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ANALYTIC PERSPECTIVE

A simulation study of regression approaches 
for estimating risk ratios in the presence 
of multiple confounders
Kanako Fuyama1 , Yasuhiro Hagiwara2*  and Yutaka Matsuyama2 

Abstract 

Background: Risk ratio is a popular effect measure in epidemiological research. Although previous research has sug-
gested that logistic regression may provide biased odds ratio estimates when the number of events is small and there 
are multiple confounders, the performance of risk ratio estimation has yet to be examined in the presence of multiple 
confounders.

Methods: We conducted a simulation study to evaluate the statistical performance of three regression approaches 
for estimating risk ratios: (1) risk ratio interpretation of logistic regression coefficients, (2) modified Poisson regression, 
and (3) regression standardization using logistic regression. We simulated 270 scenarios with systematically varied 
sample size, the number of binary confounders, exposure proportion, risk ratio, and outcome proportion. Perfor-
mance evaluation was based on convergence proportion, bias, standard error estimation, and confidence interval 
coverage.

Results: With a sample size of 2500 and an outcome proportion of 1%, both logistic regression and modified Poisson 
regression at times failed to converge, and the three approaches were comparably biased. As the outcome proportion 
or sample size increased, modified Poisson regression and regression standardization yielded unbiased risk ratio esti-
mates with appropriate confidence intervals irrespective of the number of confounders. The risk ratio interpretation of 
logistic regression coefficients, by contrast, became substantially biased as the outcome proportion increased.

Conclusions: Regression approaches for estimating risk ratios should be cautiously used when the number of events 
is small. With an adequate number of events, risk ratios are validly estimated by modified Poisson regression and 
regression standardization, irrespective of the number of confounders.

Keywords: Risk ratio, Logistic regression, Modified Poisson regression, Standardization, Confounding, Simulation 
study
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Background
A cohort study is a type of observational study that 
aids in evaluating associations between exposures and 
outcomes. In such studies, regression analysis is fre-
quently used to estimate the effect of exposure adjusted 

for multiple confounders. For binary outcomes, logis-
tic regression has been widely employed to estimate 
adjusted odds ratios. Because of interpretation difficul-
ties, odds ratios are often interpreted as approximates 
of risk ratios under the assumption of rare events [1]. 
Although the odds ratio approximates the risk ratio if 
the outcome risk is sufficiently low for all study subjects, 
when some of the subjects have risk higher than 10%, the 
odds ratio is known to be distorted away from the null 
value compared to the risk ratio [2, 3].
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Among the generalized linear models, log-binomial 
regression models can be used to directly estimate adjusted 
risk ratios for both common and rare events [4]. However, 
log-binomial regression using the standard maximum like-
lihood estimation method often fails to converge [5, 6]. To 
solve this problem, modified Poisson regression has been 
proposed [7] and has been applied to estimate adjusted 
risk ratios in numerous epidemiologic studies (e.g., [8–12]). 
Moreover, regression standardization using logistic regres-
sion could be another possible workaround [13, 14].

In terms of confounding adjustment using regression 
analysis, the number of confounders that can be included 
in regression models has been investigated in relation 
to the number of events or subjects [15–19]. Although 
a simple criterion of ten or more events per variable 
is well known for logistic regression [20, 21], other fac-
tors such as the number of events and confounders per 
se and the effect sizes are reported to influence the valid 
estimation of adjusted odds ratios [17–19]. On the other 
hand, the statistical performance of risk ratio estimation 
has not been well examined in the presence of multiple 
confounders.

This study sought to evaluate statistical performance in 
the presence of multiple confounders of the three regres-
sion approaches for estimating risk ratios: (1) risk ratio 
interpretation of logistic regression coefficients, (2) mod-
ified Poisson regression, and (3) regression standardiza-
tion using logistic regression. After briefly summarizing 
approaches for estimating risk ratios, we evaluate the 
statistical performance of the three approaches by means 
of simulation. We then discuss the interpretation of the 
simulation results and draw conclusions about regression 
approaches for estimating risk ratios in the presence of 
multiple confounders.

