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Raven food calls indicate sender’s age
and sex
Markus Boeckle1,2,3* , Georgine Szipl1,2 and Thomas Bugnyar1,2

Abstract

Background: Acoustic parameters of animal signals have been shown to correlate with various phenotypic characteristics
of the sender. These acoustic characteristics can be learned and categorized and thus are a basis for perceivers’ recognition
abilities. One of the most demanding capacities is individual recognition, achievable only after repeated interactions with
the same individual. Still, class-level recognition might be potentially important to perceivers who have not previously
encountered callers but can classify unknown individuals according to the already learned categories. Especially for species
with high fission-fusion dynamics that repeatedly encounter unknown individuals it may be advantageous to
develop class-level recognition. We tested whether frequency-, temporal-, and amplitude-related acoustic parameters
of vocalizations emitted by ravens, a species showing high fission-fusion dynamics in non-breeder aggregations, are
connected to phenotypic characteristics and thus have the potential for class-level recognition.

Results: The analysis of 418 food calls revealed that some components summarizing acoustic parameters were
differentiated by age-classes and sex.

Conclusions: Together, the results provide evidence for the co-variation of vocal characteristics and respective
sex and age categories, a prerequisite for class-level recognition in perceivers. Perceivers that are ignorant of the
caller’s identity can thus potentially recognize these class-level differences for decision-making processes in
feeding contexts.

Keywords: Corvus corax, Raven, Food call, Sex, Age, Call production, Vocalization, Acoustic characteristics,
Bioacoustics, Corvid

Background
Territorial defence and parent-offspring are two well-stu-
died contexts in which individual recognition is important
[1–3], as individuals can benefit from memorizing the
identity of the individuals as well as the type and/or out-
come of previous interactions [4]. In species where
individuals meet regularly after prolonged times, such as in
fission-fusion systems [5], individual recognition based on
acoustic communication appears highly beneficial [1, 5].
Still, in species with a high degree of fission-fusion dynam-
ics, a large number of individuals within fluid groups, and
large home-ranges, individuals might not only encounter
known individuals but also unknown ones, for which no

memory about previous interactions or information about
their identity is available. During encounters with unknown
individuals individual recognition is not possible, while
class-level recognition can provide crucial benefits [1].
Vocal signals may convey various attributes of the

vocalizer, among others sex (e.g.: [6]), age (e.g.: [7]),
emotional state (e.g.: [8]), dominance rank hierarchy (e.g.:
[9]), and reproductive status (e.g.: [10]). How and which of
these attributes are obtained by perceivers from acoustic
signals has been extensively studied in the last decades (e.g.
[2]). Most of the acoustic parameters in focus relate to
anatomical features of the producer and its production
mechanisms. Fant [11] suggested that vocal production in
humans is a two-stage process: vocalizations are produced
by the vibrating tissue, and subsequently shaped by the
vocal tract. This “source-filter theory” has successfully been
generalized [12] to other mammals [13, 14], and also to
birds [15–18]. In some species, vocal features such as
fundamental frequency, frequency modulation, and other
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source dependent characteristics provide dependable cues
to body size but also to genetic variation and age [19, 20].
In corvids like common ravens (Corvus corax), anatomic

size differences between sexes and age groups are hypothe-
sized to directly relate to acoustic parameters of the calls
[21–25], providing cues to class-level recognition. Sex and
age dependencies of acoustic signals in ravens might be
similar to other bird species [26, 27] and seem linked to size
differences between sexes and age-classes [28, 29]. More-
over, class-level distinction between sexes and age-classes
that are based on acoustic features could be exploited by
conspecifics for various forms of decision-making. In ra-
vens, acoustic information about sex and age-class could be
useful especially when encountering unknown individuals
while deciding whether to engage in territorial defence or
to join or avoid foraging groups [30–32]. Unlike features
that are connected to caller identity [33], acoustic features
related to sex, and age might not have to be learned of each
single individual as cues to class-level recognition [1]. This
is especially interesting in foraging ravens due to their
fission-fusion dynamics [34–36]. Individuals gather at large
and ephemeral carcasses, where they may encounter famil-
iar and unfamiliar birds [37–41].
Ravens facing problems in accessing food are hypothe-

