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Abstract

Background: Since its introduction from Taiwan to Europe around 1980, Anguillicola crassus, a natural parasite of
the Japanese eel (Anguilla japonica), has acquired the European eel (Anguilla anguilla) as a novel definitive host. In
this host the nematode differs noticeably in its body mass and reproductive capacity from its Asian conspecifics.
We conducted a common garden experiment under a reciprocal transplant design to investigate whether
differences in species-diagnostic morphological traits exist between two European and one Asian population of A.
crassus and if yes whether these have a genetically fixed component.

Results: We found that worms from Germany, Poland and Taiwan differ in the size and shape of their body,
oesophagus and buccal capsule. These changes are induced by both phenotypic plasticity and genetic divergence:
in the European eel, nematodes from Europe as well as from Taiwan responded plastically with larger body and
oesophagus dimensions compared to infections in the Japanese eel. Interestingly, the oesophagus simultaneously
shows a high degree of genetically based changes being largest in the Polish strain kept in A. anguilla. In addition,
the size and shape of the buccal capsule has undergone a rapid evolutionary change. Polish nematodes evolved a

smallest buccal capsule.

genetically fixed larger buccal capsule than the German and Taiwanese populations. The German strain had the

Conclusions: This study provides evidence for the genetic divergence of morphological traits in A. crassus which
evolved over a timescale of about 30 years. Within Europe and in the European eel host these alternations affect
characters used as diagnostic markers for species differentiation. Thus we provide an explanation of the discrepancy
between morphological and molecular features reported for the parasitic nematode featured here, demanding
general caution in morphological diagnosis of parasites discovered in new hosts.

Keywords: Anguillicola crassus, Anguillicoloides, Introduction, Biological invasion, Host switch, Rapid evolution,
Genetic divergence, Phenotypic plasticity, Evolutionary labile traits

Background

Anguillicola crassus, a natural swim bladder parasite of
the Japanese eel (Anguilla japonica) [1], is one of the
most successful aquatic parasitic aliens in the history of
globalization. Within about 30 years of its introduction
from Taiwan to Germany around 1980 this nematode
has spread throughout the European continent and
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North Africa colonizing almost all populations of the
European eel (Anguilla anguilla) [2,3].

Invasive pathogens and most prominently A. crassus
have thus been proposed as an additional cause for the
decline of European eel stocks, along with overfishing
and habitat destruction [4].

The development of A. crassus requires copepod or
ostracod intermediate hosts and a final host belonging
to the genus Anguilla in the natural as well as the novel
range [5]. After the ingestion of an infected intermediate
or a paratenic host by an eel [6], the L3 larvae migrate
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through the intestinal wall and body cavity towards the
swim bladder. In the swim bladder wall the L3 develop
via the L4 stage to pre-adults that enter the swim blad-
der lumen. Sexually dimorphic adults eventually mate
and L2 are released by females. These L2 reach the
water via the eel’s faeces and are ingested by an inter-
mediate host in which they moult to the L3 stage [5].

Field studies in Europe and Asia have revealed that the
worms infecting the European eel are much larger than
their Taiwanese conspecifics in the Japanese eel [7]. In
experiments with European parasites in A. anguilla and
A. japonica infectivity, body mass, weight gain and repro-
ductive output were significantly higher in the European
eel than in the natural host, while larval mortality was
lower in the colonized host [8].

Similarly, the American eel is more heavily affected by
A. crassus than the Japanese eel [9].

Recently, we demonstrated rapid genetic divergence of
the introduced European parasite population compared
to conspecifics from Taiwan in terms of infectivity and
developmental dynamics, using a reciprocal transplant
experiment under common garden conditions [10]. In
this paper, we report on the morphological traits of para-
sites from these studies.

The oesophagus (i.e. pharynx) and the buccal capsule
are involved in the ingestion of food, in adult A. crassus,
namely blood from host capillaries [11]. The oesophagus
is a muscular structure that likely creates a vacuum
while sucking blood into the worm’s gut. The buccal
capsule is a sclerotinized structure that bears the teeth
and acts as an abutment to the applied pressure [12,13].

The different feeding behaviour of larger nematode groups
(esp. in the Spriurina and the whole of the Rhabditida) is
reflected by structural variability of the oesophagus and
the buccal capsule. The taxonomy of nematodes thus trad-
itionally relies on these characters [14].

