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Abstract

Background: The importance to restore the hand function following an injury/disease of the nervous system led to
the development of novel rehabilitation interventions. Surface electromyography can be used to create a user-driven
control of a rehabilitation robot, in which the subject needs to engage actively, by using spared voluntary activation to
trigger the assistance of the robot.

Methods: The study investigated methods for the selective estimation of individual finger movements from
high-density surface electromyographic signals (HD-sEMG) with minimal interference between movements of
other fingers. Regression was evaluated in online and offline control tests with nine healthy subjects (per test)
using a linear discriminant analysis classifier (LDA), a common spatial patterns proportional estimator (CSP-PE),
and a thresholding (THR) algorithm. In all tests, the subjects performed an isometric force tracking task guided by a
moving visual marker indicating the contraction type (flexion/extension), desired activation level and the finger that
should be moved. The outcome measures were mean square error (NMSE) between the reference and generated
trajectories normalized to the peak-to-peak value of the reference, the classification accuracy (CA), the mean amplitude
of the false activations (MAFA) and, in the offline tests only, the Pearson correlation coefficient (PCORR).

Results: The offline tests demonstrated that, for the reduced number of electrodes (£24), the CSP-PE outperformed
the LDA with higher precision of proportional estimation and less crosstalk between the movement classes (e.g., 8
electrodes, median MAFA ~ 0.6 vs. 1.1 %, median NnMSE ~ 4.3 vs. 5.5 %). The LDA and the CSP-PE performed similarly

in the online tests (median NMSE < 3.6 %, median MAFA < 0.7 %), but the CSP-PE provided a more stable performance
across the tested conditions (less improvement between different sessions). Furthermore, THR, exploiting topographical
information about the single finger activity from HD-sEMG, provided in many cases a regression accuracy similar to
that of the pattern recognition techniques, but the performance was not consistent across subjects and fingers.

Conclusions: The CSP-PE is a method of choice for selective individual finger control with the limited number
of electrodes (<24), whereas for the higher resolution of the recording, either method (CPS-PA or LDA) can be used
with a similar performance. Despite the abundance of detection points, the simple THR showed to be significantly
worse compared to both pattern recognition/regression methods. Nevertheless, THR is a simple method to apply (no
training), and it could still give satisfactory performance in some subjects and/or simpler scenarios (e.g., control of
selected fingers). These conclusions are important for guiding future developments towards the clinical application of
the methods for individual finger control in rehabilitation robotics.
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Background

The dexterity of human hand is the result of complex
motor patterns that generate a coordinated response of
multiple muscles placed intrinsically in the hand and in
the forearm. The control signals to move each finger of
the hand are generated in separate regions of the pri-
mary motor cortex (M1) [1], and are delivered to the
muscles via the efferent pathways of the spinal cord and
peripheral nervous system [2]. The neural commands
elicit muscle electrical activity and a mechanical re-
sponse. In recent years, it has been demonstrated that
the intention to move the hand can be decoded using
pattern recognition applied to recorded and processed
electromyography (EMG) signals [3, 4]. This research
was motivated by the importance to restore the hand
function following amputation or an injury/disease of
the nervous system, such as stroke. Most often, the aim
was to detect less dexterous arm movements, such as
the wrist rotations (e.g., pronation/supination) [5-7]
and/or overall grasping patterns (e.g., palmar, lateral
grip) [8, 9], whereas the classification and regression of
finger movements has been less explored. Only recently,
motivated by the development of modern dexterous
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hand prostheses [10] and hand exoskeletons [11-13],
researchers started exploring the classification and re-
gression of finger movements with the aim of establish-
ing methods for intuitive control of these sophisticated
systems, mimicking the dexterity of the human hand.
Most studies addressed the classification of individual
finger movements (see Table 1). In this context, the aim
was to predict the finger that moved but without pro-
portional information (e.g., exerted force or position).
Despite a good level of classification accuracy, generally
higher than 90 % [14, 15], the discrete output of these
pattern recognition algorithms led to a limited clinical
applicability. In addition to discrete classification, con-
tinuous variables such as forces or positions can also be
estimated from the EMG signals using regression.
Regression algorithms have been applied under the main
assumption that the EMG signal is related to the force
generated by the muscle [16]. Since the force produced
by muscles acting on a joint determines the position of
the joint, the algorithms were trained to learn the
mapping from EMG to force and/or position. Previous
studies demonstrated that the hand kinematics can be
estimated from surface EMG [6, 17-20]. For example, in

Table 1 Journal papers on classification and regression of finger movements using electromyography

Ref.  Year Classifier Features Finger moves Subjects Window (ms) Electrodes Accuracy
[38] 2002 kNN DFT, AR F (TIM-R-D) ND @) - 3 98 %
[39] 2009 ANN D F-ETMRL  TR(1) 200 32 90 % Classification
ND (5)
[18] 2010 kNN MAV F (TIM-R-L) TR (1) 250 16 86 %
[68] 2010 EPM D F (TIMLR) ND (2) - 4 >97 %
[69] 2011 kNN MAV F (TIMLR) TR (5) 250 8 79 % (TR)
ND (5) 89 % (ND)
[70] 2012 SVM, kNN D, AR F (TIMLR) ND (8) 250 2 90 %
[14] 2012 LDA SYM,GMM TD, AR F-E(TIM-R-L) PS(12) 256 89 95 %
[15] 2013 LDA, SYM D, AR F-E(TIM-R-L) ND(10) 200 ms 12 98 % (ND)
TR (6) 11 90 % (TR)
[41] 2014 KRLS D F(TIMRL) ND(40)  100-400 12 90 %
[42] 2015 LDA D, AR F(TILM) ND(7) 250 5 (EMG)  85%
[71] 2006 ANN ENV F (TIMLR) TR(2) - 8 (JA) Norm RMS error 8-20 % Regression
[17] 2009 ANN RMS F-E () ND (15) 100 1 (JA) RMS error 0.085 rad —0.163 rad
[19] 2012 ANN WL F-ETIM-R-L) ND(5) 32 4 Norm RMS error 7-14 %
[20] 2014 ANN, GP EMD F-E (TIM-R-L) ND (10) - 8 (JA) Mean CORR
0.85+0.07 (MCP)
0.78 £ 0.06 (PIP)
0.73+£0.04 (DIP)
[37] 2014 ANN ENV F-E (,MLR) ND (8) - 14 - 16 (JA)R2=08
[22] 2014 RR RMS F(TIMRL) ND (10) 200 10 (FF) Norm RMS error 16 %
[23] 2014 RR ENV F-E(M-R-L)  ND(10) - 10 (FF) Norm RMS error 10-20 %

