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Abstract 

Background: Cluster surveys provide rapid but representative estimates of key nutrition indicators in humanitarian 
crises. For these surveys, an accurate estimate of the design effect is critical to calculate a sample size that achieves 
adequate precision with the minimum number of sampling units. This paper describes the variability in design effect 
for three key nutrition indicators measured in small-scale surveys and models the association of design effect with 
parameters hypothesized to explain this variability.

Methods: 380 small-scale surveys from 28 countries conducted between 2006 and 2013 were analyzed. We calcu-
lated prevalence and design effect of wasting, underweight, and stunting for each survey as well as standard devia-
tions of the underlying continuous Z-score distribution. Mean cluster size, survey location and year were recorded. To 
describe design effects, median and interquartile ranges were examined. Generalized linear regression models were 
run to identify potential predictors of design effect.

Results: Median design effect was under 2.00 for all three indicators; for wasting, the median was 1.35, the lowest 
among the indicators. Multivariable linear regression models suggest significant, positive associations of design effect 
and mean cluster size for all three indicators, and with prevalence of wasting and underweight, but not stunting. 
Standard deviation was positively associated with design effect for wasting but negatively associated for stunting. 
Survey region was significant in all three models.

Conclusions: This study supports the current field survey guidance recommending the use of 1.5 as a benchmark 
for design effect of wasting, but suggests this value may not be large enough for surveys with a primary objective 
of measuring stunting or underweight. The strong relationship between design effect and region in the models 
underscores the continued need to consider country- and locality-specific estimates when designing surveys. These 
models also provide empirical evidence of a positive relationship between design effect and both mean cluster size 
and prevalence, and introduces standard deviation of the underlying continuous variable (Z-scores) as a previously 
unexplored factor significantly associated with design effect. The magnitude and directionality of this association 
differed by indicator, underscoring the need for further investigation into the relationship between standard deviation 
and design effect.
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Background
In humanitarian emergencies, information on nutritional 
status of the affected population, particularly children 

aged 6–59  months, is frequently used to determine the 
severity of the situation and to monitor progress of key 
life-saving interventions. Cross-sectional surveys are 
commonly used in these settings to obtain representa-
tive estimates of wasting [1]. While the accepted gold 
standard of cross-sectional surveys is the simple or sys-
tematic random sampling method (SRS), in humanitarian 
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emergencies, where up-to-date lists may not exist and 
populations are dispersed, SRS is often too costly or 
logistically unfeasible [2]. Therefore, in humanitarian 
settings, small scale cluster surveys are more commonly 
undertaken. These surveys are designed with the emer-
gency context and rapid need for information in mind. 
Likewise, geographic scope is small, usually a group of 
refugee camps, or an affected district or livelihood zone, 
which allows for a simple two-stage design. Samples are 
designed to be approximately self-weighted to simplify 
analysis, and sample size is usually within a range of 300–
900 children aged 6–59  months in order to reduce cost 
and time in the field.

Cluster sampling has been accepted as a valid alterna-
tive to SRS in these and other settings, and is also rou-
tinely used in large-scale demographic surveys including 
UNICEF’s Multiple Indicator Cluster Survey (MICS) 
and USAID’s Demographic and Health Survey (DHS) 
[3, 4]. To account for the loss of precision resulting from 
increased within-cluster homogeneity in the sample due 
to the complex sampling design, researchers adjust the 
required sample size using a design effect, a ratio of the 
variance under the complex design to the variance under 
SRS assuming equal cluster size [2, 5, 6].

Design effect (DEFF) is a function of the mean cluster 
size in the survey and the intracluster correlation coeffi-
cient (ρ), a measure of the between-cluster variance as a 
proportion of the total variance, and acts as a direct mul-
tiplier of sample size in order to achieve the same pre-
cision as under SRS. The most widely used equation for 
calculating DEFF is as follows [7]:

where ρ—the intracluster correlation coefficient, and B—
the mean cluster size.

Previous research has demonstrated that DEFF var-
ies from one health outcome to the next as the expected 
clustering increases: DEFFs of 1.0–2.0 are common for 
most nutrition indicators while programmatic indicators, 
such as measles coverage or access to safe water sources, 
can have DEFFs greater than 10.0 [5, 8]. For nutrition 
surveys, a default DEFF of 2.0 was first recommended 
by the United Nations Administrative Committee on 
Coordination/Sub-Committee on Nutrition (ACC/SCN) 
in 1994 in accordance with the ‘30 × 30’ design for clus-
ter surveys, which were designed to reliably provide 
estimates of wasting, stunting, and underweight with a 
precision of ±5% [9, 10]. This design called for using a 
pre-determined sampling design of 30 clusters with 30 
children each, resulting in a set sample size of 900 chil-
dren [9]. After years of implementation, it was observed 
that the DEFF of 2.00 used in the planning of these sur-
veys was often overestimated when compared to what 

DEFF = 1+ ρ ∗ (B− 1)

was calculated after implementation. As illustrated in the 
following equation, an estimate of the expected DEFF is 
used in determining sample size needed for a small-scale 
cluster survey [7]:

where p—the estimated prevalence of the outcome of 
interest (usually wasting); t—a Student’s t-score with 
degrees of freedom equal to the number of clusters minus 
1 and an alpha of 0.05 (corresponding to 95% confidence 
level); d—half-width of the two-sided 95% confidence 
interval; DEFF—design effect, and n—target sample size.