Methods
Regression approaches for estimating risk ratios
We consider a cohort study of n subjects involving binary 
outcome Yi (1 for event and 0 for no event), binary expo-
sure Ai (1 for exposure and 0 for no exposure), and col-
umn vector of confounders Li for each subject i. Logistic 
regression is commonly used to control for confound-
ers and assess the influence of exposure for this type of 
data. The logistic regression model with first-order terms 
of exposure and confounders is expressed as follows (we 
assume that the regression models are correctly specified 
below unless otherwise noted):

where α =
(
α0,α1,α

T
2

)T is the unknown parameter vec-
tor, and Xi =

(
1,Ai, L

T
i

)T . Under this model, the expo-
nentiated exposure coefficient, exp(α1) , indicates the 

log
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2 Li = X
T
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adjusted odds ratio, which is often interpreted as the risk 
ratio under the assumption of rare events [1]. Assuming 
that Yi follows a binomial distribution given Ai and Li, the 
parameter α is estimated using the standard maximum 
likelihood estimation method.

To estimate the risk ratio directly, the log-binomial 
regression model, the linear model of the log-trans-
formed mean, may be straightforward [4]:

where β =
(
β0,β1,β

T
2

)T is the unknown parameter vec-
tor. Under this model, the exponentiated exposure coef-
ficient, exp(β1) , can be interpreted as the adjusted risk 
ratio without the assumption of rare events. Assuming 
that Yi follows a binomial distribution given Ai and Li, the 
standard maximum likelihood estimation method yields 
a consistent and asymptotically efficient estimator for β. 
However, in real-world applications, the iterative pro-
cedures for log-binomial regression models often fail to 
converge [5, 6] and were thus excluded from our simula-
tion experiments.

One proposed solution, modified Poisson regression, 
estimates parameter β of the log-binomial regression 
model by solving the following estimating equations for 
β [7]:

The estimating equations of the modified Poisson regres-
sion are equivalent to the score equations of the Pois-
son regression. The estimator for the standard error is 
obtained from the robust sandwich variance estimator:

The estimator obtained from the estimating equation 
is consistent and asymptotically normal, albeit with-
out asymptotic efficiency. For rare events, the modified 
Poisson regression estimators approximate maximum 
likelihood estimators of log-binomial and logistic regres-
sion, and the efficiency loss should be small [22]. Previ-
ous simulation results suggest that the modified Poisson 
regression estimates are generally close to the maximum 
likelihood counterparts [7, 23]. The modified Poisson 
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regression is also reported to be less sensitive to outliers 
[24] and less biased when the mean structure is misspeci-
fied [25]. Potential predicted probabilities above 1 [26, 27] 
are not fatal if the analysis aims to estimate the adjusted 
risk ratio and not the individual predicted probabilities.

Another approach for estimating the risk ratio is 
regression standardization using logistic regression [13, 
14]. Instead of directly interpreting the logistic regression 
coefficients, the risk ratio among the entire population 
is calculated based on predicted probabilities estimated 
from logistic regression, which are constrained to fall 
between 0 and 1. Using maximum likelihood estimates 
of logistic regression α̂ , the predicted risk if subject i was 
exposed is given by

where Xi1 =
(
1, 1, LT

i

)T , and the predicted risk if subject 
i was not exposed is given by

where Xi0 =
(
1, 0, LT

i

)T . The risk ratio for exposure is 
computed by taking the ratio of these risks averaged over 
the population:

The estimator for the standard error of logR̂R is easily 
obtained using the delta method [28]:

 where

and V̂ar
(
α̂
)
 is the estimated variance-covariance matrix 

of logistic regression.

Simulation methods
We conducted a simulation study to evaluate statistical 
performance in the presence of multiple confounders of 
three approaches for estimating risk ratios: (1) risk ratio 
interpretation of logistic regression coefficients, (2) mod-
ified Poisson regression, and (3) regression standardiza-
tion using logistic regression. We simulated 270 scenarios 
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(10,000 iterations) with settings varying systematically on 
sample size (2500, 5000, and 10,000), number of binary 
confounders (5, 10, and 20), exposure proportion (20% 
and 50%), risk ratio for exposure (1, 1.3, and 2), and out-
come proportion (1%, 2%, 4%, 8%, and 16%). The simula-
tion was carried out using SAS version 9.4 (SAS Institute, 
Inc.).