ANN artificial neural network, AR autoregressive, CORR coefficient of correlation, DFT discrete Fourier transform, E extension, EMD electromechanical delay, ENV
Envelope, EPM entropy probabilistic model, F flexion, FF fingertip forces, GMM gaussian mixture model, GP nonparametric gaussian process, | index finger, JA joint
angles, KRLS kernel regularized least squares, kNN K-nearest neighbors, L little finger, M middle finger, MAV mean absolute value, ND nondisabled, PS post-stroke,
RA regression accuracy, R ring finger, RMS root mean square, RR ridge regression, SVM support vector machine, T thumb, TD time domain, TR transradial amputee,

WL waveform length
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[20], the authors proposed an innovative control strategy
using a muscle activation model that parameterized the
electro-mechanical delays (EMD). The study demonstrated
good accuracy, estimating metacarpophalangeal (MCP),
proximal interphalangeal (PIP) and the distal interphalan-
geal (DIP) finger joint with the mean correlation coefficient
of 0.85 £ 0.07, 0.78 £ 0.06 and 0.73 £ 0.04, respectively. As
pointed out in [21], the position control is effective only in
the absence of interaction with objects. Since the func-
tional applications include direct contact through grasping
and manipulation, a force control is likely a more
relevant solution. Recently, proportional control was
investigated in the context of prediction of individual
finger forces [22, 23], demonstrating that a non-linear
incremental learning method could predict fingertip
forces during flexion and extension with a correlation
of ~0.9 between the estimated and measured forces.

Recently, considerable attention has been devoted to
investigating rehabilitation interventions which can
facilitate the recovery of the sensory-motor functions
impaired due to an injury/disease of the nervous system
[24]. Numerous studies [25—28] demonstrated that the
motor ability could be regained through a task-specific
intensive practice. In this context, robotic rehabilitation
is a promising method for the restoration and relearning
of motor functions, since it can provide mass practice in
well-controlled conditions [29]. Moreover, SEMG can be
used to estimate the intention of the subject and operate
the robot accordingly [12, 30-32]. This would create a
user-driven control of a rehabilitation robot, in which
the patient needs to provide a minimal activation to
trigger and maintain the assistance. The benefit of this
approach is that the subject is motivated to actively en-
gage in therapy by recruiting his/her spared voluntary
motor control, instead of passively relying on the robot
to guide the movement [33]. Furthermore, the EMG
control allows highly disabled patients who cannot pro-
duce detectable forces and/or motions, but can generate
residual EMG, to participate early in the user-responsive
therapy. More specifically, the context for the present
work is the rehabilitation of selective finger movements
using a specialized hand rehabilitation robot (Amadeo,
Tyromotion GmbH, AT). Rather than aiming at the simul-
taneous control of multiple fingers to achieve functional
movements (e.g., grasps) as required in prosthetics, the
emphasis here is on the selective activation of individual
fingers (i.e., one finger at a time) while reducing the simul-
taneous false co-activations. The motivation for this
approach is to promote relearning of the selective motor
control skills, which are heavily impaired in neurological
patients (e.g., stroke [34]).

The present study advances the state of the art of
individual finger control by investigating proportional
estimation of fingertip forces during tasks that combined
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different force profiles, force levels and rates of change
of force. Three different methods based on common
spatial filtering (CSP-PE), linear discriminant analysis
(LDA) and simple thresholding (THR) were applied to
learn the mapping from High-Density sEMG (HD-
sEMG) to finger activation; their performance were
compared in offline/online tests and across different
numbers of electrodes. To the best of our knowledge,
such a comprehensive set of conditions was not consid-
ered before in the context of single finger classification
and regression (see Table 1).

The focus of the present study was on the estimation of
the finger forces using HD-sEMG to record the electrical
activity of the extrinsic hand muscles during isometric
finger flexion and extension. The thumb, however, has a
specific anatomy and a functional behavior, with an
additional degree-of-freedom (opposition) fully controlled
through the intrinsic muscles. Consequently, the present
study considered only the four long fingers. Nevertheless,
the thumb activation could be estimated as well by placing
additional electrodes over the intrinsic muscles. This could
be accomplished using conventional bipolar electrodes,
and therefore, this was not relevant for the present study.

HD-sEMG was selected since it provides a high
resolution of sensing points, capturing the high-fidelity
spatial and temporal patterns of muscle activity and reveal-
ing a topographical map of focal activation areas corre-
sponding to individual muscles. The muscle heads moving
individual fingers are located close to each other, within
the relatively small volume of the forearm [35]. Therefore,
HD-sEMG was chosen to selectively capture the individual
muscle activity despite the significant spatial and temporal
overlap. HD-sEMG has been used before to characterize
the activity of the forearm muscles [36] [37]. However, the
present study represents the first application where an
HD-sEMG interface has been applied for individual finger
movement classification and regression, investigating a
comprehensive set of conditions that were not considered
before. The high resolution of the recording (192 channels)
was exploited to assess the robustness of the tested
methods with respect to the reduction in the number of
electrodes, providing important perspectives regarding the
potential practical applications. Moreover, to the best of
our knowledge, there are no studies presenting an on-
line protocol of finger control based on HD-sEMG,
evaluating three control methods: one direct (THR),
and two based on pattern recognition (LDA and
CSP-PE). Furthermore, the two methods, CSP-PE
and THR, have not been considered before for the
control of individual fingers. All the experiments
were conducted using a commercial rehabilitation
robot, mimicking closely a real clinical context. In
conclusion, this study presents some important in-
sights for guiding future developments towards the
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clinical application of the methods for individual
finger control in rehabilitation robotics.

Methods

The aim of the study was to test different methods, for a
dexterous finger control, estimating the intended level of
activation of individual fingers (index, middle, ring and
little) while minimizing the simultaneous unintended co-
activations of other fingers during flexion and extension
movements. Therefore, the task was to classify among 9
classes (four fingers x two movements and rest, see
Fig. 1), with the simultaneous regression of the finger
activation level within the selected class. For all three
methods, the inputs were processed SEMG signals (feature
vector), from the full set or subsets of electrodes, while
the outputs were the estimated finger activation levels
proportional to the exerted force. The regression was
evaluated in the context of a linear discriminant analysis
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(LDA) classifier [38], a multi-class proportional estimator
based on common spatial pattern (CSP-PE) [8] and a non-
pattern recognition method based on a thresholds
crossing (THR) [3], where the THR was applied only in
the online experiment. The LDA was selected as a widely
used method for movement classification and regression
[39] (common benchmark). The CSP-PE was selected
under the hypothesis that its mathematical properties
would make the method especially effective in the context
of selective finger activation, reducing the crosstalk
between the estimated movements. The THR was chosen
because it is a simple method, easy to understand, imple-
ment (no training) and apply even by a non-technical
personal, and thereby convenient for prospective practical
application in clinical settings. The hypothesis was that
the THR could still perform well when used with the HD-
sEMG interface due to its high resolution and ability to
reveal focal areas of muscle activations. Summarizing, the

— Input signals

— Regression methods —
Pattern recognition

> Direct

THR

— Classification output

Index Middle

1 2|3 4

Ring
F E|F E|F E|F E |(move

6 | 7 8 |(class label)

Online regression -

+ Real-time visual
feedback proportional
to EMG activation.