sized to recruit conspecifics via vocalizations in order to
reduce potential dangers and to overpower dominant
conspecifics during feeding [30, 31, 37–41]. These food
related calls, often referred to as ‘yells’ or long ‘haa’ calls
[38, 40] are individually distinct [33]. While ravens were
shown to discriminate between known and unknown indi-
viduals of different sexes, indicating class-level recognition
[30], age-related differences in ‘haa’ calls have not been
investigated, yet. Moreover, different age-classes have been
described to differ in their food call characteristics [37,
40], but in-depth analysis of acoustic features is still
missing. ‘Haa’ calls show highly harmonic structures in
addition to non-linear phenomena in some calls.
Resonance frequencies produced by the vocal tract,
named formants, cannot be measured because of the
highly harmonic structure of the calls as well as the fact
that fundamental frequency and its harmonics differ
around 800 Hz [33]. Due to large frequency ranges with
no or low amplitude, any attributes in raven ‘haa’ calls that
might indicate sex and age are primarily based on source
related production mechanisms (i.e. fundamental
frequency). We here investigate the variation of ‘haa’ call
characteristics of common ravens related to age-classes
and sex. We predict that in addition to previously de-
scribed individual characteristics, age and sex differences
are detectable in the food-related ‘haa’ call based on
anatomical differences and potential variations in produc-
tion mechanisms. In a society with high fission-fusion
dynamics, known individuals might be recognized via in-
dividually distinct cues, while unknown callers could be

classified according to age-class and sex, thereby assessing
the degree of competition. Differentiating unknown
individuals according to these class-specific cues can aid
in decision-making processes, i.e. whether to approach or
to retreat from an unfamiliar recruiting caller.

Methods
Study site and call recording
Between summer 2009 and winter 2010 we recorded ‘haa’
calls of free-ranging common ravens that regularly forage
inside the enclosures of the Cumberland Wildpark Grünau,
Austria [42]. At the time of the study, approximately 100
ravens were marked individually with coloured leg bands
and patagial wing tags. Individual information of these birds
(e.g. weight, sex and age-class) was known [43]. Sex was
genetically determined from blood samples (Laboklin,
Austria). Age-classes were classified based on the coloration
of the feathers and the inner beak: juveniles from fledging
until the end of their first year have mostly pink oral cav-
ities and brownish feathers; in subadults in their second
and third year of life oral cavities turn from pink to black,
i.e. are pinkish with dark speckles, and adults (> 3 years)
have black oral cavities [44, 45]. The spectrograms in Fig. 1
show examples of ‘haa’ calls of each age-class.
We recorded calls of individually marked ravens between

0700 h and 0900 h at the feedings of wild boars (Sus
scrofa), where ravens gather for foraging on a daily basis.
We simultaneously video- and audio-recorded each
feeding session to identify vocalizing individuals (Video-re-
corder: Canon HF-11 HD; microphone: Sennheiser ME67/
K6; solid-state audio-recorder: Marantz PMD-670:
sampling rate = 48 kHz, amplitude resolution = 16 bits) at
distances ranging from 3 to 10 m. All calls with interfering
background noise were removed. Additionally, we removed
two individuals (two subadult males) represented with only
one call each from the dataset, which provided us with 418
calls of 12 individuals (mean number of call per individual
± SD = 34.83 ± 34.51; 3 juveniles: 1 male(m), 2 females (f);
7 subadults: 2 m, 5 f; 7 adults: 1 m, 6 f).

Call analysis
Acoustic analysis was conducted using a script in PRAAT
5.1.25 [46] that automatically logged acoustic variables in
an output file. Because of the highly harmonic structure of
the ‘haa’ call we mainly used source related acoustic
features that are related to fundamental frequency (fo)
using recently suggested terminology for acoustic mea-
surements [47]. The analysed call parameters were mean
fo (Hz), maximum fo (max fo; Hz), minimum fo (min fo;
Hz), range of fo (Hz), start fo (Hz), end fo (Hz), fo at the
half of call duration (mid fo; Hz), call duration (s), slope
from fo start of the call to the fo maximum (slope S-M;
Hz/s), slope from the maximum fo to the end of the call
(slope M-E; Hz/s), inflection rate (number of frequency
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changes/s), harmonicity (HNR; dB), jitter (the absolute fo
difference between consecutive fo measurements/the aver-
age period), fo variation (sum of all fo changes measured/
call duration; Hz), amplitude range (maximum dB – mini-
mum dB) and amplitude modulation (AM). All amplitude
related measurements are independent of recording
distance as they are relative measures within a call. Mean
values of relevant call characteristics within age categories
and sexes are listed in Table 1.