Based on these features A. crassus, Anguillicola novae-
zelandiae and Anguillicola papernai can be differenti-
ated (in addition to differences in natural host usage and
distributional range). In contrast, Anguillicola austra-
liensis showed an additional specific character. Its anter-
ior end is inflated, forming a bulb around the mouth
opening [15]. Later, the subgenus Anguillicoloides, to
which all 4 species belonged, was transferred to the sta-
tus of a genus, while the genus Anguillicola retained
only one species, Anguillicola globiceps [16]. According
to molecular evidence, however, the new genus and the
previous subgenus are paraphyletic and the original gen-
eric grouping is more appropriate [17]. For this reason
the generic name Anguillicola is used in this paper. In
the present study we investigated whether taxonomically
important morphological characters are affected by rapid
evolution following the colonization of a novel host in a
recipient area.
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Results

In the European eel 1,136 adult worms were chosen for
morphological investigations: 424 (45.4% female, 54.6%
male) worms belonging to the German, 387 (41.4% fe-
male, 58.6% male) to the Polish and 325 (30% female,
70% male) to the Taiwanese worm population. In the
Japanese eels from 430 (37.1% female, 62.9% male) adult
worms that were chosen for morphological studies 179
(44.4% female, 55.6% male) worms belonged to the
German population, 142 (47.4% female, 52.6% male)
to Polish and 111 (43.5% female, 56.5% male) to the
Taiwanese population.

Body

In the Japanese eel, the worms were generally smaller
for both body dimensions (width and length) and also
grew less quickly than in the European eel (Figure 1,
Additional file 1: Table S1, Additional file 2: Table S2,
Additional file 3: Figure S1). They also had a higher
length/width ratio (Table 1). Further, since the (esti-
mated) coefficient for dpi is almost precisely the negative
of the coefficient for the interaction between Japanese
eel and dpi, the coefficient for dpi for the Japanese eel
(which is the sum of both values) is roughly zero
(Table 1). This means that the shape of the worms in the
Japanese eel did not change significantly over time.

Under the same host conditions no differences be-
tween the 3 nematode strains were found: in both eel
species the parasite populations did not differ from one
another with respect to length or width of their body
(Additional file 1: Table S1, Additional file 2: Table S2;
Figure 1, Additional file 3: Figure S1).

The only significant difference found was a smaller
length/width ratio for the Taiwanese population infecting
the Japanese eel, indicating a shorter body of Taiwanese
worms in this host species compared to both European
populations (Table 1).

Oesophagus

In both eel species the Polish A. crassus population had
a wider but shorter oesophagus than did the German
and Taiwanese strains (Table 2, Additional file 4: Table S3,
Additional file 5: Table S4, Figure 2, Additional file 6:
Figure S2). There were no differences in length, width and
aspect ratio of the oesophagus between the German and
Taiwanese strains. The larger dimensions and shorter
shape of the oesophagus of the Polish parasite population
are apparently genetically fixed.

The oesophagus of the worms in the Japanese eel was
thinner (Figure 2, Additional file 5: Table S4, Additional
file 6: Figure S2) and grew less quickly (Additional file 4:
Table S3, Additional file 5: Table S4) than that of worms
in European eels. In addition, there was a non-significant
trend (p =0.097) towards a shorter oesophagus in worms
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Figure 1 Body dimensions of female adults of Anguillicola crassus in Anguilla anguilla and A. japonica. Body length and width of female
adults of Anguillicola crassus in Anguilla anguilla and A. japonica with the arithmetic mean values (horizontal and vertical lines) and the linear
regression lines. 1 — German parasite population, 2 - Polish parasite population, 3 — Taiwanese parasite population. Dpi — days post infection. For

from this host species. In the Japanese eel the oesophagus
had a higher length/width ratio (Table 2).

Buccal capsule
Neither of the dimensions (width and length) of the
worms’ buccal capsule differed between specimens har-
boured in the different host species (Figure 3, Additional
file 7: Table S5, Additional file 8: Table S6, Additional file 9:
Figure S3). Only male worms had a slightly but signifi-
cantly shorter buccal capsule in the Japanese eel (Table 3).
In both eel species the Polish nematode strain had the
biggest buccal capsule (longer and wider) than that of
the German and Taiwanese strains. The buccal capsule
of the Taiwanese worms showed a trend (p =0.08) to-
wards wider shape than that of the German conspecifics

but it was significantly longer (Figure 3, Additional file 7:
Table S5, Additional file 8: Table S6, Additional file 9:
Figure S3).