— Offline regression

* Fingertip forces
reconstruction
(post-processing).

using the selected estimation method

Fig. 1 Outline of the experiments. HD-sEMG recordings were processed (root mean square, data windowing with overlap) and used as inputs
for classification/regression to estimate the level of activation of individual fingers during flexion (F) and extension (E) movements. Two machine-learning
approaches for myoelectric control, a standard benchmark (LDA) and a recently presented novel method (CSP-PE), as well as direct control via simple
thresholding (THR) were assessed in the context of selective finger control. Both offline and online tests were performed. In offline tests, isometric forces
of individual fingers were measured and predicted by applying the above-mentioned methods. During the online tests, the task for the subjects was to
track the reference trajectories specifying the desired individual finger activation levels assessed using EMG normalized to maximum voluntary
contraction. To this aim, the subjects controlled a visual marker, which was moving according to the finger activation levels predicted online
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methods were selected to compare: i) machine learning
(CSP-PE and LDA) vs. direct (THR) control; and ii) a
novel multiclass algorithm (CSP-PE) vs. the golden stand-
ard for the myoelectric control using pattern recognition
(LDA). Their performance was compared in offline/online
tests and across different subsets of electrodes, in order to
assess how the nature of control (open vs. closed loop)
and the resolution of the recording affect the perform-
ance, respectively. In the offline tests, the full experimental
session could be devoted to data collection, leading to a
comprehensive dataset enabling a thorough assessment of
the methods across many conditions. The online tests
included both training and assessment within a single
session, and therefore only the selected conditions could
be evaluated. As pointed in [40], in online control the user
can exploit the visual feedback to adapt to the error map-
ping provided by the algorithms (closed-loop control),
resulting in different performance when compared to
offline estimation (open-loop control). Therefore, for an
objective assessment, it is recommended to test both
conditions. In offline tests, isometric forces of individual
fingers were measured and offline predicted using the
indicated estimation methods. During the online tests, the
subjects activated the fingers to accomplish an online
control task, while the selected method estimated the level
of activation for each individual finger in real-time. The
subjects received online visual feedback about the desired
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and estimated level of activation expressed as a percent of
maximum voluntary contraction (MVC). In the online
tests, the aim was to produce a control signal proportional
to the exerted force, but the fingertip forces were not
measured and directly estimated. Instead, the reference
and estimated activation levels were calibrated according
to the MVC of each subject, as measured by EMG (see
section Online Experiment). To collect the training data,
the subjects were asked to perform isometric tracking
tasks, as in the previous studies [21, 23, 41, 42]. In offline
tests, the reference trajectory was a predefined force pro-
file expressed in Newtons, whereas in the online test, the
reference profile was expressed as a percent of MVC.

Experimental setup

The four long fingers of the dominant arm were attached
to the finger slides of a robot specifically designed for the
hand rehabilitation in stroke patients (Amadeo, Tyromo-
tion GmbH, AT) as indicated in Fig. 2-b. Magnetic pieces
were embedded in the ergonomic finger pads that were
secured to each finger tip using medical tape. The pads
were then positined on the respective magnetic connec-
tion point of each finger slide. Magnetic force was enough
to keep the fingers in position during all experimental
conditions in healthy subjects (see Fig. 2-b). The slides
were driven individually using dedicated linear motors in-
strumented with position and force sensors. The position

Al

Dorsal Ventral

electrode grid

Fig. 2 Experimental setup. a The subject’s arm positioned in the finger -hand rehabilitation robot (Amadeo, Tyromotion GmbH, AT), the multichannel
EMG amplifier on the desk next to the subject, HD-sSEMG electrode placed on the forearm and flat cables connecting the electrode to the amplifier.
b Hand connection by means of magnetic pieces embedded in the finger pads. c-d Approximated position of the High-Density 192-channel

~

1. Magnetic finger pads
2. Connecting points
3. Finger slides
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of the subject wrist and the slides was adjusted for each
subject individually so that the PIP joints were flexed at
approximately 90° while the DIP joints of all fingers were
fully extended (180°). Such an “orthogonal” setup allowed
for an optimal transmission of forces between the fingers
and the robot guides and sensors. After setting up the
hand configuration, the slides were kept in stationary posi-
tions during the rest of the experimental session, measur-
ing individual finger forces during isometric contractions.
The sensor range for finger extension and flexion was +
20 N. The forces were recorded only during the offline ex-
periment. The signals were sampled at 10 Hz, internally
by the robot controller, sent to the host computer via
TCP/IP and shown on a computer screen as feedback to
the subject.

The EMG signals were recorded using a High-Density
192-channel electrode grid (ELSCHO064NM 3-3, OT
Bioelettronica, 8x24 channels, 10 mm inter-electrode-
distance, 8 x 24 cm) in a monopolar configuration
placed on the dominant arm. The forearm length was
measured in each subject using a measuring tape. The
electrode array was positioned 6.4 + 0.4 cm (25 % of the
forearm length) from the elbow crease (Fig. 2c and d),
covering 8 cm of the forearm longitudinally and 24 cm
circumferentially. The electrode configuration allowed
acquiring the sEMG activity of distal and proximal
muscles such as the flexor digitorum superficialis and
extrensor digitorium. The EMG signals were recorded
using a multichannel electrophysiological amplifier
(EMG-USB2, OT Bioelettronica, IT) connected to the
host computer via a USB port. The gain was set to 500,
the signals were band-pass filtered (eight order analog
Bessel filter, bandwidth 10-750 Hz), sampled at 2048 Hz
and digitally converted (12 bit A/D converter, 5 V
dynamic range) with a resolution per least significant bit
of 2.44 pV. The reference electrode was a ground strip
placed at the distal end of the forearm, just next to the
wrist joint.

Regression methods

The present study aimed at comparing three different
proportional controllers (LDA, CSP-PE and THR) as
they are applied to decode the activation of individual
fingers from HD-sEMG patterns. The inputs were the
processed EMG signals, and the regression methods
outputted the estimated levels of finger activation pro-
portional to the exerted force. The raw EMG data
were segmented into a series of overlapping data ana-
lysis windows. The window length of 200 ms with
50 % overlap was selected since it represents a good
trade-off between classification accuracy (CA) and
controller delay [43]. The Root Mean Square (RMS)
was computed over the data window and used as an
input for the classification/regression, since it is a time
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domain feature related to the force exerted by the
muscle [43]. Therefore, a class decision was produced
for each data analysis window (every 100 ms), where
the input for the regression was a vector of RMS
values (one per electrode) computed over the 200-ms
data window [44].

