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METHODOLOGY

Effect size quantification for interrupted time 
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Abstract 

Background:  Interrupted time series (ITS) analysis is a time series regression model that aims to evaluate the effect of 
an intervention on an outcome of interest. ITS analysis is a quasi-experimental study design instrumental in situations 
where natural experiments occur, gaining popularity, particularly due to the Covid-19 pandemic. However, challenges, 
including the lack of a control group, have impeded the quantification of the effect size in ITS. The current paper 
proposes a method and develops a user-friendly R package to quantify the effect size of an ITS regression model for 
continuous and count outcomes, with or without seasonal adjustment.

Results:  The effect size presented in this work, together with its corresponding 95% confidence interval (CI) and 
P-value, is based on the ITS model-based fitted values and the predicted counterfactual (the exposed period had the 
intervention not occurred) values. A user-friendly R package to fit an ITS and estimate the effect size was developed 
and accompanies this paper. To illustrate, we implemented a nation population-based ITS study from January 2001 to 
May 2021 covering the all-cause mortality of Israel (n = 9,350 thousand) to quantify the effect size of Covid-19 expo‑
sure on mortality rates. In the period unexposed to the Covid-19 pandemic, the mortality rate decreased over time 
and was expected to continue decreasing had Covid-19 not occurred. In contrast, the period exposed to the Covid-19 
pandemic was associated with an increased all-cause mortality rate (relative risk = 1.11, 95% CI = 1.04, 1.18, P < 0.001).

Conclusion:  For the first time, the effect size in ITS: was quantified, can be estimated by end-users with an R package 
we developed, and was demonstrated with data showing an increase in mortality following the Covid-19 pandemic. 
ITS effect size reporting can assist public health policy makers in assessing the magnitude of the entire intervention 
effect using a single, readily understood measure.
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Background
Interrupted time series (ITS) analysis is a time series 
regression model that aims to evaluate the effect of an 
intervention or treatment that has been implemented 
beginning at a well-defined starting point in time. An 
ITS study design is a quasi-experimental study design 

instrumental in  situations where natural experiments 
occur, such as when the government imposes Covid-19 
attenuation strategies to reduce Covid-19 infection and 
death. Due to the Covid-19 pandemic, ITS analysis has 
gained popularity as a study design to evaluate the effect 
of Covid-19 attenuation strategies (e.g., lockdowns) on 
Covid-19 infections, and on economic, psychiatric, and 
psychological outcomes [1–4]. Despite available tutori-
als and books on ITS [5–8], it is unclear how to quan-
tify the effect size in ITS. This is particularly relevant 
today because an effect size estimate for ITS will allow 
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us to evaluate the overall effect of the Covid-19 interven-
tion which is more readily interpretable than changes in 
regression coefficients. We aim to demonstrate how to 
quantify the effect size based on ITS analysis, provide an 
R package to quantify the effect size in ITS, and present 
an example using national population-based all-cause 
mortality data.

A primary challenge of an ITS is the absence of a con-
trol group since the entire study population is exposed to 
the same intervention simultaneously, and this introduces 
complexity in quantifying the effect size. If, however, the 
time series covers adequate observations from before and 
after the intervention, one can compare the observations 
from the intervention period (exposed to the interven-
tion or during the Covid-19 pandemic) to the observa-
tions from the pre-intervention period (unexposed to 
the intervention). Nonetheless, simple before and after 
comparisons, such as the mean difference between the 
exposed and unexposed periods, are inappropriate as 
this scenario compares two disjoint segments of a time 
series, potentially with the added complexity of a time 
trend. Hence, the common practice is to fit a regression 
model to account for the pre-intervention time trend and 
the post-intervention level and slope change (where the 
level describes the initial value, and the slope describes 
the average trend over time).

While the post-intervention level and slope change are 
reported widely in ITS analysis, it is unclear how to quan-
tify the overall effect size, especially when the outcome 
is not continuous. For example, with logistic and Poisson 
regression models, it is often easier to understand and 
convey concepts like relative risk (RR) to the public and 
policymakers instead of directly interpreting the meaning 
of the regression coefficients.

Effect size reporting is desirable [9]; however, it is 
unclear if and how one can define and estimate such 
effect sizes in ITS, in the absence of a control group. Pre-
liminary steps to address this lacuna have been under-
taken, but only in restricted scenarios. Previously, the RR 
of ITS has been reported for Poisson regression models 
with no post-intervention slope change [5–7]. Several 
reviews of ITS studies summarized that estimates of 
intervention effects are mostly reported as the change in 
regression coefficients [10, 11].