Statistical analysis
A Principal Component Analysis (PCA) was conducted
to reduce the amount of acoustic variables after partially

correlated variables were removed. Three Principal
Components (PCs) were extracted with an eigenvalue
greater than 1.0 using a varimax rotation.
Three linear mixed-effect models (LMMs) were calcu-

lated using the PC scores as response variables. Individ-
ual identity was entered as a random effect to account
for repeated sampling. As potential fixed effects, sex,
age-class, and weight at trapping were tested for
multicollinearity by calculating Variance Inflation
Factors (VIF) [48]. Sex and weight showed high collin-
earity, and thus weight was investigated separately using
nonparametric Spearman rank correlations. As fixed
effects in the LMMs, sex and age-class were used. For
model selection (Table 2) models were ranked by their
differences in AICc (ΔAICc), that were calculated by
subtracting the lowest AICc from all other AICc values.
The relative likelihoods (exp (− 0.5/ΔAICc)) and Akaike
weights (relative likelihood/sum of all relative likeli-
hoods) were computed as measures of strength of
evidence for each model [49]. When several models had
high support (Δi ≤ 2), model averaging was conducted
(Table 3). In order to obtain all coefficients in the
comparision between juveniles, subadults and adults we
changed the reference category an reran the models.
Estimated mean values, z and p values were obtained
from the averaged models for all coefficients.
Statistical analysis was performed in R Version 3.3.3

[50] using the packages GPA rotation (version 2014.11–1
[51]), psych (version 1.7.3.21 [52]), AICcmodavg [53],
MuMIn (version 1.15.6 [54]), and lme4 (version 1.1–13
[55]). Estimated values, confidence intervals (CI) as well as
z- and p-values were calculated with functions in the
package MuMIn (version 1.15.6 [54]).

Results
Principle component analysis resulted in three factors.
The three PCs explained 81% of the overall variance.
Measures of fo (mean fo, maximum fo, start and mid fo)
loaded on the first PC and explained 41% of the vari-
ance. PC2 contained the acoustic variables call duration,
HNR, and jitter, and contributed 27% to the overall vari-
ance. Amplitude-related vocal parameters (amplitude
modulation and amplitude range) loaded on the third
PC and explained 14% of the variance. The standardized
loadings are shown in Table 2. PC scores were extracted
for further analyses.
Model selection procedure revealed that in PC1 the null-

model as well as the model including sex explains most of
the variance (Table 4); in PC2 and PC3 the models with ei-
ther age-class alone or with sex and age-class explained the
variance the best. Scores of PC2 were highest in juveniles
and decreased in subadults, and were lowest adults (Table
3, Fig. 2a). Scores of PC3 were also found to be highest in
juveniles and lower in subadults, but higher in adults as

Fig. 1 Spectrogram of a food call of (a) a juvenile, (b) a subadult,
and (c) an adult common raven (FFT method, window length = 0.01,
time step = 0.002, frequency step = 20, Gaussian shape)
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compared to subadult individuals (Table 4, Fig. 2a). Sex did
not show a strong influence on the regression scores of
PC2 and PC3 (cp. Fig. 2b). Scores of PC1 did not vary with
age-class or sex (Table 4, Fig. 2a and b).
There was no significant correlation between weight

and the scores of PC1 (Spearman rank correlation: rs =
− 0.021, p = 0.9562), PC2 (rs = − 1.175, p = 0.5883), and
PC3 (rs = 0.538, p = 0.0749).