The LDA classification represents one of the most
popular pattern recognition methods for myoelectric
control. In summary, it models the distribution of the
data within each class using a Gaussian distribution,
where the means are estimated for each class individu-
ally and the covariance matrix is computed over the
pooled data (shared covariance). The classification is
performed by computing the class posterior probability
(Bayes rule), which in the case of a shared covariance re-
duces to evaluating the linear discriminant functions
separating the classes [45]. As demonstrated by several
studies, this simple and fast method performed similarly
to or even better than the other, more complex non-
linear pattern recognition methods for time-domain
features [46, 47]. Since the LDA classifier has become
the golden standard for the pattern recognition of EMG
signals, it was selected as common benchmark. In this
study once a class decision was taken, a proportional
control value was extracted in a different way depending
on the experiment. In the offline test, this value was
extracted as an approximation of the recorded fingertip
forces obtained by linear regression. In the online test,
as the mean of the RMS values from a subset of chan-
nels related to the specific class, scaled to a percentage
of MVC for the detected movement class.

Common Spatial Patterns (CSP) is a semi-supervised
algorithm to determine a filter whose output has max-
imal and minimal variance when the multichannel input
data come from the first and second class, respectively.
Therefore, the filter maximizes the separation of the two
classes based on the variance of the filter output signal.
Commonly, CSP is used as a spatial filter for raw signals
of two distinct classes, but there are several options for
the extension to multi-class problems [48]. The method
has been originally used in brain-computer interfacing
as a spatial filter for data preprocessing [49-51].
However, it has been recently adapted and tested for
classification and regression in myoelectric control of
prostheses, with promising results [8]. In this study, we
applied CSP as a proportional estimator (CSP-PE) in one
vs. one configuration between all possible class pairs, as
presented in [8]. The CSP-PE has been selected since
this is a novel method for myoelectric control with
unique mathematical properties. Namely, the method
aims at maximizing the contrast between classes and
thereby minimizing the false co-activations. This indi-
cates that it could be especially effective in the context
of selective finger activation, which is the aim of the
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present work. In summary, the first step in the application
of the CSP-PE was to determine the CSP filters for each
pair of classes. The output of each filter was therefore
tuned to maximize the response for the input data (feature
vector) coming from one class, and respond minimally to
the data from the other class. In the second step, the out-
puts of all the pairwise-class filters were fused in post-
processing to estimate the class corresponding to the input
data. Therefore, the activation of the class was determined
by taking into account its relative contrast with respect to
all the other classes. The selected class is the one that wins
the competition, and the estimated activation reflects the
uncertainty of this decision. For example, if the class loses
at least one competition, the activation will be penalized
leading to a small value. The raw outputs (activation levels)
were scaled to yield a maximum value for 100 % of MVC.
The method, including the original CSP formulation as
well as the novel steps for CSP-based classification and
regression, are given in detail in [8].

The THR is a simple method that involves direct con-
trol of each individual finger by identifying the focal
areas of activity within the HD-sEMG interface. The
THR was chosen because it is a simple method, easy to
understand, implement (no training) and apply even by
a non-technical personal, and thereby convenient for
prospective practical application in clinical settings. The
finger movement was detected if the activity at the selected
subset of channels was above the predetermined threshold.
THR was applied only during the online tests and a set of
relevant channels was selected for each class (finger x
movement) by the experimenter based on the visual obser-
vation of the EMG activity generated during the respective
movements. The calibration trials were used to adjust the
thresholds for each set of channels maximizing the correct
classification. A class was recognized when the mean of the
RMS values over the associated channel set crossed the
threshold, and the RMS was higher than for the other clas-
ses. The proportional control value was the mean of the
RMS values for the set of channels, scaled to a percentage
of the MVC of each movement.

Offline experiment

Nine healthy subjects (age between 26 and 41 years)
participated in the experiments, which were approved by
the Ethical Committee of the University Medical Center
Gottingen (UMG). Before starting the tests, the subjects
signed an informed consent form. The experimental
session lasted approximately 1.5 h.

Experimental protocol

Subjects performed cyclical isometric contractions
activating individual fingers in the direction of flexion
and extension, as specified by the reference force profile
presented on the screen. The marker indicating the
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currently generated force was displayed on the computer
screen as the feedback for the subject. The subjects were
instructed to activate the fingers selectively by minimiz-
ing simultaneous activation of other fingers. Before the
beginning of the training session, the subjects were
allowed to familiarize with the experimental setup and
tasks. Twelve different tasks were carried out in random
order with regard to the finger and each task was
repeated 10 times in succession. The tasks combined
force profiles (square with 50 % duty cycle and triangu-
lar), force levels (33 and 66 % MVC) and two execution
speeds for each force profile (see Table 2), evaluating
thereby how well the methods estimated the force
during gradual increase/decrease (triangles) and level
holding (squares) for different rates of change and peak
forces. There were trials comprising only flexions, only
extensions or both contraction types.

Signal processing

Force signals were analyzed in order to extract segments
of sEMG activity associated with specific muscular
contraction (flexion or extension), level of force and dur-
ation. The processed EMG signals (windowing, RMS)
had an effective sampling frequency of 10 Hz (one value
per 100 ms) synchronized with the force recordings,
performed at the same sampling rate. For each task, the
force signal measured from the finger involved in the
task was used to identify the flexion/extension force
cycles, in order to leave out from the analysis the signal
portion without the link to specific movements. A force
cycle was defined by detecting when the generated finger
force crossed the predefined threshold, which was set to
10 % of the maximum force exerted with that finger

Table 2 Tasks included in the offline assessment. The tasks
combined square (S) and triangular (T) force profile, force levels
(33 and 66 % MVCQ) of flexion (F) and extension (E), and two
execution speed for each force profile

N Movement  Profile % MVC  Cycle Length (sec)

1 F S 33 6 Training
2 F S 66 12

3 F T 66 8

4 F T 66 4

5 E S 33 6

6 E S 66 12

7 E T 66 8

8 E T 66 4

9 F-E S 33 6 Testing
10  F-E S 66 12

1 FE T 66 8

12 F-E T 66 4
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across all tasks, indicating the start of the contraction.
When the force returned to a subthreshold level
(<10 %), this denoted the end of the contraction.
Occasional atypical contractions (outliers) were identi-
fied on the basis of the force cycle length and the force
range. A regression line was estimated from the mid-
points of the plateaus in the case of square profile and
from the vertices of the triangle profiles. The mean and
the standard deviation of the cycle length, and the Mean
Squared Error (MSE) between the generated force dur-
ing plateau and the regression line were calculated.
Force cycles that were longer or shorter (7,4, than
2.58 times the standard deviation from the mean
duration (7,,..,.) (see Eq. 1) or for which the force error
(€oussier) Was higher than 1.96 times the MSE from the
regression line were considered as outliers (see Eq. 2)
and excluded from the analysis. The confidence levels
(196 x std and 2.58 x std) were chosen in order to
enforce conservative outlier detection. The interval of
+1.96 x std corresponds to the standard 95 % confidence
interval. The detected outliers were also confirmed by a
visual check.