Data generation
We generated binary confounders, exposure, and out-
come for each of the 2500, 5000, or 10,000 subjects. To 
create binary confounders, 5-, 10-, or 20-dimensional 
Gaussian variables with mean 0, variance 1, and pairwise 
correlations 0.33 were discretized into 0 and 1 at prede-
fined points (Additional file  1: Table  S1). The exposure 
was generated from a logistic regression model with first-
order terms of confounders so that the specified exposure 
proportion (20% or 50%) was achieved on average (Addi-
tional file 1: Table S2). The outcome was generated from 
a log-binomial regression model with first-order terms of 
exposure and confounders using three different risk ratios 
for exposure (1, 1.3, or 2). Confounder-outcome associa-
tions were weakened for increased confounders so that 
the maximum possible individual risk did not exceed 1 at 
any number of confounders (Additional file 1: Table S3). 
We also conducted additional simulation experiments 
keeping the same moderate confounder-outcome asso-
ciations regardless of the number of confounders. The 
parameter settings and the results of the additional simu-
lation are provided in Additional file 2. The intercept was 
adjusted so that the specified outcome proportion (1%, 
2%, 4%, 8%, or 16%) was achieved on average.

Although in some previous studies of logistic regres-
sion, the number of events was fixed across data sets 
assuming retrospective samplings such as in a case-con-
trol study [17, 19], we generated outcomes so that the 
specified proportion would be achieved only on aver-
age assuming prospective samplings such as in a cohort 
study. The expected number of events and events per 
confounder can be calculated using the sample size, 
outcome proportion, and the number of confounders 
(Table 1).

Analytical approaches
For each data set, we obtained the point estimate, stand-
ard error, and 95% Wald confidence interval of the log 
risk ratio for exposure from the three approaches. We 
performed logistic and modified Poisson regression 
with first-order terms of exposure and all confounders 
using the SAS GENMOD procedure. Note that the logis-
tic regression misspecified the mean structure, and the 
degree of misspecification was larger with higher out-
come proportions as more subjects had relatively high 
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risks (Additional file  1: Fig. S1). We left the default set-
tings unchanged for the optimization algorithm, start-
ing values, and convergence criteria. If the algorithm for 
logistic regression was deemed to have converged based 
on criteria stated below, the results for the regression 
standardization were computed using the SAS program 
written by the authors.

Performance measures
For each scenario, we summarized the results in terms 
of convergence proportion, bias, Monte Carlo standard 
error, mean estimated standard error, and 95% confi-
dence interval coverage for the log risk ratio for exposure. 
Because the software may falsely report convergence, giv-
ing invalid parameter estimates [29], the convergence of 
logistic and modified Poisson regression was evaluated 
based on the estimated standard errors of coefficients 
instead of the procedure’s reports. If the estimated stand-
ard error of any coefficient was missing, 0, or above 1000, 
the algorithm was deemed not to have converged. Results 
from the converged data sets were used to compute the 
following performance measures of the three approaches. 
To provide an intuitive understanding of bias, the mean 
estimated log risk ratio was transformed back to a linear 
scale. The Monte Carlo standard error was calculated as 
the standard deviation of the estimated log risk ratios. 
The mean estimated standard error was calculated as 
the average of the standard error estimates of the log risk 

ratio. The 95% confidence interval coverage was calcu-
lated as the proportion of estimated confidence intervals 
covering the true value.

Results

Convergence proportion
Nonconvergence mainly occurred when the sample size 
was 2500 and the outcome proportion was 1% (Addi-
tional file  1: Fig. S2). Under such scenarios, nonconver-
gence occurred for up to 2.3% of the data sets without 
identifiable trends associated with other factors such 
as the number of confounders, effect size, or exposure 
proportion. The convergence proportion and converged 
data sets were identical for logistic and modified Poisson 
regression. All data sets converged when the sample size 
was 2500 and the outcome proportion was higher than 
2%, when the sample size was 5000 and the outcome 
proportion was higher than 1%, and when the sample 
size was 10,000. In the additional experiments, noncon-
vergence was more frequent with increased confounders 
(Additional file 2: Fig. S4).

Bias
Figure 1 shows the results of biases for each scenario. In 
scenarios wherein true risk ratio was 1 (top), the direc-
tion and magnitude of the biases were comparable 
among the three approaches. When the outcome pro-
portion was 1%, the three approaches underestimated 
the risk ratio with an exposure proportion of 20%. As the 

Table 1 The expected number of events and the expected number of events per confounder

