
home trial, using conventional control [22].
We observed statistically significant improvements

in the SHAP and Blocks and Box test after a 6-week
home trial. The Clothespin Relocation task and the
Jebsen-Taylor test also showed trends toward improve-
ment that were not statistically significant. We also
found statistically significant improvements in classifi-
cation error rate and all outcome metrics associated
with the virtual TAC test after the trial. Clearly, sub-
jects learned to control the device better during the
home trial.
Limited published data has supported the hypothesis

that patients learn to perform more consistent, distinct
contractions over time with practice, leading to specula-
tion that this would lead to improved control of a

Fig. 2 Outcome measures when using a virtual prosthesis (left) or a physical prosthesis (right). Measures were performed before and after a
6-week home trial. *Denotes statistical significance at p = 0.05
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pattern recognition–controlled prosthesis [14, 18, 23].
Our data support this idea, as classification error rates
improved significantly (p < 0.05) after the home trial.
However, classification error rate had a strong, statisti-
cally significant correlation with the Clothespin Re-
location task, but did not correlate significantly with
any of the other physical outcome measures with any
TAC outcome metric. In contrast, TAC test comple-
tion time correlated strongly and significantly with all
physical outcome measures except the Clothespin Re-
location task. These results reinforce the growing body
of literature supporting the importance of performing
online testing, preferably with individuals with ampu-
tations, rather than relying solely on classification
error analyses during offline experiments to evaluate
control [10, 24–26].
This work is important because it demonstrates a

correlation between virtual test measures and physical
performance. However, the study has several limita-
tions. As with any correlation analysis, correlation
does not imply causation. Without further study, we
cannot say that working within a virtual environment
will transfer to better functional outcomes, although
the work of van Dijk et al. suggests that this may be
true under certain situations [13]. Furthermore,

developing validated and reliable outcome measures in
the field of upper-limb prosthetics is a challenging
problem. As for physical outcome measures, virtual
measures must be thoroughly described to ensure con-
sistent administration, analysis, and interpretation. For
example, the ACMC has an established test-retest,
inter-rater, and intra-rater reliability and clinical inter-
pretation guidelines. The TAC test may be made easier
or more difficult by changing the length of time
allowed to acquire postures, the number of DOFs
needed to acquire the posture, the distance the virtual
limb must be moved, and the tolerances required for
matching the target posture. Finally, the results of this
study are only applicable to transhumeral amputees.
Future investigations will need to be performed to de-
velop appropriate relationships between virtual and
physical outcome measures for individuals with other
levels of upper limb amputation.

Conclusions
Providing users with an opportunity to use a pattern
recognition–controlled prostheses in their home-en-
vironment for at least 6 weeks resulted in improved
functional control, as measured by a set of outcome
measures. This highlights the need for practice, in
addition to comprehensive occupational therapy, before
assessing outcomes. Improvements were seen in both the
offline performance metric of classification error rate and
in real time control outcome measures when controlling a
virtual or physical prosthesis. Finally, we found that some
outcome measures, particularly the TAC test completion
time, correlated strongly with physical outcome measures.
Future work will further investigate these relationships
using a more standardized test configuration, and with a
broader population of subjects.

Fig. 3 Statistically significant relationships between virtual and physical outcome measures. Each relationship was strong, with a Pearson
correlation coefficient |R| > 0.75

Table 3 Pearson correlation coefficients, R, between virtual and
physical outcome measures

Predictor SHAP CRT Box and blocks Jebsen-Taylor ACMC

Completion
Time

−0.86* 0.30 −0.82* 0.87* −0.85*

Failure Rate 0.19 0.52 − 0.54 0.27 − 0.37

Classification
Error

−0.13 0.76* −0.46 0.39 −0.31

*Denote statistical significance at the p = 0.05 level
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