T outtier < (258 * Std)_Tmean V T outiier
> (258 * Std) + Tmean (1)

|€outiier] > 1.96 * MSE (2)

Data analysis

We investigated the performance of the algorithms with
full (192) and reduced number of channels (96, 48, 24,
16, 12, 10, 8, 6 and 4) where the channels were selected
in the form of regular grids (see Fig. 6-e). The latter was
chosen having in mind the future practical application of
the methods, which should ideally, for the sake of
simplicity, rely on the regular placement independent of
the anatomy or the activity hot spots. The recorded data
for each subject was split into training and testing sets
(approximately 70 and 30 % of the whole dataset
respectively, see Table 2): the tasks with only flexion or
extension contractions were assigned to the training set
(Table 2, Task 1-8), while the tasks with both flexion
and extension were selected for the testing (Table 2,
Task 9-12). The performance measures were common
for online and offline tests and are described below (see
section Performance measures).

Online experiment

Nine healthy male subjects (age between 23 and 38 years)
were recruited for the online algorithm evaluation. Each
subject signed an informed consent before commencing
the experiment, which was approved by the Ethical
Committee of the University Medical Center Goéttingen
(UMG). The same test was performed twice on
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consecutive days in order to evaluate the effect of
training. The experimental session lasted maximum 2 h.

Training data collection

The subjects were asked to perform sustained isometric
contractions activating selectively one of the four fingers
in the direction of flexion or extension. For each move-
ment, the experimenter selected groups of electrodes
(from 4 to 6) in which the maximum activity was
observed (Fig. 3-a) and measured the MVC as the max-
imum of processed sSEMG (RMS, 200 ms window, 50 %
overlap) over the specific electrode subsets. After the
electrode subsets were chosen, the subjects were asked
to reproduce the reference activation profile after receiv-
ing a visual cue indicating the finger and the contraction
type (flexion or extension). Auditory “icons” (sound
beeps) were used in addition to the visual cues. The
reference profiles were trapezoidal (i.e., gradual increase,
plateau, gradual decrease) with the plateaus of 30, 60
and 90 % MVC of the respective finger (Fig. 3-b). The
current muscle activation level generated by the subject
was indicated by a cursor moving with the constant
velocity in the horizontal direction. The vertical coordin-
ate of the cursor was equal to the mean RMS of the
electrode subset corresponding to the current class
(finger x contraction type + rest). Each contraction lasted
for 7 s (2 s rise time, 3 s plateau, 2 s fall time) with 5-s
rest intervals in-between and it was repeated 3 times
(30, 60 and 90 % MVC), resulting in 27 contractions in a
single run. If necessary, specific contractions could be
repeated. For the training of both machine learning
methods the same data set was used and dynamic
movement phases were not excluded [52].

Online test

After the training, a test with online control was per-
formed. The subject controlled 4 visual markers (blue
circle in Fig. 3-c), each associated with the activation
of one finger. The subjects now actively and propor-
tionally controlled the vertical position of the control
marker by increasing or decreasing the finger force in
the direction of flexion (marker moving downward)
or extension (marker moving upward). The vertical
position of the marker (blue circle in Fig. 3-c) was
determined by a normalized output of the tested con-
trol method (CSP-PE, LDA and THR), as explained in
section Regression Methods. To quantify the control
performance, the subjects performed online target
tracking tasks, in which the subject tracked a moving
reference marker (red circle in Fig. 3-c) by activating
appropriate finger at the appropriate level. The aim
was to maintain the smaller blue marker (Fig, 3-c),
indicating the estimated activation level, within the
larger red circle (Fig. 3-c), representing the desired
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activation. Whenever the controlled marker was within  moved vertically from 0 % MCV to 80 % MVC position,
the reference circle, the color of the reference would turn  rested on the 80 % MVC level, and then returned back to
into green. The task comprised 16 individual finger activa-  the 0 % MVC value. The upward and downward move-
tions (4 for each finger) in which the reference marker = ments of the reference marker lasted for 4 (slow ramp) or
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2 (fast ramp) seconds, respectively, and the marker stayed
at the plateau level for 3 s. Each finger was therefore
activated two times in flexion and two times in extension
and for both contractions one cycle was slow and the
other fast. The fingers (reference markers) were activated
in a random order. The test was repeated for each control
method, also in a random order to avoid that the learning
across methods influences the performance. The subjects
were blinded as to which algorithm was under test in each
session.

Performance measures

The estimated fingertip forces in the offline experiment
and muscle activation levels in the online experiment
were low-pass filtered using a moving average filter
applied to 5 successive samples starting at each sample
of the original signal. The Pearson correlation coefficient
(PCORR) between the estimated and reference forces
was computed to quantify the similarity in the signal
shapes, and the mean square error normalized (nMSE)
by the peak-to-peak value of reference force profile was
calculated to assess the difference in signal amplitudes
[22]. As shown in Results section, the trends revealed by
the two outcome measures, nMSE and PCORR, were
equivalent over a comprehensive dataset collected and
analyzed in the offline experiments. Therefore, the qual-
ity of the online tracking was evaluated by computing
the nMSE only. In both the experiments, this analysis
was performed for each finger during the segments of
the reference trajectory in which that specific finger was
supposed to be active (target finger in the task). The
corresponding segments were named active phases. In
order to evaluate the amount of false finger activations
(e, finger estimated to be active when it should have
been relaxed), the mean amplitude of the false activa-
tions (MAFA) outside of the respective active phases
was calculated. The segments of the reference trajectory
in which the finger was not supposed to be activated
were named silent phases. The CA was evaluated calcu-
lating the overall success rate as the trace of the confu-
sion matrix, divided by the total number of classified
instances. Finally, the selectivity and specificity of the
classifiers were calculated in one vs all configuration,
where the median success rate of all the classes was used
to compare the performance of the two methods for
different electrode subsets.

Statistical evaluation

The Kolmogorov-Smirnov test determined that the data
were not normally distributed. Therefore, the data were
statistically analyzed using non-parametric tests. To assess
the statistically significant difference at the group level, the
Friedman test was applied. If the Friedman test determined
the difference, the conditions were compared pairwise
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using the Wilcoxon signed-rank tests with Bonferroni cor-
rection. A level of p < 0.05 was selected as the threshold for
the statistical significance. In the offline experiment, the
factors were number of channels (96, 48, 24, 16, 12, 10, 8,
6 and 4), and method (CSP-PE and LDA). In the online
experiment, the factors were finger movements (IF, IE, MF,
ME, RE RE, LE, LE), and method (CSP-PE, LDA and
THR). Bartlett multiple-sample test for equal variances was
applied to determine statistically significant difference in
dispersions within the conditions overall, followed by
Ansari-Bradley two-sample test with Bonferroni correction
for pairwise comparisons of the force variability between
the conditions.