Interrupted time series analysis
An ITS regression model for a continuous outcome 
can be described as follows. Assume that we observe 
a time series of continuous outcomes, denoted by Yt , 
for times 1 ≤ t ≤ T  . Assume that some intervention 
occurred starting from some time t∗ > 1 and until T  . 
Let Xt = 1{t≥t∗} denote a binary indicator indicating 

whether the intervention occurred at time t , or not. An 
ITS linear regression model corresponding to both a 
level change and a slope change following the interven-
tion, can be formalized as follows:

where β0 is the pre-intervention initial level, β1 is the time 
trend coefficient, β2 is the post-intervention level change, 
and β3 is the post-intervention slope change. The model-
based counterfactual values can be obtained from model 
(1) with Xt set to zero. In some cases, it may be appro-
priate to assume an ITS model with no slope change (i.e. 
β3 = 0 ) or with no level change (i.e. β2 = 0 ). The choice 
of appropriate model depends on the hypothesized inter-
vention effect, also known as the impact model. Specifi-
cally, the impact model expresses our prior assumption 
regarding how the intervention will affect the outcome of 
interest. In particular, a decision is required as to whether 
the change following the intervention will be gradual, 
include a level change, and follow the intervention imme-
diately or after a delay (termed a lag). Figure 1 presents 
three different impact model scenarios. These scenarios 
can be generalized to include also short-term effects or 
delayed effects. Finally, the regression model (1) can be 
generalized to include different types of outcomes (using 
a generalized linear model), accommodate a lagged inter-
vention effect, and control for seasonality and non-linear 
time trends (using seasonal terms and flexible spline 
functions) [5].

The current paper aims to propose a method to quan-
tify the effect size of a general ITS regression model for 
continuous and count outcomes, with or without sea-
sonal adjustment. We propose to quantify the effect 
size by comparing the model-based fitted values for the 
intervention period with their model-based counter-
factual values. The counterfactual values are the model 
predictions had the intervention not occurred, and so 
continue the existing trend based on the unexposed 
period. Two possible ways to quantify the effect size are 
presented, depending on whether the outcome is based 
on continuous data, in which case we use Cohen’s d as 
the effect size, or count data, in which case we use the 
RR. Based on this method, we develop a user-friendly 
R package. We provide a tutorial to use this package, 
demonstrate ITS analysis for both outcomes, and esti-
mate the effect size together with its corresponding 
95% CI and P-value. We demonstrate the use of the 
method and package to quantify the effect size of the 
association between the Covid-19 pandemic and all-
cause mortality rates based on national population-
based data.

(1)E(Yt | Xt , t) = β0 + β1 · t + β2 · Xt + β3 · (t − t
∗)Xt ,
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Results
Scenarios to quantify the effect size in ITS
This manuscript proposes to quantify the effect size by 
comparing the model-based fitted values for the inter-
vention period with their model-based counterfactual 
values. We first discuss the case of continuous out-
comes, and then discuss the case of count outcomes. 
In both cases, we focus on quantifying the effect size, 
where for continuous outcomes we are averaging stand-
ardized differences, and for count outcomes we are 
averaging risk ratios.

Effect size for continuous outcomes in ITS: Cohen’s d
For continuous outcomes, the effect size is defined by 
Cohen’s d, where Cohen’s d is calculated by dividing the 
overall mean difference for the intervention period with 
the pooled standard deviation [12]. To obtain the mean 
difference for each time point during the intervention 
period, we subtract the model prediction had the inter-
vention not occurred (the model-based counterfactual 
value) from the model-based fitted values. Next, we 
average the differences to obtain the overall mean dif-
ference for the entire intervention period. Finally, we 
divide the overall mean difference with the pooled 
standard deviation of the predictions. In Additional 
file 1: Appendix A of the online supplemental, we show 
that the standardized mean difference is 

d̂ =
β̂2+β̂3·

(
T−t∗

2

)

Sp
, where β̂2 and β̂3 are the estimated 

regression coefficients of model (1), Sp is the pooled 

standard deviation defined by Sp =

√
S21+S22

2
, and where 

S21 and S22 are the estimated variances of the fitted values 
and the predicted counterfactual values, respectively. 
For completeness, S21 and S22 are formally defined in 
Additional file 1: Appendix A.