Discussion
We here showed that food-associated ‘haa’ calls of ravens
disclose sex- and age-related characteristics about the

phenotype of the caller. These results support the idea
of class-specific cues in acoustic signals that would
enable class-level recognition [1], i.e. that naïve ravens
listening to ‘haa’ calls may extract information about the
age-class and the sex of the callers.
Differentiating unknown callers in a social system with

high degrees of fission-fusion helps in decision-making
processes, when individual recognition is not possible
based on missing knowledge on about others. In ravens,
vast numbers of individuals gather for roosting [56–58]
and feeding [30, 31, 37, 38, 41]. The numbers of individ-
uals within a group fluctuate throughout the year while
the stratification of the group based on relationship qual-
ities according to sex, age, and kinship stays consistent
[43, 59, 60]. These constantly changing groups impose
high demands and challenges on each individual when
evaluating collaborative and competitive interests for large
numbers of conspecifics. Common ravens show collabora-
tions in feeding situations via recruitment [40, 56–58] but
at the same time compete for resources. As aggression
during foraging in ravens is relatively high, and fights
could cause costly injuries, decisions about whether to
join or avoid a feeding situation can be crucial. By asses-
sing acoustic cues about sex and age, the relative strength
and reliability of unknown ‘haa’ callers are conveyed in
addition to food-availability [30, 38, 40, 41].
The reliability of recruitment to food in ravens increases

with age [37], and thus perceivers might be able to assess
signal reliability based on callers’ age. The ability of
perceivers to selectively respond to specific classes has
been reported for instance in alarm calls of marmots
(Marmota flaviventris) where juvenile calls elicit more
attention [61], and in vervet monkey calls (Cercopithecus
aethiops), where the reliability of the signaller was learned
in a playback study [62]. Caller reliability appears highly
crucial for the evolution and maintenance of alarm call
and food call communication [63]. Additionally, juvenile

Table 1 Mean values and standard errors (SE) of acoustic variables used in the PCA

Juvenile Subadult Adult

Female (N = 43;2) Male (N = 6;1) Female (N = 137;5) Male (N = 27;2) Female (N = 198;6) Male (N = 7,1)

Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE

Mean fo (Hz) 755.053 ± 15.527 774.468 ± 3.277 679.941 ± 7.605 715.327 ± 6.215 643.749 ± 3.196 598.14 ± 2.421

Maximum fo (Hz) 809.845 ± 12.933 827.117 ± 4.627 709.005 ± 7.953 755.367 ± 6.373 671.995 ± 3.523 619.023 ± 3.119

Start fo (Hz) 658.953 ± 17.434 647.698 ± 9.471 640.394 ± 7.155 626.777 ± 8.569 595.298 ± 2.976 578.75 ± 6.946

Mid fo (Hz) 793.836 ± 16.825 823.3 ± 4.254 702.317 ± 8.131 751.162 ± 6.753 666.727 ± 3.674 616.813 ± 3.018

Call duration (s) 0.299 ± 0.014 0.237 ± 0.006 0.217 ± 0.003 0.226 ± 0.004 0.201 ± 0.002 0.2 ± 0.003

HNR (dB) 10.587 ± 0.788 19.338 ± 0.228 13.916 ± 0.279 15.819 ± 0.549 16.055 ± 0.186 21.36 ± 0.296

Jitter 0.035 ± 0.003 0.01 ± 0 0.014 ± 0.001 0.013 ± 0.001 0.011 ± 0 0.01 ± 0

Amplitude modulation 32.034 ± 1.436 30.058 ± 2.225 39.325 ± 1.919 30.413 ± 1.235 30.921 ± 0.773 30.579 ± 2.221

Amplitude range (dB) 9.422 ± 0.553 9.352 ± 0.656 8.724 ± 0.397 10.51 ± 1.008 8.615 ± 0.213 12.571 ± 1.116

N denotes the number of calls analysed; and the number of individuals per age-class and sex. Five individuals were sampled in two age-classes

Table 2 Model selection for the LMMs investigating the effects of
sex and age-class on for the three Principle Components (PC1-PC3)

Models AICc Δi Relative likelihood Akaike weight

PC1

Sex + Age-class 614.59 4.80 0.091 0.053

Sex 611.67 1.89 0.388 0.227

Age-class 612.69 2.91 0.234 0.137

Null 609.78 0.00 1.000 0.584

PC2

Sex + Age-class 637.81 1.69 0.429 0.300

Sex 652.81 16.69 0.000 0.000

Age-class 636.12 0.00 1.000 0.699

Null 650.96 14.84 0.001 0.000

PC3

Sex + Age-class 1076.32 1.04 0.595 0.373

Sex 1116.96 41.68 0.000 0.000

Age-class 1075.29 0.00 1.000 0.627

Null 1118.62 43.34 0.000 0.000

Corrected Akaike Information Criterion (AICc) values, their differences (Δi), the
relative likelihood, and the resulting Akaike weights are shown for each model.
Models with highest support (Δi≦ 2) are indicated in bold type
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senders of food-associated calls might profit from indicat-
ing their age to unknown conspecifics. As juvenile food-
associated calls (also termed ‘chii calls’) are supposed to
derive from begging calls [40], these calls may indicate
parents about the hunger level of their offspring [40] and
might function as puppy licence. Thus, perceivers of these
calls might take into account that parent ravens could be
in the vicinity and defend their young.
It is noteworthy that, compared to females, males tend