Results

Offline finger force prediction

Figure 4 illustrates the finger force estimation in one
representative subject, when applying the LDA (Fig. 4-a)
and the CSP-PE (Fig. 4-b) to a subset of 10 sEMG
channels selected as a regular grid (see Fig. 6-¢). During
active phases (red line), both regression methods suc-
cessfully tracked the force trajectories of different shapes
and rates of change, ie., triangles with faster/slower
slopes and squares with longer/shorter plateaus. In this
specific configuration, with only 10 electrodes, the force
profile for the index finger was estimated with the lowest
accuracy, and the estimation was better with the CSP-PE
(nMSE =6 %) than the LDA (nMSE =7 %). During the
silent phases, the LDA generated false activations that
were more frequent and with the higher amplitudes
compared to the CSP-PE. For example, the LDA falsely
estimated that the little finger was activated substantially
and consistently throughout the active phase of the
index finger (Fig. 4-a).

The recorded forces (gray lines) during the silent
phases showed that the subject exerted a small pressure
on the force sensors also outside the active periods. This
was because the subject could not generate perfectly iso-
lated activations of individual fingers, due to the natural
passive coupling [53]. Group data are represented in
Fig. 5, depicting the fingertip forces (mean * standard
deviation) recorded from all subjects across different
finger tasks. The coupling between the fingers is evident,
and the amount of force decreases for the fingers further
away from the activated one. Nevertheless, the force in
the active finger was several times higher from all the
others, and the difference was statistically significant,
demonstrating the selective activation.

Figure 6 shows the summary results for the quality of
estimation (median and interquartile range - IQR 25—
75 %) using different number of electrodes. For both
methods, the performance initially increased with more
electrodes, i.e., the regression and classification become
more accurate and the false activations less pronounced.
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Eventually, however, all outcome measures reached a
plateau (N >24), after which there was no substantial
further improvement. In terms of regression accuracy
(Fig. 6a-b), the outcome measures (PCORR and nMSE)
were consistent. For less than 24 electrodes, the CSP-PE
outperformed the LDA (p « 0.001), but for the higher
number of electrodes the performance was similar with
no statistically significant differences. For example, with
96 channels the nMSE values obtained with the LDA
and the CSP-PE were virtually identical, i.e., (median
and IQR 25-75 %) 3.5 % (2-5.1 %) and 3.6 % (2.1-
53 %) (p=1), respectively. When using more than 24
electrodes, PCORR was approximately 0.88 (median) for
the CSP-PE and 0.90 (median) for the LDA. Similarly,
the MAFA depended on the number of electrodes and
the regression method (y* = 1773.30, p «0.001). For less
than 24 channels, the MAFA was consistently lower for
the CSP-PE compared to LDA (p < 0.001); when increas-
ing the number of electrodes, the MAFA saturated to
values lower than 0.5 % (median) with both of the
methods.

Similar to the previous results, the CA (Fig. 6-d)
increased with the number of electrodes (y* = 127.95,
p <0.001), but in this case there was no statistically
significant difference between the methods. The CA also
saturated at 24 electrodes and the overall highest value
(median and IQR 25-75 %) was reached using the LDA,
ie, 92 % (88.2-94.5 %). As described in Table 3, the

specificity of the classifiers was highly affected by the
number of channels: e.g, with only 4 channels the
sensitivity of the CSP-PE and the LDA was still ap-
proximately 85 % (median), but the specificity
dropped to 55 % (median). In conditions where the
number of channels (N > 24) saturated the performance of
the classifiers, the sensitivity was approximately 96 % (me-
dian) and the specificity approximately 90 % (median).
Summarizing, the two classifiers were more sensitive than
specific, and there were no statistically significant differ-
ences between the classifiers (LDA vs. CSP-PE) with re-
spect to both outcome measures.

Online control performance

There was a trend indicating an increase in performance
across the two sessions, since the median values of the
outcome measures improved, ie., the nMSE and MAFA
decreased with statistically significant differences (respect-
ively, y* =221.2 p «0.001 and x*=163.7 p «0.001). The
effect of training was least expressed when using the CSP-
PE, which was characterized with a high level of accuracy
in both sessions. For example, the median nMSE
decreased for only ~1 % for CSP-PE (p «0.001) in the sec-
ond session compared to the first, while in the case of
LDA and THR, the median improvement in tracking
accuracy was approximately 6 % between the two sessions
(p <0.001). The results reported in this section refer to
the second session of the experiment.
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Table 3 Percentage of selectivity and specificity across different electrode subset extracted from the HD-sSEMG matrix. The values are

reported as median and interquartile range (25-75 %)

CH Sensitivity (%) Specificity (%)
CSP-PE Median and LDA Median and CSP-PE Median and LDA Median and
IQR (2575 %) IQR (25-75 %) IQR (2575 %) IQR (25-75 %)
4 85 (81-86) 84 (82-87) 55 (45-61) 54 (47-58)
6 87 (84-89) 84 (82-86) 59 (51-72) 52 (48-58)
8 93 (92-93) 92 (87-93) 81 (77-83) 75 (66-80)
10 92 (91-95) 91 (88-93) 79 (74-87) 74 (69-81)
12 92 (89-96) 92 (89-94) 81 (70-88) 77 (71-84)
24 95 (94-98) 97 (94-98) 86 (84-93) 91 (85-94)
48 96 (95-97) 97 (96-98) 90 (86-92) 92 (88-95)
96 96 (95-97) 97 (96-98) 90 (87-92) 92 (89-94)
192 96 (95-97) 97 (96-98) 90 (87-92) 91 (90-94)

Figure 7 displays representative results from one sub-
ject illustrating the quality of proportional tracking when
using the three methods. Figure 7-a depicts the reference
and generated trajectories for each finger, including both
silent and active sections, whereas Fig. 7-b zooms into
the active phases only. The subject successfully tracked
the reference trajectory during different segments (ie.,
slopes and constant levels at 80 % MVC) and rates of
change of the trapezoidal activation profiles. In the case
of the CSP-PE and the LDA, the trajectory was well
reconstructed during both flexion and extension move-
ments. The control using the LDA resulted in more false
activations compared to the CSP-PE (e.g., see index and
middle fingers in Fig. 7-a), but the difference between

the two methods was not so pronounced as in the offline
experiments. The results for the thresholding (THR)
were similar, as indicated by the outcome measures
computed over the trial (Fig. 7-b), except for the ring
finger for which the subject was unable to control the
extension. The subject effort to activate the ring exten-
sion resulted in the false activation of the index flexion.
The inability to control certain movements using the
THR was also observed in other subjects; in the second
session, three out of nine subjects were not able to acti-
vate a certain finger movement. This problem was not
observed with the two machine learning approaches.
Group data are represented in Fig. 8-a, which shows
the summary results across control methods for the
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Fig. 7 Representative results from one subject during online target task. The figure illustrates the quality of proportional tracking during the
online test when using the three methods (CSP-PE, LDA and THR). The task for the subject was to activate the fingers, one at a time, tracking a
reference trapezoidal trajectory. a The continuous colored and gray lines are the estimated and reference trajectories for each finger, including
both silent (zero level) and active phases (trapezoids). b Active phases concatenated, with the indicated nMSE of estimation. With THR, false
activations were more frequent and the ring extension could not be properly estimated
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across control methods for the eight finger movements. Overall, the online performance of the two machine learning methods was similar and
better than the THR. b) Median and interquartile range (25-75 %) of the summary results shown in A. ¢ Radar graph with the results for the accuracy
of tracking (NMSE) for each subject. Each spoke represents one of the target finger movements and the length of the spokes is normalized to the
maximum value of nMSE. The radar graphs for THR are characterized with spikes indicating larger errors, but the spikes are limited to some fingers
(one, two typically), while for the other fingers the performance is actually comparable to that of the machine learning methods. *p < 0.01. The results

eight finger movements during the online experiment.
The statistical test showed that the finger movements
and methods were significant factors as well as their
interaction (y* =43.52, p «0.01). There were no statisti-
cally significant differences between the methods for the
same as well as across fingers. However, there was a
trend indicating that the THR was the weakest control
approach, i.e., the median nMSE as well as its IQR range
were consistently higher compared to that of the LDA
and the CSP-PE.