The corresponding 95% confidence interval and P-value 
can be obtained by parametric bootstrap implemented in 
our R package (see Additional file 1: Appendix A).

Effect size for count outcomes in ITS: the relative risk
Assume now that we observe a time series of count out-
comes which we model using a Poisson regression model. 
Then the effect size is defined by the mean RR for the 
intervention period. Specifically, for each time-point dur-
ing the intervention period, we divide the model-based 
fitted value with its model-based counterfactual value to 
obtain the pointwise RR. We then average these RRs and 
obtain that the mean relative risk can be shown (Addi-
tional file 1: Appendix A) to be equal to

where β̂2 and β̂3 are the estimated regression coefficients 
of the Poisson regression model (detailed in Additional 
file  1: Appendix A). Denote by M̂D = β̂2 + β̂3 ·

(
T−t∗

2

)
 

the expression inside the exponent. Then the 95% confi-
dence interval (CI) corresponding to the RR is 
CI =

(
exp

(
M̂D − 1.96 · σ̂MD

)
, exp

(
M̂D + 1.96 · σ̂MD

))
 , 

and the corresponding P-value is P = 2
(
1−�

(
M̂D
σ̂MD

))
 , 

where 1.96 is the 97.5% percentile point of the standard 
normal distribution, �(·) is the cumulative distribution 
function of a standard normal random variable, and 
where σ̂MD is defined in Additional file 1: Appendix A.

R package
The R package `its2es’ is available at https://​github.​com/​
Yael-​Travis-​Lumer/​its2es. This package aims to provide 
user-friendly functions to fit an ITS regression model 
and to quantify the effect size. This is implemented for 

RR = exp

(
β̂2 + β̂3 ·

(
T − t∗

2

))
,

Fig. 1  Examples of impact models used in interrupted time series analysis: a level change; b slope change; c level and slope change

https://github.com/Yael-Travis-Lumer/its2es
https://github.com/Yael-Travis-Lumer/its2es
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continuous and count outcomes, with and without sea-
sonal adjustments. There are several methods to control 
for seasonal patterns. Here we use the commonly cho-
sen Fourier terms, that consist of pairs of sine and cosine 
functions of different frequencies [5].

The its2es R package includes two main functions; one 
function for continuous outcomes and one function for 
count outcomes; both functions can adjust for seasonal-
ity. The package also includes the dataset analyzed in the 
data analysis section. The function its_lm() fits model (1) 
to continuous outcomes. The function in its basic form 
reads as follows:

its_lm(data, form, time_name, intervention_start_ind, 
freq, seasonality, impact_model, counterfactual).

The eight arguments are described in Table  1. The 
regression model (1) can be generalized to include also 
additional covariates, such as seasonal terms and splines. 
This is also implemented in our its2es R package, that 
allows the user to define the regression formula and the 
corresponding covariates for the analysis using the form 
argument (Table 1).

The function returns a list with three elements: (i) the 
fitted regression model, (ii) the model summary, as a list, 
including also the estimated mean difference and Cohen’s 
d, together with the corresponding 95% CI and P-value, 
and (iii) the original data together with the model-based 
fitted values (and possibly also the model-based counter-
factual values, depending on the user’s choice).

The function its_poisson() fits a Poisson regression 
model to count outcomes. This function includes two 
additional arguments relevant only to Poisson regres-
sion: offset_name—the name of the offset term (if it 
exists) and over_dispersion—a logical indicating whether 
the data is over-dispersed (when the variance is greater 

than the mean), in which case a quasi-Poisson model is 
used instead. Like the its_lm() implementation above, 
the function returns a list with the same three elements, 
except that Cohen’s d is replaced by the RR.

The its2es R package contains a README file and a 
tutorial explaining how to load the data used in the data 
analysis section, fit ITS regression models to the data, 
obtain the relevant effect sizes, and plot the model pre-
dictions. The tutorial is available with the R package from 
https://​github.​com/​Yael-​Travis-​Lumer/​its2es.

Data analysis example
Here we use an ITS design to quantify the effect of expo-
sure to the Covid-19 pandemic on monthly all-cause 
mortality rates in Israel. The monthly number of deaths 
and the yearly population size were reported by the 
Israel CBS (Central Bureau of Statistics) [13] for males 
and females of different age groups. We used interpola-
tion to estimate the monthly population size from the 
yearly data. Hence, the joined data consists of the esti-
mated monthly population size, and the monthly number 
of deaths, for the period between January 2001 and May 
2021. The data is available with this paper as part of the 
its2es R package.