EPC events per confounder

Sample size Outcome proportion 5 confounders 10 confounders 20 confounders

Events EPC Events EPC Events EPC

2500 1% 25 5 25 2.5 25 1.25

2% 50 10 50 5 50 2.5

4% 100 20 100 10 100 5

8% 200 40 200 20 200 10

16% 400 80 400 40 400 20

5000 1% 50 10 50 5 50 2.5

2% 100 20 100 10 100 5

4% 200 40 200 20 200 10

8% 400 80 400 40 400 20

16% 800 160 800 80 800 40

10,000 1% 100 20 100 10 100 5

2% 200 40 200 20 200 10

4% 400 80 400 40 400 20

8% 800 160 800 80 800 40

16% 1600 320 1600 160 1600 80
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Fig. 1 Mean estimated log risk ratio transformed back to linear scale. a risk ratio 1; b risk ratio 1.3; c risk ratio 2. LO logistic regression, MP modified 
Poisson regression, RS regression standardization
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outcome proportion increased, the biases of the three 
approaches decreased. In scenarios wherein true risk 
ratio was 1.3 (middle) or 2 (bottom), the biases of the 
logistic regression coefficients showed a different trend 
compared to the others. With an exposure proportion of 
20%, the three approaches underestimated the risk ratio 
when the outcome proportion was 1%. The largest bias 
amounted to approximately 25% of the true log risk ratio 
when the sample size was 2500. As the outcome propor-
tion increased, the biases of the modified Poisson regres-
sion and regression standardization decreased, whereas 
overestimation biases were observed for logistic regres-
sion coefficients. With an exposure proportion of 50%, 
the three approaches overestimated the risk ratio when 
the outcome proportion was 1%. As the outcome propor-
tion increased, the biases of the modified Poisson regres-
sion and regression standardization decreased, whereas 
the overestimation biases of logistic regression coeffi-
cients further increased. The number of confounders did 
not markedly affect the magnitude of bias. Although the 
biases associated with low outcome proportions were 
mitigated by the increased sample size, the biases of 
logistic regression coefficients associated with high out-
come proportions were not. The results of biases were 
similar in the additional experiments (Additional file  2: 
Fig. S5).

Standard error
Figure 2 shows the results of the Monte Carlo standard 
error for each scenario. When the sample size was 2500 
and the outcome proportion was lower than 4%, and 
when the sample size was 5000 and the outcome propor-
tion was lower than 2%, the mean estimated standard 
error was slightly smaller than the Monte Carlo standard 
error for the three approaches, indicating that the three 
approaches underestimated the standard error (Fig.  3, 
Additional file  1: Fig. S3). When the outcome propor-
tion was 2% or lower, the Monte Carlo standard error and 
mean estimated standard error were comparable among 
the three approaches. In contrast, when the outcome 
proportion was higher than 2%, those from the logis-
tic regression coefficients were slightly larger than those 
from the other two approaches. The results of the Monte 
Carlo standard error, mean estimated standard error, 
and disparity thereof were associated with the expected 
number of events (Table 1). The results on standard error 
were similar in the additional experiments (Additional 
file 2: Figs. S6–S8).

Coverage proportion
Figure 4 shows the results of 95% Wald confidence inter-
val coverage for each scenario. In scenarios wherein 
true risk ratio was 1 (top), the coverage proportion was 

comparable among the three approaches. When the out-
come proportion was 1%, overcoverage occurred for the 
three approaches, notably with a sample size of 2500 and 
an exposure proportion of 20%. As the outcome propor-
tion increased, the coverage proportion became closer 
to the nominal level. In scenarios wherein true risk ratio 
was 1.3 (middle) or 2 (bottom), the coverage proportion 
of logistic regression coefficients showed a different trend 
compared to the others. When the outcome proportion 
was 1%, overcoverage occurred for the three approaches, 
notably with a sample size of 2500, an exposure pro-
portion of 20%, and a risk ratio of 1.3. As the outcome 
proportion increased, the coverage proportion of the 
modified Poisson regression and regression standardiza-
tion became closer to the nominal level, whereas under-
coverage occurred for logistic regression coefficients. 
The number of confounders did not markedly affect the 
performance of confidence intervals. With other factors 
fixed, undercoverage of logistic regression associated 
with high outcome proportions was more severe with 
larger samples. The results of confidence interval cover-
age were similar in the additional experiments (Addi-
tional file 2: Fig. S9).

Discussion
In this study, we evaluated the statistical performance of 
the regression approaches for estimating risk ratios in the 
presence of multiple confounders. In summary, with a 
sample size of 2500 and an outcome proportion of 1%, the 
three approaches were equally biased and yielded inaccu-
rate confidence intervals. As the outcome proportion or 
sample size increased, modified Poisson regression and 
regression standardization yielded unbiased estimates 
with appropriate confidence intervals irrespective of the 
number of confounders. The risk ratio interpretation of 
logistic regression coefficients was substantially biased 
when the outcome proportion was relatively high and the 
true risk ratio was not 1. These results of the main simu-
lation remained consistent in the additional simulation 
with different parameter settings for the outcome genera-
tion models.