The results for the false activations complement those
for the accuracy of tracking. The median MAFA was the
highest for the THR consistently for all the movements,
although there were no significant differences between
the methods. However, some movements were con-
trolled with substantially lower MAFA, for example, the
MAFA for the index and middle finger extension was
low with all three methods (e.g., compare to index
flexion). Yet, the post hoc comparison did not reveal any
significant differences between the specific methods
across the movement classes.

The experiment was performed twice on consecutive
days in order to evaluate the effect of training, and redu-
cing the bias between subjects. Nevertheless, the lack of
experience in EMG control may explain the overall
variability between subjects showed in Fig. 8-c. For good
control, the subject needs to activate each finger consist-
ently, generating reproducible patterns of muscle activa-
tion that can be discriminated by the classifier/regressor.
In addition, the patterns need to correspond to the ones
generated during the training. The ability to reliably
execute such patterns is likely subject dependent and
two sessions were not enough for the consistency of
control to improve and converge to a similar level across
subjects. The figure shows the results for the accuracy of
tracking (nMSE) for each subject as a radar graph, where
each spoke represents one of the target finger move-
ments and the length of the spokes was normalized to
the maximum nMSE. This representation reveals partici-
pants who reached high level of accuracy with: i) all the
three methods (s2 and s4), ii) the CSP-PE and the LDA
(s1, s5, s6, s7 and s8), iii) the CSP-PE and the THR (s9)
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and finally iv) the CSP-PE only (s3). It is reasonable to
expect that with practice, the online performance of the
algorithms can be further improved, producing a more
coherent behavior across participants [54]. The initial
uncertainty and variability of control and substantial
improvement due to training are characteristic for
myoelectric control in general [55]. Regarding THR, for
most subjects and movements the performance was
similar to that of the CSP-PE and the LDA. However, as
indicated by the few pronounced spikes in the radar
plot, there were one or two specific movements in some
subjects (see s1, s5, s7, and s8) that were substantially
more difficult to control using THR. The performance
dropped significantly in these few cases, decreasing the
overall average accuracy and increasing the overall
variability.

In the summary results shown in Fig. 8-b, the nMSE
obtained with the CSP-PE, LDA and THR (median and
IQR 25-75 %) was 3.6 % (2.5-5 %), 2.5 % (1.5-3.9 %)
and 3.8 % (1.8-10.8 %), respectively. There was no statis-
tically significant difference between the CSP-PE and the
LDA, whereas the two machine learning methods were
significantly different compared to the THR (p<0.01).
Furthermore, the CSP-PE and LDA exhibited similar
dispersion, which was significantly lower compared to
THR. The same trend holds for the MAFA. As shown
in Fig. 8-b, the MAFA of the CSP-PE, LDA and THR
was 0.7 % (0.2-2.2 %), 0.6 % (0.2-2.6) and 2.2 %
(0.24-9.9 %), respectively. Both the CSP-PE and the
LDA performed similarly, and they differed signifi-
cantly with respect to THR (p < 0.01) both in median
and dispersions.

The general similarity in the performance of the CSP-
PE and the LDA was also confirmed by the CA (median
and IQR 25-75 %), which were 91 % (87.7-91.7 %) for
the CSP-PE and 90.3 % (89.4-93.25 %) for the LDA with
no statistically significant differences.

Discussion

The experiments demonstrated that the finger activation
could be successfully decoded for different target activa-
tion profiles. Overall, the experiments demonstrated a
more stable performance of the CSP-PE across the
tested conditions. The CSP-PE exhibited less improve-
ment between different sessions and outperformed the
THR in online control and the LDA in offline tests.
Furthermore, the study showed that a simple method,
exploiting the topographical information about the indi-
vidual finger activity from the HD-sEMG, provided in
most cases regression accuracy similar to the pattern
recognition techniques. However, THR lacked robust-
ness in the sense that performance was not consistent
across subjects and fingers.
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Offline and online proportional control

In the offline experiment, the performance of the CSP-
PE and the LDA increased with the number of channels,
saturating to a stable level for more than 24 electrodes.
Importantly, for less than 24 electrodes, the CSP-PE
outperformed the LDA consistently in all outcome mea-
sures, except CA, yielding more accurate force estimates
in active phases and better suppression of false activa-
tions in the silent phases. This confirmed the hypothesis
that the mathematical properties of the CSP-PE, as
described in [8], make this method especially effective in
the context of selective finger activation. Increasing the
number of channels evened out the performance of the
two methods with respect to the quality of tracking in
the active phase, but did not change the superiority of
the CSP-PE in filtering out the activations during the
silent phases.

The results of the online experiments were in accord-
ance with the insights from the offline tests. The tracking
accuracy was similar with both the CSP-PE and the LDA,
with the median nMSE of approximately 3.6 and 2.6 % in
online experiment, and 3.6 and 3.5 % respectively in off-
line experiment (48 electrodes). As explained in Methods,
the online experiment resulted in more than 24 electrodes
selected by the experimenter. According to the trends
revealed offline (Fig. 6), this number of channels was
enough to even out the performances of the two algo-
rithms. In addition, during online tests the subjects could
use visual feedback to adapt the activations during the
trial, as demonstrated in [40].

The CSP-PE exhibited more stable accuracy across the
tested conditions. The performance was good from the
beginning and similar across the two successive sessions,
providing the least improvement in outcome measures.
Furthermore, the CSP-PE produced better performance
for lower number of channels (Fig. 6) compared to LDA.
This means that the CSP-PE might be less sensitive to
the subjective factors than the LDA, which produced
similar accuracy but only for the high number of chan-
nels and after a session of practice.

Electrode reduction

In the offline experiment, the electrodes were selected as a
regular grid, without any relation to the specific finger ac-
tivation patterns. Regular electrode grids are convenient
for practical implementation and allow simple mounting,
since they can be realized as extensible uniform bracelets
that are simply wrapped around the forearm [56]. Future
investigations will further address the minimization of the
number of channels, determining acceptable electrode
locations and optimizing electrode-recording configura-
tions, using the established methods for feature reduction
[57-59]. Importantly, the results of the present study
(offline tests) demonstrate that the number of electrodes
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can be decreased substantially (from 192 to 10) without
significantly compromising the performance. This is an
optimistic result implying that the proposed methods
could be translated into the clinical context using multi-
channel EMG braces comprising practical dry electrodes.