to show low rates of food-associated calls [31]. In a
previous experiment, where raven food-associated calls
were played back in the wild, nine out of ten birds
responded to females [30]. As females are in general lower
in rank [64], especially higher ranking males might profit

from approaching food-calling females. A similar effect
was found in brown capuchin monkeys (Cebus apella),
where lower-ranking females call more than higher-
ranking individuals [65]. Additionally, low-ranking ravens
might benefit from attracting other non-breeders espe-
cially when calling within a territory of a breeding raven
pair. By increasing the number of non-breeders and thus
overpowering the territorial pair, food accessibility might
be secured. Furthermore, dominant male callers may use
another food-related call (‘who’; [37]). This call type might
indicate different phenotypic information than the here
presented ‘haa’ calls.
PC1, which combined acoustic variables related to fo,

showed least evidence for explaining sex and age-class
related differences. Still, differences in PC1 do exist and
were previously related to individual recognition [33]. They
could be size dependent, as after fledging and gaining
weight, developmental changes of internal structures like
ossification of tracheal and syringeal cartilaginous rings
take place, and thus can cause changes in fo due to ana-
tomical changes of the syrinx like size post-fledging [66].
Additionally, neural changes due to the ontogenetic devel-
opment of the caller might correlate with our classification
of age-classes that potentially relate to individuality. Neural
changes, like increases of the HVC after sexual maturing
[67], might be reflected in differences of fo.
Furthermore, deterministic chaos, which is reflected in

HNR of a call, was included in PC2. It is important in the
acoustic communication of animals [68, 69] as it can
signal urgency or motivation (e.g. baby cries [70], monkey
alarm calls [71]), and might be perceived by listening

Table 3 Averaged LMMs investigating the effects of sex and age-class onto the three Principal Components (PC1-PC3), with coefficients,
estimated means (EM), standard error (SE), z values, significances (p), and lower and upper confidence intervals (CI)