The shape of the buccal capsule did not differ signifi-
cantly between the Polish and Taiwanese worms, but
both populations had a longer buccal capsule than the
German specimens (Table 3). Thus, again, the two European
populations differed from one another.

Discussion

A. crassus has a historically well documented invasion
time line. The first published reports of its presence in
Europe date from the early 1980s [18,19]. It had there-
fore been in Europe for about 30 years at the time our
experiments were carried out.

Table 1 Minimal adequate mixed-effects linear model for body ratio of Anguillicola crassus: reference group: German

parasite population in the European eel

Explanatory variables and interactions Estimate SD t-value p-value
(Intercept) 13.993017 0.344908 40.570 0.0000
Japanese eel 2.864821 0597873 4.792 0.0000
Polish parasite population —0.351104 0.384348 -0914 0.3618
Taiwanese parasite population 0415774 0407112 1.021 0.3081
Dpi —-0.017952 0.004705 -3816 0.0002
Male 2515979 0294228 8551 0.0000
Japanese eel*Polish parasite population —-0.565012 0.721843 —-0.783 04345
Japanese eel*Taiwanese parasite population —2.825598 0.738580 —3.826 0.0002
Japanese eel*Dpi 0.017957 0.007626 2.355 0.0193
Dpi*Male 0.011858 0.004458 2.660 0.0079
Japanese eel*Male —1.012030 0422709 —2.39%4 0.0168

Significant effects are in bold.
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Table 2 Minimal adequate mixed-effects linear model for oesophagus ratio of Anguillicola crassus: reference group:

German parasite population in the European eel

Explanatory variables and interactions Estimate SD t-value p-value
(Intercept) 3317222 0.032135 103.229 0.0000
Japanese eel 0.354854 0.043646 8130 0.0000
Polish parasite population —0.152373 0.033900 —4.495 0.0000
Taiwanese parasite population —0.030428 0.035232 -0.864 0.3886

Dpi —0.004029 0.000415 -9.701 0.0000
Male —0.048802 0.022015 -2217 0.0268
Japanese eel*Dpi 0.002353 0.000802 2933 0.0037

Significant effects are in bold.

Using a cross-infection experiment with both Asian
and European hosts and parasites we postulate diver-
gence linked to the origin of the parasite and not to the
species of the experimental host to be genetically fixed.
We show that the morphology of the body, oesophagus
and buccal capsule of A. crassus show a mixture of both
plastic and genetically fixed differences.

We report a larger body mass and size of worms raised
in the European eel compared to the Japanese eel. A simi-
lar finding with A. anguilla and A. japonica infected with
A. crassus from Germany has previously been documented
[8]. We conclude that this feature of the worm is based
only on phenotypic plasticity since we show that it is
linked only to the species of experimental host and not to
the origin of the parasite. For A. japonica we assume that
the worms are subjected to a strong concomitant immun-
ity limiting the weight gain of the parasite. This hypothesis
is supported by the lower prevalence and intensities of A.
crassus in its natural host [7], by a stronger and more

rapid production of antibodies directed against the para-
site [20,21] and by the ability of the Japanese eel to encap-
sulate and eliminate visceral larvae of A. crassus [22].

Concerning the size and shape of the oesophagus,
phenotypic modification also seems to be present. It is
not surprising that the development and growth of this
muscular structure is influenced by the same factors as
the overall body dimensions as shown, for example, in
Halicephalobus cf. gingivalis [23].

However, we could not detect any influence of the
host on size or shape of the buccal capsule, and we thus
conclude a lack of environmental influence on that
structure. The size and shape of this sclerotinized struc-
ture seems to be genetically determined and fully inde-
pendent of the worms overall size. Growth of nematodes
and other organisms keeping sclerotinized organs in
constant dimensions is a known phenomenon, and these
features are thus traditionally regarded as suitable for
morphological taxonomy [24,25].
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post infection. For the same visualization for male worms see: Additional file 5: Figure S2.