Thresholding for online control

The online experiment demonstrated the feasibility of
simple thresholding for proportional control of individ-
ual fingers, albeit with some limitations. Exploiting a
dense array of detection points provided by HD-sEMG
interface, distinct areas of focal SEMG activity could be
identified for each finger [35], with an overlap in some
cases due to anatomical constraints and crosstalk [37].
When the areas overlapped, the experimenter did not
select the electrodes from the intersection. The THR
method has a low computational cost and there is no
training; after the electrode selection, the experimenter
provided only a fast calibration of the thresholds associ-
ated with each finger movement. However, the THR
method also exhibited some drawbacks. In the second
session, three out of nine subjects were not able to acti-
vate a certain finger movement, due to a significant
overlap, i.e., the activity of finger involved in the task
projected strongly to neighboring areas triggering
thereby other fingers. The THR was also less successful
in suppressing the false activations. Nevertheless, when
the subjects were able to control the finger, the tracking
accuracy was actually comparable to the performances
of the two machine learning approaches. Therefore, the
THR is not universally applicable. However, it can be
used successfully in some subjects or with a reduced
number of movement classes, controlling only those
fingers (or finger groups) characterized with distinct and
separate areas of activity.

Application for rehabilitation

The aforementioned conclusions could provide useful
guidelines for the translation of the tested methods to
the clinical context, targeting dexterous control of hand
rehabilitation robots. For example, stroke patients have
impaired motor functions characterized with patho-
logical synergies. At the hand level, this is expressed as a
difficulty in selectively activating individual fingers [34].
The methods developed in the present study could be ap-
plied to implement a user-driven control of a rehabilitation
system. For example, the activation signals estimated for
each finger, as demonstrated in the online tests, could be
used as the control signals in the isometric mode of
Amadeo, i.e., to implement the functionality of the force
joystick, as when playing simple video games by producing
appropriate isometric forces. More generally, the estimated
signals could be used to trigger and/or modulate the move-
ment of the Amadeo finger motors (dynamic control) [60].
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Since the Amadeo system offers a set of therapeutic indi-
vidual finger exercises, the future perspective is to integrate
the individual finger myocontrol developed in the present
study with these motivational tasks, creating thereby an in-
novative, engaging and user-responsive training program.
Considering the future clinical application and following
the results of the offline analysis, the control could be
implemented with substantially less electrodes, which
would allow using a practicall EMG bracelet such as
Mpyoband [56] combined with the CSP-PE. Alternatively,
even a full HD-sEMG electrode system could be used
practically if integrated in a textile garment (e.g., [37]). Im-
portantly, for online control of Amadeo, the arm/hand will
be supported exactly as in the present study, and it is
therefore not required to train/test the algorithms with the
arm in different positions, as usual in prosthetics to
increase the robustness of the classification/regression
across arm postures [61, 62].

Another potential application is the extension of the
methods to the control of dexterous hand prostheses. At
the current level, the methods tested in the present study
could not be directly translated for general prosthetic
application, as the fingers are controlled sequentially, one
by one. However, such a controller could be used to
support some specific functions (e.g., typing on a keyboard)
exploiting the individual finger actuation available in the
modern prostheses (e.g. i-Limb [63]). For example, key-
board typing could be implemented through classification
(on-off), or the estimated force could be mapped to the
finger velocity, allowing proportional control of the speed
of finger flexion/extension (instead of force). The latter is
not essential for typing, but it could allow the subject to
type faster as he/she becomes more trained and skilled in
control. More importantly, the present study demonstrates
the feasibility of achieving fine and selective control of
individual fingers, across a comprehensive number of tasks
(force profiles) and with a reduced set of electrodes. Never-
theless, the control of a prosthesis requires a more natural
and functional approach, and the future work will be to
study the simultaneous regression of multiple fingers
(including the thumb) using HD-sEMG setup.

The translation into the clinical context faces a number
of challenges, which will be addressed in future work. For
example, as explained above, stroke patients can have
significant reduction in muscle forces and impaired
coordinative control. Due to weak activity and patho-
logical synergies [64], the activation patterns for the indi-
vidual finger movements are likely to be significantly less
discriminative and thereby more difficult to classify and
estimate. In this context, nevertheless, an adaptive training
can be envisioned in which the patient and the system
coadapt [65] and evolve through the process of recovery.
Initially, the system can estimate a subset of movements,
limited to those that can be well discriminated. This can
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be used to start the training, promoting the initial
recovery, and when the activity maps become better
differentiated, new movements can be included.

Finally, as already pointed out in myoelectric control for
prosthetics [66], it would be of interest for clinical applica-
tions to minimize the time and effort (subjects and staff)
need for the training. Ideally, the training/calibration
should be short and easy and without the need for fre-
quent retraining. In the present study, we demonstrated
that a reasonable quality of control can be achieved with
an in-session training. The training is especially simple
and easy to understand in the case of THR, since it
reduces to selecting the channels with strong activation in
a color map and then visually adjusting the thresholds
(average time 10 min in THR vs. 20 min for LDA/CSP-
PE). Therefore, the THR might also allow for an easy
retraining across sessions. However, in the ideal case, the
retraining would not be necessary. This was not tested in
the present study but it is certainly an important future
goal. The robustness of the methods in terms of retraining
could be assessed by testing the control across sessions
using the same, previously collected data (no retraining).
In this context, the use of HD-sEMG interface might be
particularly beneficial as an increased resolution contrib-
utes with redundant information, and this can be used to
increase robustness. An illustrative demonstration is pro-
vided in [67] by extracting features reducing the sensitivity
to electrodes shifts.

Conclusion

The present study investigated methods for selective
estimation of individual finger movements, motivated
by the final aim of implementing an online protocol
for dexterous finger control using a hand rehabilita-
tion robot. We detected the intention to move a sin-
gle finger from electromyographic signals providing
proportional control while reducing the simultaneous co-
activations of other fingers during both offline and online
experiments. The insights from the present study can be
used to guide the implementation of a practical myoelec-
tric system for dexterous control in hand rehabilitation ro-
botics and prosthetics. More specifically, the results
demonstrated that despite the abundance of detection
points in HD-sEMG, a simple method based on threshold-
ing (THR) exhibited serious drawbacks, and that therefore
the pattern recognition is still the method of choice for
robust practical implementations. Next, provided that the
recording is above a certain resolution (>24 channels),
either of the pattern recognition methods (CSP-PE and
LDA) can be selected to implement the control. In this
case, information redundancy compensates for the
favorable mathematical properties of the CSP-PE vs. LDA.
Finally, if only a reduced number of electrodes is available
(<12), the CPS-PE is the recommended approach.
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