Covariates
The interval from January 2001 to February 2020 was 
classified as the pre-Covid-19 pandemic unexposed 
period. The first confirmed case of Covid-19 in Israel was 
on 27 February 2020, and the first lockdown started on 
14 March 2020. Hence, we classified the period exposed 
to the Covid-19 pandemic as starting from March 2020 
and until the end of the study on May 2021. The study 
covariates in our analysis were time (a monthly sequence 

Table 1  Description of the arguments in the function its_lm()

Argument name Description

Data The data frame corresponding to the supplied formula, existing of at least 2 variables: (1) the outcome, and (2) a vector of time 
points

Form A formula with the response on the left, followed by the ~ operator, and the covariates on the right, separated by + operators. 
The formula should not contain an offset term

Time_name A string giving the name of the time variable. The time variable may or may not be supplied as a covariate in the formula

Intervention_start_ind Numeric—a number between 1 and nrow(data)-1 stating the time point of the start of the intervention

Freq A positive integer describing the frequency of the time series

Seasonality A string specifying whether seasonality should be considered. Possible options include “none” corresponding to no seasonal 
adjustment, “full” corresponding to using freq-1 Fourier terms to model the seasonal component, and “significant” indicating 
whether only the significant Fourier terms should be considered in the seasonal adjustment. Default value is “none”

Impact_model A string specifying the assumed impact model. Possible options include “full” corresponding to a model including both a level 
change and a slope change, “level” corresponding to a model including just a level change, and “slope” corresponding to a 
model including just a slope change. Default value is “full”

Counterfactual Logical—indicating whether the model-based counterfactual values should also be returned as an additional column in the 
data. Default value is FALSE, in which case the counterfactual values are not returned

https://github.com/Yael-Travis-Lumer/its2es


Page 5 of 8Travis‑Lumer et al. Emerging Themes in Epidemiology            (2022) 19:9 	

from January 2001 to May 2021), exposure to the Covid-
19 pandemic (classified as unexposed to the Covid-19 
pandemic before March 2020 coded 0, and exposed from 
March 2020 to May 2021 coded 1), and the interaction 
between time and exposure to the Covid-19 pandemic 
period. Additional covariates include seasonal Fourier 
terms to model the seasonal factors, and an offset term 
(log of the monthly population size) to model event rates.

Analytic plan
To quantify the effect of Covid-19 pandemic on monthly 
all-cause mortality rates we modelled the monthly num-
ber of deaths (count) using a Poisson regression model. 
The Poisson regression model included the covariates 
time, exposure to the Covid-19 period, the interaction 
between the two, an offset term, and seasonal Fourier 
terms.

The robustness of the primary Poisson regression 
model was challenged in a series of seven sensitivity 
analyses addressing groups with different demographic 
characteristics. We conducted seven separate sensitiv-
ity analyses to examine effect size modification by sex 
and age differences known to influence mortality rates 
[14], and specifically by: sex across all age-groups, sex for 
persons aged over 60, and for all persons aged below 20, 
above 20 and below 60, and over 60.

Implementation in R
The implementation of this data analysis in R is detailed 
in Additional file 1: Appendix B of the online supplemen-
tal material.

Data analysis results
In the period unexposed to the Covid-19 pandemic (1 
January 2001 to 1 February 2020), the all-cause mortal-
ity rate decreased over time and, as observed by the 
counterfactual, was expected to continue decreasing had 
the Covid-19 pandemic not occurred (Fig.  2). In con-
trast to the counterfactual, the period exposed to the 
Covid-19 pandemic (1 March 2020 to 1 May 2021) was 
associated with an increased all-cause mortality rate, dis-
playing a disparity between the model predictions and 
the expected counterfactual values (Fig. 2).

The disparity between the model predictions and the 
expected counterfactual values is quantified by the effect 
size, where the effect size for count outcomes is meas-
ured by the RR. The exposed Covid-19 pandemic period 
showed a statistically significant (P < 0.05) increase in the 
RR of the number of deaths (RR = 1.11, 95% CI = 1.04, 
1.18) compared to the counterfactual. That is, there was a 
statistically significant excess mortality of about 11%.