009+
008
000
004
009~
008~
0004
0021
009
008
0001
00Z1—+




Weclawski et al. Frontiers in Zoology 2014, 11:74
http://www.frontiersinzoology.com/content/11/1/74

Page 5 of 9

Anguilla anguilla

Anguilla japonica
1 2 3

0S

00}
1dg

80
70
60
E 50
=
= 40
£ 50
g8
2 70+
@
S 60
w
& 50
o
= 401
3 80
3
m 70 ¢ o
60
4 oc%"
e e
50 s %
40 ®
T T T T T T T T T

0st

L T T
16 20 24 28 16 20 24 2816 20 24 2816 20 24 2816 20 24 28 16 20 24 28

Buccal capsule length (um)
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Coming to the question of the most likely mode of
the observed rapid evolution, the shape and size of
the oesophagus and the buccal capsule of the worms
from a German river directly linked to the place of
original introduction [18] resemble the traits of the
conspecifics from the donor area in Taiwan. Only a
Polish strain of the parasite displayed rapid divergence
of morphological features, as reflected by an enlarge-
ment of the buccal cavity and the oesophagus. Fur-
thermore, transplantation experiments indicate that
morphological changes in the Polish strain genetically
fixed and intrinsic to the worms than a result of the
host environment.

The host-induced sources of selective pressure are the
same between Poland and Germany, but differ between
European and Asian locations. This is especially true in
the eel, a (nearly) panmictic species due to its spawning
behaviour [26,27], excluding the possibility of local host-
parasite adaptation. However, A. crassus seems to have
colonized Poland via the brackish water of the Baltic

[28,29]. Our observations could be explained either via a
bottleneck and genetic drift within the colonized eastern
areas or by selective pressure exerted by the abiotic en-
vironment [30]. It appears that the rapid evolution of
morphological traits in the parasite does not have to be
directional as an adaptation to the host.

Indeed a molecular genetic survey using microsatel-
lite markers found that allelic diversity of European
populations reflected a moderate bottleneck associated
with the introduction of the parasite into a novel area
followed successive moderate loss of diversity during
the southward expansions of its populations [30]. This
argues for drift as an explanation of our findings.

It was recently shown that genetically fixed changes in
infectivity and developmental traits separate European
A. crassus from their Taiwanese conspecifics [10]. The
selective pressure of the novel host (European eel), not
the genetic drif, was thus considered to have modified
the developmental features in the European strains of
A. crassus.

Table 3 Minimal adequate mixed-effects linear model for buccal capsule ratio of Anguillicola crassus: reference group:

German parasite population in the European eel

Explanatory variables and interactions Estimate SD t-value p-value
(Intercept) 0375781 0.002190 171.579 0.0000
Japanese eel 0.009065 0.003123 2.902 0.0040
Polish parasite population —0.004939 0.002317 —2.131 0.0340
Taiwanese parasite population —0.005019 0.002402 —2.089 0.0377
Dpi 0.000078 0.000024 3214 0.0015
Male 0.015202 0.002018 7.534 0.0000
Japanese eel*Male —0.012043 0.003956 —3.044 0.0024

Significant effects are in bold.



Weclawski et al. Frontiers in Zoology 2014, 11:74
http://www.frontiersinzoology.com/content/11/1/74

We show in the present publication that the mode
(neutral or directional) of rapid evolution may differ for
different traits in the same species. The differentiation
between A. crassus, A. novaezelandiae and A. papernai
for example is based mainly on features of the buccal
capsule and oesophagus [5]. Our findings thus provide a
possible explanation for the incongruence between mor-
phological and molecular phylogeny [17] in the special
case of the genus Anguillicola. If a diagnostic trait can
repeatedly undergo rapid evolutionary change in one
lineage but not in the other, species may be grouped
wrongly in higher order taxa, such as (sub-) genera [31].
Our findings might point to an explanation for the com-
mon incongruence between phylogeny and morphological
characteristics: Rapid evolution of a phenotypically stable
character.

In addition, our results indicate that it is not well ad-
vised to use morphology alone for species discrimination
and higher order systematics in nematodes and other
taxonomic groups with limited morphological differenti-
ation. Even if the morphological characters used do not
vary in different environments (are phenotypically stable),
the same characters might be evolutionarily labile poten-
tially creating uninformative patterns of similarity. Fur-
thermore, parasite evolution does not necessarily have to
be directional, leading to host adaptation, but selection
exerted by the abiotic environment or by neutral evolution
and genetic drift can lead to divergence in ecological time.

Conclusions

A reciprocal transplant experiment under common-
garden conditions allowed us to disentangle phenotypic
modification from genetically fixed divergence of mor-
phological traits in A. crassus. The nematode is larger in
the recently acquired European host A. anguilla compared
to the original Asian host A. japonica. Overall body dimen-
sions seem only plastically modified and size differences
showed no genetically fixed component.