Coefficients EM SE z value p 2.5% CI 97.5% CI

PC1

(Intercept) − 0.18 0.29 0.62 0.537 − 0.74 0.39

Sexa (female vs. male) 0.24 0.63 0.38 0.701 − 0.99 1.48

PC2

(Intercept) 0.51 0.34 1.48 0.1380 − 0.16 1.19

Sexa (female vs. male) − 0.43 0.71 0.61 0.5424 −1.81 0.95

Age-classb (juvenile vs. subadult) − 0.06 0.12 0.50 0.6195 − 0.29 0.17

Age-classb (juvenile vs. adult) − 0.43 0.14 2.96 0.0031 − 0.71 − 0.14

Age-classc (subadult vs. adult) − 0.37 0.08 4.37 < 0.0001 − 0.53 − 0.20

PC3

(Intercept) 1.40 0.34 4.11 0.0000 0.73 2.07

Sexa (female vs. male) 0.62 0.60 1.03 0.3021 − 0.55 1.78

Age-classb (juvenile vs. subadult) − 0.76 0.20 3.80 0.0001 −1.15 − 0.37

Age-classb (juvenile vs. adult) −1.63 0.24 6.77 < 0.0001 −2.10 −1.16

Age-classc (subadult vs. adult) − 0.87 0.14 6.16 < 0.0001 −1.15 − 0.60

Set as reference point: afemale, bjuvenile, csubadult

Table 4 Component matrix of the PCA with loadings of each
acoustic variable

Acoustic Variable Principal Components

1 2 3

Mean fo 0.99 0.08 − 0.03

Maximum fo 0.97 0.18 0.00

Start fo 0.84 − 0.14 − 0.16

Mid fo 0.97 0.12 0.00

Call duration 0.23 0.87 − 0.03

HNR 0.10 − 0.80 0.36

Jitter 0.04 0.94 0.03

Amplitude modulation − 0.03 0.14 − 0.70

Amplitude range − 0.16 − 0.01 0.81

The dimension of the acoustic variables was reduced to three Principal Components
(KMO=0.73). Interpretable factor loadings are indicated in bold
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individuals (e.g.: [72, 73]). In relation to the ontogenetic
development of the individual we expect a decrease of
urgency-related features in ‘haa’-calls that might also
relate to the motivation [8] i.e. hunger level of the caller.
In congruence with this motivation-structural rule, foo-
d-associated calls are hypothesized to develop from beg-
ging calls [40]. In addition to HNR also jitter is included
in PC2. Mammals are known to increase jitter based on
changes of oestrogen in females [19, 74] and of testoster-
one in males [19, 75]. Similar mechanisms based on hor-
monal changes could be at play in raven ‘haa’ calls that
might relate to urgency of the callers. Similarly, call dur-
ation is represented in PC2 and is often related to urgency
[76]. Highest levels are found in juvenile females bearing

the lowest rank in raven societies and thus might encoun-
ter high levels of constrains in gaining access to food [64].
Amplitude modulation is mainly represented in PC3

and varies according to age-class. We suggest that similar
to deterministic chaos, jitter, and call duration, an increase
of amplitude modulation is related to urgency. Still, ampli-
tude modulation has not been considered in many animals
and was considered as low hierarchy parameter, i.e.
transmitting little information [77].
As male ravens are in general larger than females, gross

body mass and size differences [28] might correlate with
differences in syringeal structures, and cause sexually di-
morphic acoustic features of raven calls. Such size-related
differences have been reported for jungle crows [22] and

Fig. 2 Estimated means ± standard errors (SE) of the three PCs for different age-classes (a), and for male and female common ravens (b). PC1
summarizes acoustic properties related to the fundamental frequency of “haa” calls, PC2 includes call duration and source-related acoustic features,
and PC3 amplitude-related measures
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other bird species like murres [78], while to our know-
ledge no such differences were reported in the literature
for ravens, yet. Despite this effect, it has been discussed
that based on small effect sizes, fo differences have a low
reliability as indicators of body size in birds [79]. Hence,
fo variances might not be good indicators for the sex of
the calling raven when sex differences are merely based
on size-dependent differences in syringeal anatomy. Note
that the weight of the studied individuals did not correlate
with either of the PCs, confirming previously shown small
effect sizes.
Similarly, differences in hormone levels between male

and female birds can cause variation in calling behaviour
[80] and activity in the neural song control regions [81].
While hormonal changes have been shown to affect the
vibrational properties of sound-producing structures in
mammals [74] to our knowledge such an effect has not
been documented for birds. Especially bird species with
monomorphic singing and calling behaviour are less stud-
ied [82] in their differences in higher vocal centre (HVC)
structures. Still, sexually dimorphic neural structures might
cause sexually dimorphic calls in ravens, which has to be
studied in more detail.
Measures of amplitude modulation and range cluster in

PC3 and relate to age-classes. While most of the measures
decrease or increase with age, amplitude-related parame-
ters are lower in subadults than in adults. This effect also
is in contrast to reduced variation in all parameters with
increasing age (see Table 3) and might be connected to
morphological changes during maturation. Age classifica-
tion of ‘haa’ calls is strongly supported by our data,
especially based on acoustic variables in PC2 and PC3.
We hypothesize that labial flexibility, mass, and length,
which have been shown to vary with age in mammals
[83], might change as signallers mature. Structural
differences of the vocalizing apparatus in turn determine
acoustic features of a vocalization (e.g. [83]). In addition to
variations in the vocal organ, maturation of neural
structures based on testosterone-induced growth of the
HVC [84] might additionally influence acoustic features of
raven calls, as was shown in birdsong [85].

Conclusion
Taken together, we herewith show that raven ‘haa’ calls
vary according to sex and age of the vocalizer and might
be the underlying mechanism of class-level recognition.
Especially in food-related calls that are recruiting
conspecifics to potentially dangerous feeding situations,
class-level recognition could help when encountering
unknown individuals while individual recognition is used
during repeated interactions with already known
individuals. Thus, ravens with a pronounced level of
fission-fusion seem to possibly make use of class-level

recognition as well as individual recognition during their
complex feeding behaviour.
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