Sensitivity analyses
Sensitivity analyses were undertaken to consider groups 
with potentially differential mortality risks based on their 
demographic characteristics (Table 2). The results of the 
primary analysis replicated in a series of sensitivity analy-
ses restricted to groups of males and females across all 
ages (Additional file 1: Figure S1), males and females aged 
over 60 (Additional file 1: Figure S2), and among persons 
aged between 20 and 60, and over 60 (Additional file 1: 
Figure S3). The Covid-19 pandemic had a null effect on 
the RR of mortality among children and persons aged 
below 20 (Table 2). As shorter pre-intervention intervals 
could have confounded the analysis, we also repeated the 
primary analysis using only part of the mortality data, 
keeping observations from January 2015 and onwards. 
We obtained a very similar effect size (Table 2, Additional 
file 1: Figure S4), which demonstrates that the effect size 
is robust and remains stable even when only using 5 years 
of historical data (instead of 20).

Discussion
The current study has demonstrated how to quantify 
the effect size of an intervention on outcomes using an 
ITS study design. Specifically, we considered the case of 
both continuous and count outcomes that are the two 
most common outcomes in ITS analysis, with or with-
out adjustment for seasonality. The current study is the 
first to offer a method and implementation to report 
effect sizes in ITS. We illustrated this method and imple-
mentation of the ITS regression model to compute the 

Fig. 2  The monthly all-cause mortality percent modeled using a 
Poisson regression with an offset, and seasonal adjustments. The 
counterfactual refers to the predicted values had no Covid-19 
occurred, and the fitted values are estimated based on the regression 
mode
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model-based fitted values and the predicted counterfac-
tual values and quantified the effect size of RR for all-
cause mortality due to Covid-19.

Our methodology is based on the concept of compar-
ing the ITS model-fitted values to the predicted counter-
factual values, thus enabling effect size estimation. The 
effect size, together with its CI and P-value, is based on 
the post-intervention level and slope changes, thereby 
extending the previous approach of reporting the regres-
sion coefficients. The R package, its2es, which includes 
easy-to-use functions that fit an ITS, and estimate the 
effect size, is available with this work. This package ena-
bles effect size estimation for both continuous and count 
outcomes, with or without seasonal adjustments.

We demonstrated our methodological approach on 
real-world time series data on all-cause mortality rates 
based on national population-based data from Israel 
spanning 20  years, including the Covid-19 pandemic 
exposed period. We found that the period exposed to 
the Covid-19 pandemic was associated with a statisti-
cally significant increase in the all-cause mortality rates 
in Israel. Generally, this result replicated restricting to 
different demographic groups and a shorter pre-inter-
vention interval of five rather than 20 years. Additionally, 
these results are consistent with previous studies [15, 16] 
which also found an increase of about 10–12% in all-cause 
mortality rates in Israel during the Covid-19 period, 
even though both used a different statistical model and 
other study covariates. That is, the results are robust to 
the chosen statistical model. The exact mechanism for 
the change in the all-cause mortality rate during the 
Covid-19 period is unknown. It may have changed owing 
to the virus, and/or other medical conditions that went 
untreated due to fear of going to a hospital. Here we try 
to capture all of the excess mortality by one measure only 
(the Covid-19 period); clearly, attributing the excess mor-
tality to each possible cause is more complicated and is 

beyond the scope of this paper and data. Finally, note that 
the decrease in the all-cause mortality rate observed dur-
ing the period unexposed to the Covid-19 pandemic can 
be explained by the increase in life expectancy in Israel, 
and by the growing number of younger families.

Limitations
First note that an ITS regression model assumes a linear 
relationship between the outcome and the time covariate 
(with possible seasonal fluctuations). However, in some 
cases, the relationship between the time covariate and 
the outcome may be non-linear, in which case flexible 
spline functions may be added to the regression model as 
additional covariates [5]. This can also be implemented 
in the its2es R package (see Additional file  1: Appendix 
B of the online supplemental material). An additional 
assumption of standard regression models is that the 
observations are independent. However, time series data 
is usually highly correlated. Fortunately, this correlation 
is usually explained by seasonality, which can be adjusted 
for in the ITS regression model. This assumption can be 
verified using residual autocorrelation and partial auto-
correlation plots.