The oesophagus was also affected by this environmen-
tally induced plasticity. This trait, however, also showed
genetically fixed differences between European popula-
tions of A. crassus. The sclerotinized structure of the
buccal capsule, on the other hand is not modified by the
host environment, but has genetically diverged between
parasite populations within Europe.

We conclude that evolutionary change in characters
important for morphological taxonomy has occurred in
A. crassus in its novel European range. Moreover, we
generalize our findings to suggest that traits which are
normally phenotypically stable in helminths can be evo-
lutionarily labile on an ecological time scale and are thus
likely to introduce artefacts of taxonomic relevance. Spe-
cies with limited morphological differentiation thus re-
quire the additional use of molecular methods for species
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differentiation, taxonomy and systematics. The molecular
genetic architecture characterized by the traits discussed
here should enable a broad characterisation of genome
wide differences between the different A. crassus popula-
tions [32]. Our findings show also that this invasive spe-
cies was able to change at the evolutionary level in
ecological time, which is probably an important compo-
nent of the dispersal success of introduced taxa.

Methods

Experimental design

We conducted a series of experiments infecting A.
japonica and A. anguilla with A. crassus originating from
Germany, Poland and Taiwan, as described in [10].

Briefly, L2 larvae were collected from wild eels from
the Rhine River near Karlsruhe in the southwest of
Germany, the Kao-ping River in the southwest of Taiwan
and the Lake Sniardwy in northern Poland. Copepod
intermediate hosts were infected with these L2 and in-
fective L3 larvae were harvested. Eels were then infected
via a stomach tube with 50 L3 larvae each.

Infected eels were kept in 160-liter tanks in groups of
20 individuals at a constant temperature of 22°C and a
12:12 photoperiod. The eels chosen for the experiment
were 37.7 cm £ 0.2 ( = SE) and 49.4 cm + 0.3 long for the
European and the Japanese eel, respectively. At 25, 50,
100 and 150 dpi 20 eels were dissected, resulting in total
of 239 European and 216 Japanese eels. Eels that died
during the trial were not considered in the statistical
analysis. The tanks were continuously provided with ox-
ygenated tap water and fed ad libitum with commercial
fish pellets (Dan-Ex 2848, Dana Feed A/S Ltd, Horsens,
Denmark). The experiment had been approved by the
responsible authorities (Regierungsprasidium Karlsruhe).

At dissection, the swim bladder was opened, adult
parasites were sexed and preserved in 70% ethanol. Body
dimensions were measured at 0.65%, 2.0x or 5.0x magni-
fication using a dissecting microscope (STEMI 2000,
Carl Zeiss) equipped with a measuring ocular. After-
wards the anterior end of the worms was removed and
covered with Berlese-mixture (Waldeck GmbH & Co.
KG, Division Chroma, 3D 101) on a glass slide. Dimen-
sions of the oesophagus and buccal capsule were mea-
sured at 10x and 100x magnification under a compound
microscope (Axiolab, Carl Zeiss) using a measuring ocu-
lar. In order to describe differences in the shape of the
morphological features, the ratio of each measurement
pair (length/width) was calculated.

Statistics

The models were performed separately for each term
acting as response variable (the length, width and ratio
of body, oesophagus and buccal capsule); the German
parasite population in the European eel served as a
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Table 4 Set up of the mixed-effects linear models
morphological dimensions of Anguillicola crassus:
response and explanatory variables in the minimal
adequate models after simplification

Referenced
in text as

Additional file 1:
Table S1

Response variable Explanatory variables in the

minimal adequate models

Body length Eel species
Dpi

Number of adults recovered
alive

Number of L3 recovered alive
Worm sex

Eel species*dpi

Dpi*worm sex

Eel species*worm sex

Additional file 2:
Table S2

Body width Eel species
Dpi

Number of adults recovered
alive

Number of L3 recovered alive
Worm sex

Eel species*dpi

Dpi*worm sex

Eel species*worm sex

Ratio body Table 1

length/width

Eel species

Population

Dpi

Worm sex

Eel species*population
Eel species*dpi
Dpi*worm sex

Eel species*worm sex

Oesophagus length  Additional file 4: Eel species
Table S3 )
Population
Dpi
Number of adults recovered
alive