In our simulation, nonconvergence occurred in iden-
tical data sets for logistic regression and modified Pois-
son regression. Logistic and Poisson regression may fail 
to converge due to separation or multicollinearity [30, 
31]. Because we included multiple binary confounders 
in the models, quasi-complete separation was consid-
ered the dominant cause of nonconvergence. Although 
modified Poisson regression has been appreciated for 
being less prone to convergence issues compared to 
the log-binomial regression [7], it failed to converge for 
data sets wherein logistic regression failed to converge. 
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Fig. 2 Monte Carlo standard error (MCSE). a risk ratio 1; b risk ratio 1.3; c risk ratio 2. LO logistic regression, MP modified Poisson regression, RS 
regression standardization
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Fig. 3 Mean estimated standard error (MESE) minus Monte Carlo standard error (MCSE). a risk ratio 1; b risk ratio 1.3; c risk ratio 2. LO logistic 
regression, MP modified Poisson regression, RS regression standardization
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Fig. 4 Coverage probability of the 95% Wald confidence interval. a risk ratio 1; b risk ratio 1.3; c risk ratio 2. LO logistic regression, MP modified 
Poisson regression, RS regression standardization



Page 10 of 12Fuyama et al. Emerging Themes in Epidemiology           (2021) 18:18 

In real-world applications, neither logistic nor modified 
Poisson regression is exempt from convergence issues.

When the outcome proportion was 1%, the three 
approaches were comparably biased (both upward and 
downward). It is well known that logistic regression may 
yield biased odds ratio estimates when the number of 
events is small and there are multiple confounders [15–
19]. In such situations, one should also be careful with 
using modified Poisson regression and regression stand-
ardization. In our simulation, the magnitude of bias of 
these two approaches was associated with the expected 
number of events rather than the expected number of 
events per confounder; the increase in confounders for a 
fixed expected number of events did not markedly affect 
the magnitude of bias.

As the expected number of events increased cor-
responding to the increase in sample size or outcome 
proportion, modified Poisson regression and regression 
standardization yielded unbiased risk ratio estimates 
regardless of the number of confounders. In contrast, 
as the outcome proportion increased to 4% or higher, 
logistic regression coefficients were substantially upward 
biased except with true risk ratio 1. This is probably 
because the odds ratio no longer approximated the risk 
ratio. In our simulation, with a true risk ratio of 2 and an 
outcome proportion of 16%, the mean estimated logistic 
regression coefficients corresponded to an odds ratio of 
approximately 2.5, which may lead to an exaggeration of 
the exposure effect if interpreted as the risk ratio.

The three approaches underestimated the standard 
error when fewer than 100 events were expected (i.e., 
when the sample size was 2500 and the outcome propor-
tion was lower than 4%, and when the sample size was 
5000 and the outcome proportion was lower than 2%). 
Some previous simulation studies indicate that variance 
or standard error estimates of logistic regression may be 
unreliable when the number of events is small overall or 
relative to the number of confounders [15, 16]. Our simu-
lation results suggest that similar problems in standard 
error estimation may arise from the different methods 
employed in our simulation. Several candidate methods 
are available for enhancing the performance of standard 
errors and the resulting confidence intervals. In modi-
fied Poisson regression, sandwich standard errors with 
small sample correction may be explored, as has been 
considered for linear regression [32] and modified least-
squares regression for risk difference estimation [33, 34]. 
In regression standardization, the bootstrap method may 
be preferred for small sample sizes if the computational 
time is not critical [13, 35].

The Monte Carlo standard error and mean estimated 
standard error of the modified Poisson regression did not 
exceed those of the logistic regression. They were slightly 

larger for logistic regression with high outcome propor-
tions, probably because of the larger point estimates. In 
theory, unlike maximum likelihood estimators, modi-
fied Poisson regression estimators are not asymptotically 
efficient. Nonetheless, our results suggest that efficiency 
loss in modified Poisson regression may be negligible 
for cohort studies involving rare outcomes; in such situ-
ations, the risk ratio interpretation of logistic regression 
coefficients will also hold good, however.