Our approach to quantifying effect sizes in ITS uses 
the model-based predicted values and not the actual val-
ues. This is because it is impossible to observe the true 
counterfactual values in an ITS study design, as we can-
not observe what might have been had the intervention 
not occurred. Hence, our effect size can be considered 
an expected effect size. In Additional file  1: Appendix 
D of the online supplementary material we conduct a 
simulation study that shows that the model-based coun-
terfactual values are close to the true unobserved coun-
terfactual values. Moreover, given the current study 
design, causal inference is not possible. It is impossible to 
eliminate possible confounders, and the lack of a control 
group makes causal inference difficult. However, an ITS 

Table 2  Comparison of the Covid-19 regression coefficients, together with the RR, for all Poisson regression models

Model Covid-19 level change (95% CI) P value Covid-19 slope 
change (95% CI)

P value Covid-19 RR (95% CI) P value

Primary poisson 0.08 (−0.03, 0.19) 0.15 0.00 (−0.01, 0.02) 0.66 1.11 (1.04, 1.18) P < 0.001

Males 0.11 (0.00, 0.21) 0.06 0.00 (−0.01, 0.02) 0.65 1.13 (1.07, 1.21) P < 0.001

Females 0.05 (−0.06, 0.17) 0.35 0.00 (−0.01, 0.02) 0.68 1.08 (1.01, 1.15) 0.03

Males over 60 0.14 (0.03, 0.25) 0.01 0.00 (−0.01, 0.01) 0.84 1.16 (1.09, 1.23) P < 0.001

Females over 60 0.07 (−0.05, 0.18) 0.26 0.00 (−0.01, 0.02) 0.72 1.09 (1.02, 1.16) 0.01

Aged 0–19 −0.32 (−0.56, −0.10) 0.01 0.04 (0.01, 0.06) 0.01 0.92 (0.82, 1.04) 0.2

Aged 20–59 0.04 (−0.09, 0.17) 0.52 0.01 (−0.01, 0.02) 0.41 1.09 (1.01, 1.17) 0.02

Aged over 60 0.10 (−0.01, 0.21) 0.07 0.00 (−0.01, 0.01) 0.78 1.12 (1.05, 1.19) P < 0.001

Short pre-interven‑
tion interval

0.09 (−0.04, 0.22) 0.19 0.00 (−0.01, 0.02) 0.67 1.12 (1.02,1.22) 0.02
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is a strong quasi-experimental study design [17, 18] and 
is appropriate given that there is no ethical alternative, as 
is the case of all-cause mortality for Covid-19. Finally, our 
results on excess mortality rates in Israel generally repli-
cated among groups with differential mortality risks, and 
are consistent with previous studies on excess mortality 
in Israel following the Covid-19 pandemic [15, 16]. It is 
debatable whether the effect of Covid-19 on all-cause 
mortality extends to other nations. However, our method 
and implementation for effect sizes in ITS are not com-
promised by this limitation. Future study should consider 
implementing methods to quantify effect sizes for meta-
analysis in ITS.

Conclusions
The limitations of our study are offset by several 
strengths. Population-based study design, results con-
sistent with level and slope and readily understood 
outcome for policy makers. Reporting of effect sizes in 
ITS is desirable because effect sizes are readily under-
stood and capture an entire intervention effect in a 
single value. The estimator of the effect size is based 
on the changes in the level and slope of the regression 
coefficients and so extends the classical approach to ITS 
models. The current study is the first to offer a frame-
work to report effect sizes in a general ITS and includes 
an easy-to-use R package to fit an ITS and estimate 
the effect size. Also, for the first time, we used an ITS 
design to examine the effect of the Covid-19 pandemic 
on national population-based all-cause mortality rates, 
demonstrating that the period exposed to the Covid-19 
pandemic was associated with an 11% excess all-cause 
mortality in Israel.
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ITS: Interrupted time series; RR: Relative risk; CI: Confidence interval; CBS: 
Central Bureau of Statistics.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12982-​022-​00118-7.

Additional file 1: Appendix A. Quantifying the effect size. Appendix 
B. Data analysis example in R. Appendix C. Additional figures for the 
sensitivity analysis. Figure S1. Scatterplot and Regression Fitted Values 
for Males then Females. Figure S2. Scatterplot and Regression Fitted 
Values for Males Over 60 and Females Over 60. Figure S3. Scatterplot and 
Regression Fitted Values for Different Age Groups. Figure S4. Scatterplot 
and Regression Fitted Values for Short Pre-Intervention Period. Appendix 
D. Simulation Study. Figure S5. Boxplot of Mean Squared Error.

Acknowledgements
Not applicable.

Author contributions
YTL drafted the manuscript, implemented the analysis and wrote the R pack‑
age. SZL and YG gave critical manuscript feedback. YG designed the analytical 
strategy. SZL contributed to the study design and instigation. All authors read 
and approved the final manuscript.

Funding
This research did not receive any specific grant from funding agencies in the 
public, commercial, or not-for-profit sectors.