Number of L3 recovered alive
Worm sex

Eel species*dpi

Dpi*worm sex

Additiolan file 5:
Table S4

Oesophagus width Eel species
Population
Dpi

Number of adults recovered
alive

Worm sex
Eel species*dpi

Dpi*worm sex
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Table 4 Set up of the mixed-effects linear models
morphological dimensions of Anguillicola crassus:
response and explanatory variables in the minimal
adequate models after simplification (Continued)

Ratio oesophagus ~ Table 2 Eel species
length/width )
Population
Dpi
Worm sex

Eel species*dpi

Buccal capsule Additional file 7. Eel species
length Table S5 )
Population
Dpi
Number of adults recovered
alive

Number of L3 recovered alive
Worm sex

Eel species*dpi

Buccal capsule Additional file 8 Eel species

width Table S6 '
Population
Dpi

Number of L3 recovered alive
Worm sex

Eel species*dpi

Population*dpi
Ratio buccal capsule Table 3 Eel species
length/width Population

Dpi

Worm sex

Eel species*worm sex

*Refers to the interactions between explanatory variables given in the table.
For more information please see Methods.

reference group. As measurements of different worms
from one eel are not statistically independent, mixed-
effects linear models were chosen for statistical modeling.
The models were fitted for response variables presented in
Table 4. After exclusion of extreme outliers, models were
fitted by stepwise simplification starting from maximal
models including the following explanatory variables: eel
species, length of eel, parasite population, dpi (as a con-
tinuous variable), eel specimen, worm sex, number of L3,
L4 and adult worms. Additionally, all three-way interac-
tions between eel species, parasite population and time in
dpi and sex of the worms and dpi and sex of the worms
and eel species were allowed.

As the number of observations at 25 dpi was statisti-
cally insufficient, the starting time for all statistical
models were set to 50 dpi. All count data were modeled
as numerical variables. Eel specimen was modeled as a
random effects explanatory variable, all other factors
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were modeled as fixed effects explanatory variables. Sig-
nificant explanatory variables left after simplification
are presented in Table 4. All statistics were executed in
R (R Development Core Team, 2009) using the packages
MASS [33] and Ime4 [34]. Significance was assumed if
p <0.05.

Additional files

Additional file 1: Table S1. Minimal adequate mixed-effects linear
model for body length of Anguillicola crassus; reference group: German
parasite population in the European eel. Significant effects are in bold.

Additional file 2: Table S2. Minimal adequate mixed-effects linear
model for body width of Anguillicola crassus; reference group: German
parasite population in the European eel. Significant effects are in bold.

Additional file 3: Figure S1. Body length and body width of male
adults of Anguillicola crassus in Anguilla anguilla and Anguilla japonica
with the arithmetic mean values (horizontal and vertical lines) and the
linear regression lines. 1 — German parasite population, 2 - Polish parasite
population, 3 — Taiwanese parasite population. Dpi — days post infection.

Additional file 4: Table S3. Minimal adequate mixed-effects linear
model for oesophagus width of Anguillicola crassus; reference group:
German parasite population in the European eel. Significant effects are in
bold).

Additional file 5: Table S4. Minimal adequate mixed-effects linear
model for oesophagus length of Anguillicola crassus; reference group:
German parasite population in the European eel. Significant effects are in
bold.

Additional file 6: Figure S2. Oesophagus length and body width of
male adults of Anguillicola crassus in Anguilla anguilla and Anguilla
japonica with the arithmetic mean values (horizontal and vertical lines)
and the linear regression lines. 1 — German parasite population, 2 - Polish
parasite population, 3 — Taiwanese parasite population. Dpi — days post
infection.

Additional file 7: Table S5. Minimal adequate mixed-effects linear
model for buccal capsule length of Anguillicola crassus; reference group:
German parasite population in the European eel. Significant effects are in
bold.

Additional file 8: Table S6. Minimal adequate mixed-effects linear
model for buccal capsule width of Anguillicola crassus; reference group:
German parasite population in the European eel. Significant effects are in
bold.

Additional file 9: Figure S3. Buccal capsule length and width of male
adults of Anguillicola crassus in Anguilla anguilla and Anguilla japonica
with the arithmetic mean values (horizontal and vertical lines) and the
linear regression lines. 1 — German parasite population, 2 - Polish parasite
population, 3 — Taiwanese parasite population. Dpi — days post infection.
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Dpi: Days post infection.
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