The three approaches yielded conservative 95% Wald 
confidence intervals when the expected number of events 
was 25 (i.e., when the outcome proportion was 1% and 
the sample size was 2500). Since this overcoverage was 
apparent concurrently with biased point estimates and 
underestimated standard errors, the overcoverage may 
have been caused by the non-normality of the estimated 
log risk ratios. These phenomena are in good agreement 
with a previous simulation study of logistic regression 
involving multiple binary confounders where coverage 
proportions were approximately 97% when 30 or fewer 
events were generated, often concurrently with biased 
point estimates [17]. Some caution is needed in interpret-
ing the confidence intervals of the three approaches when 
the number of events is small; however, statistically sig-
nificant results could be reliable because of conservatism.

As the expected number of events increased cor-
responding to the increase in sample size or outcome 
proportion, modified Poisson regression and regression 
standardization yielded appropriate confidence intervals 
regardless of the number of confounders. In contrast, 
as the outcome proportion increased to 8% or higher, 
undercoverage occurred for logistic regression coeffi-
cients except with true risk ratio 1, most likely because 
of the discrepancy between odds ratios and risk ratios. 
This undercoverage was more extreme with larger sample 
sizes, probably because the large sample size decreased 
the variability of the point estimates and the length of 
confidence intervals.

In our simulation, the three approaches were compa-
rably biased and yielded inaccurate confidence intervals 
when only 25 events were expected. In such scenarios, 
the expected number of events per confounder varied 
between 1.25, 2.5, and 5. As long as a sufficient number 
of events were expected, modified Poisson regression and 
regression standardization yielded unbiased risk ratio 
estimates with appropriate confidence intervals regard-
less of the number of confounders. Specifically, when 50 
or more events were expected, modified Poisson regres-
sion and regression standardization did not provide a 
problematic bias of over 15% of the true log risk ratio [17] 
in any of the scenarios with a risk ratio of 1.3 or 2, and the 
coverage of the two approaches fell within the range of 
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94–96% in all scenarios. This was the case even when the 
expected number of events per confounder was 2.5.

For logistic regression, the existing criteria and some 
previous simulation results emphasize the importance of 
the number of events per variable or confounder [15–19]. 
In contrast, according to our simulation, the performance 
of the modified Poisson regression and regression stand-
ardization were associated with the expected number of 
events per se. This result is in line with some previous 
simulation studies on logistic regression [17, 19]. Because 
simulation results for rare-outcome situations are greatly 
affected by convergence issues [36], further simulations 
including continuous confounders may help explore such 
criteria.

The risk ratio interpretation of logistic regression coef-
ficients may be acceptable, assuming an adequate num-
ber of events, when the outcome proportion is low or the 
exposure effect is close to null. Nevertheless, the other 
two approaches performed equally well in such situa-
tions. Our results showed no relative merits in interpret-
ing logistic regression coefficients as risk ratios. Of the 
other two approaches, modified Poisson regression may 
be simple and easy to implement, although the choice 
should ideally be based on the true mean structure 
expected from prior knowledge [37].

For odds ratio estimation using logistic regression, 
some authors have encouraged the use of propensity 
score analyses [16] and shrinkage techniques [19] in rare-
outcome situations. These methods may also be help-
ful for the estimation of risk ratios when the number of 
events is small. Regression adjustment for the propen-
sity score can be applied to modified Poisson regression. 
Shrinkage techniques may mitigate the sparse data bias 
of the predicted probabilities in regression standardiza-
tion using logistic regression.

Our simulation study has some limitations. First, we 
generated outcomes from log-binomial regression mod-
els, assuming common risk ratios for all subjects. This 
means not only that the modified Poisson regression 
naturally outperforms the direct interpretation of logis-
tic regression coefficients but also that our simulation 
procedures may have provided an edge to modified Pois-
son regression over regression standardization. Further 
research may help compare these approaches under dif-
ferent settings. Second, the distribution of individual 
risks and the overall outcome proportion will impact the 
discrepancy between odds ratios and risk ratios. Differ-
ent distributions of individual risks may produce differ-
ent results.

Conclusions
In this study, we evaluated the statistical performance of 
the three regression approaches for estimating risk ratios 
in the presence of multiple confounders. Regression 
approaches for estimating risk ratios should be cautiously 
used when the number of events is small. With an ade-
quate number of events, risk ratios are validly estimated 
by modified Poisson regression and regression standardi-
zation, irrespective of the number of confounders.
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