Availability of data and materials
Data are available in a public, open access repository. All data and code use 
for this article are available in an open access repository (https://​github.​com/​
Yael-​Travis-​Lumer/​its2es). This repository includes aggregated death counts by 
dates retrieved from the Israel Central Bureau of Statistics (CBS) form https://​
www.​cbs.​gov.​il/​he/​subje​cts/​Pages/%​D7%​AA%​D7%​9E%​D7%​95%​D7%​AA%​
D7%​94-%​D7%​95%​D7%​AA%​D7%​95%​D7%​97%​D7%​9C%​D7%​AA-%​D7%​97%​
D7%​99%​D7%​99%​D7%​9D.​aspx. The data are open to the public and passed 
CBS approval for access so that individual people cannot be identified. Hence 
the data and code are accessible for public use.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Faculty of Industrial Engineering and Management, Israel Institute of Technol‑
ogy, 3200003 Haifa, Israel. 2 School of Public Health, University of Haifa, Haifa, 
Israel. 

Received: 5 January 2022   Accepted: 25 October 2022

References
	1.	 Pirkis J, John A, Shin S, DelPozo-Banos M, Arya V, Analuisa-Aguilar P, et al. 

Suicide trends in the early months of the COVID-19 pandemic: an inter‑
rupted time-series analysis of preliminary data from 21 countries. Lancet 
Psychiatry. 2021;8(7):579–88.

	2.	 Mansfield KE, Mathur R, Tazare J, Henderson AD, Mulick AR, Carreira H, 
et al. Indirect acute effects of the COVID-19 pandemic on physical and 
mental health in the UK: a population-based study. Lancet Digit Health. 
2021;3(4):e217–30.

	3.	 Figueiredo A, Codina A, de Figueiredo DCM, Saez M, León A. Impact of 
lockdown on COVID-19 incidence and mortality in China: an interrupted 
time series study. Bull World Health Organ. 2020;001:NEJMoa2002032.

	4.	 Travis-Lumer Y, Kodesh A, Goldberg Y, Frangou S, Levine SZ. Attempted 
suicide rates before and during the Covid-19 pandemic: interrupted time 
series analysis of a nationally representative sample. Psychol Med. 2021. 
https://​doi.​org/​10.​1017/​S0033​29172​10043​84.

	5.	 Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series 
regression studies in environmental epidemiology. Int J Epidemiol. 
2013;42(4):1187–95.

	6.	 Bernal JL, Cummins S, Gasparrini A. Interrupted time series regression for 
the evaluation of public health interventions: a tutorial. Int J Epidemiol. 
2017;46(1):348–55.

	7.	 Bernal JL, Cummins S, Gasparrini A. Corrigendum to: interrupted time 
series regression for the evaluation of public health interventions: a tuto‑
rial. Int J Epidemiol. 2020;49(4):1414.

	8.	 McDowall D, McCleary R, Bartos BJ. Interrupted time series analysis. 
Oxford: Oxford University Press; 2019. p. 198.

https://doi.org/10.1186/s12982-022-00118-7
https://doi.org/10.1186/s12982-022-00118-7
https://github.com/Yael-Travis-Lumer/its2es
https://github.com/Yael-Travis-Lumer/its2es
https://www.cbs.gov.il/he/subjects/Pages/%D7%AA%D7%9E%D7%95%D7%AA%D7%94-%D7%95%D7%AA%D7%95%D7%97%D7%9C%D7%AA-%D7%97%D7%99%D7%99%D7%9D.aspx
https://www.cbs.gov.il/he/subjects/Pages/%D7%AA%D7%9E%D7%95%D7%AA%D7%94-%D7%95%D7%AA%D7%95%D7%97%D7%9C%D7%AA-%D7%97%D7%99%D7%99%D7%9D.aspx
https://www.cbs.gov.il/he/subjects/Pages/%D7%AA%D7%9E%D7%95%D7%AA%D7%94-%D7%95%D7%AA%D7%95%D7%97%D7%9C%D7%AA-%D7%97%D7%99%D7%99%D7%9D.aspx
https://www.cbs.gov.il/he/subjects/Pages/%D7%AA%D7%9E%D7%95%D7%AA%D7%94-%D7%95%D7%AA%D7%95%D7%97%D7%9C%D7%AA-%D7%97%D7%99%D7%99%D7%9D.aspx
https://doi.org/10.1017/S0033291721004384


Page 8 of 8Travis‑Lumer et al. Emerging Themes in Epidemiology            (2022) 19:9 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	9.	 Wasserstein RL, Lazar NA. The ASA statement on p-values: context, pro‑
cess, and purpose. Am Stat. 2016;70(2):129–33.

	10.	 Jandoc R, Burden AM, Mamdani M, Lévesque LE, Cadarette SM. 
Interrupted time series analysis in drug utilization research is increas‑
ing: systematic review and recommendations. J Clin Epidemiol. 
2015;68(8):950–6.

	11.	 Hudson J, Fielding S, Ramsay CR. Methodology and reporting character‑
istics of studies using interrupted time series design in healthcare. BMC 
Med Res Methodol. 2019;19(1):137.

	12.	 Cohen J. Statistical power analysis for the behavioral sciences, rev. Hills‑
dale, NJ, US: Lawrence Erlbaum Associates, Inc; 1977. p. xv474.

	13.	 Mortality and Life Expectancy. 2021. https://​www.​cbs.​gov.​il/​he/​subje​cts/​
Pages/%​D7%​AA%​D7%​9E%​D7%​95%​D7%​AA%​D7%​94-%​D7%​95%​D7%​
AA%​D7%​95%​D7%​97%​D7%​9C%​D7%​AA-%​D7%​97%​D7%​99%​D7%​99%​
D7%​9D.​aspx. Accessed 7 Oct 2021

	14.	 Ahrenfeldt LJ, Otavova M, Christensen K, Lindahl-Jacobsen R. Sex and 
age differences in COVID-19 mortality in Europe. Wien Klin Wochenschr. 
2021;133(7–8):393–8.

	15.	 Peretz C, Rotem N, Keinan-Boker L, Furshpan A, Green M, Bitan M, 
Steinberg DM. Excess mortality in Israel associated with COVID-19 in 
2020–2021 by age group and with estimates based on daily mortality 
patterns in 2000–2019. Int J Epidemiol. 2022;51(3):727–36. https://​doi.​
org/​10.​1093/​ije/​dyac0​47. PMID: 35356971; PMCID: PMC8992356.

	16.	 Karlinsky A, Kobak D. Tracking excess mortality across countries dur‑
ing the COVID-19 pandemic with the World Mortality Dataset. eLife. 
2021;10:e69336.

	17.	 Grosz MP, Rohrer JM, Thoemmes F. The taboo against explicit causal 
inference in nonexperimental psychology. Perspect Psychol Sci. 
2020;15:1243–55.

	18.	 Shadish WR, Cook TD, Campbell DT. Experimental and quasi-experimental 
designs for generalized causal inference. Boston, MA, US: Houghton, 
Mifflin and Company; 2002. p. xxi623.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://www.cbs.gov.il/he/subjects/Pages/%D7%AA%D7%9E%D7%95%D7%AA%D7%94-%D7%95%D7%AA%D7%95%D7%97%D7%9C%D7%AA-%D7%97%D7%99%D7%99%D7%9D.aspx
https://www.cbs.gov.il/he/subjects/Pages/%D7%AA%D7%9E%D7%95%D7%AA%D7%94-%D7%95%D7%AA%D7%95%D7%97%D7%9C%D7%AA-%D7%97%D7%99%D7%99%D7%9D.aspx
https://www.cbs.gov.il/he/subjects/Pages/%D7%AA%D7%9E%D7%95%D7%AA%D7%94-%D7%95%D7%AA%D7%95%D7%97%D7%9C%D7%AA-%D7%97%D7%99%D7%99%D7%9D.aspx
https://www.cbs.gov.il/he/subjects/Pages/%D7%AA%D7%9E%D7%95%D7%AA%D7%94-%D7%95%D7%AA%D7%95%D7%97%D7%9C%D7%AA-%D7%97%D7%99%D7%99%D7%9D.aspx
https://doi.org/10.1093/ije/dyac047
https://doi.org/10.1093/ije/dyac047

	Effect size quantification for interrupted time series analysis: implementation in R and analysis for Covid-19 research
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Interrupted time series analysis

	Results
	Scenarios to quantify the effect size in ITS
	Effect size for continuous outcomes in ITS: Cohen’s d
	Effect size for count outcomes in ITS: the relative risk
	R package
	Data analysis example
	Covariates
	Analytic plan
	Implementation in R
	Data analysis results
	Sensitivity analyses

	Discussion
	Limitations

	Conclusions
	Acknowledgements
	References