As DEFF is a direct multiplier of sample size in the 
above equation, an overestimate of DEFF results in a 
larger sample size than required for a given precision, and 
consequently increased cost and duration of the survey 
[9]. In 2006, Standardized Monitoring and Assessment of 
Relief and Transitions (SMART) guidelines were released 
with a recommendation to calculate sample size using an 
estimated DEFF and other predictors specific to the study 
setting, a contrast to the preceding guidance prescrib-
ing a sample size of 900 children [11]. These new guide-
lines thereby necessitated an improved understanding of 
observed DEFF in different settings. The emphasis by the 
SMART initiative on calculating sample size has resulted 
in more consistent reporting of observed DEFF since its 
introduction in 2006 [5]. The first aim of this study was 
therefore to review available anthropometric surveys to 
describe the magnitude and variability of DEFFs to help 
guide survey planning.

The second aim of this study was to evaluate factors 
associated with DEFF. A positive relationship between 
mean cluster size and DEFF is derived from the math-
ematical formulae, although there is little empirical 
evidence confirming this relationship [12]. Prevalence 
has also been shown to be associated with DEFF, with a 
maximum value of DEFF at 50% prevalence [2]. Preva-
lence is a parameter in equations for both sample size 
and DEFF (via the intracluster correlation coefficient) 
[7]. We further hypothesized that other parameters may 
also be associated with DEFF, including the standard 
deviation (SD) of Z-scores. Z-scores are a measure of the 
nutritional status of a child, expressed as the number of 
SDs below or above a reference median value [13, 14]. 
Age- and sex-specific reference values are most com-
monly obtained from the 2006 WHO growth standards 
[15]. Previous research has demonstrated that Z-scores 
within a population are normally distributed with a SD 
of approximately 1.0; the shape of the distribution does 
not vary based on the nutritional status of the popula-
tion, as measured by the mean Z-score [14]. Based on the 
finding that SD remains in a relatively narrow range for 

n =
p(1− p)t2

d2
∗ DEFF
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each indicator regardless of mean Z-score, WHO guid-
ance recommends that the SD of Z-scores can be used as 
a data quality indicator as well as a measure of variability 
[14]. The introduction of random non-directional errors, 
such as those introduced when age is estimated rather 
than calculated or when teams are imprecise in measur-
ing height or weight, can result in wider SD relative to 
the acceptable ranges outlined by WHO [13]. Conversely, 
Z-score distributions that are much narrower than the 
usually seen ranges suggest the possibility of falsified 
data. We therefore included SD of the Z-scores to assess 
the degree to which data quality in addition to variability 
impact DEFF in anthropometric surveys.

Methods
Data for these analyses were obtained from Action Con-
tre la Faim (ACF) International, an international humani-
tarian non-governmental organization that conducts 
multiple small-scale field nutrition surveys in humani-
tarian settings worldwide [16]. These data represent 394 
surveys conducted between 2006 and 2013 [17]. Surveys 
with fewer than 25 clusters or sample sizes smaller than 
196 persons were excluded a priori from all analyses as 
they did not meet minimum standards for small scale 
cluster surveys [18, 19]. Surveys larger than 1500 persons 
were excluded from all analyses as they are not consid-
ered small-scale.

All included surveys collected a minimum set of stand-
ard anthropometric indicators for each child including 
the sex, age (in months), height (in cm), and weight (in 
kg). Z-scores were calculated for each child for the three 
main nutrition indicators—Weight-for-Height (WHZ), 
Height-for-Age (HAZ), and Weight-for-Age (WAZ)—
using the WHO 2006 growth standards [15]. For each 
of the three nutritional indices, the mean and SD were 
computed for each survey to describe the Z-score distri-
bution. Prevalence of wasting, stunting, and underweight 
were derived from the continuous Z-score distributions 
for each survey wherein each reflects the proportion of 
children with Z-scores less than −2 for WHZ, HAZ, and 
WAZ, respectively. Separately for each indicator, outlier 
observations were excluded from a survey if the observed 
Z-score of a child fell outside the flexible exclusion range 
of ±4 Z-scores from the observed survey sample mean, as 
described by WHO [13]. Individual observations within 
each survey were also excluded for children without infor-
mation on height, weight, age or sex [13]. To describe the 
survey design, we computed the mean, variance, median 
and interquartile range for the cluster size and number 
of clusters. Survey location and year were also recorded. 
Survey location was categorized into eight geographical 
groupings as seen in Table 1. While most of the groupings 
were done by region and encompassed multiple countries, 

Sudan and Democratic Republic of Congo were kept as 
their own categories due to a large number of surveys 
conducted in these two countries. All data were aggre-
gated and cleaned using SAS Version 9.3 [20].

The DEFF was calculated for prevalence of wasting, 
stunting and underweight and using the same outlier 
exclusions. DEFFs lower than 1.0 were changed to 1.0 as 
the DEFF for a cluster survey is always higher than for 
SRS where DEFF is 1.0 [21]. To assess variability in the 
estimates, measures of central tendency and dispersion 
were calculated for DEFF by indicator. The percent of 
surveys with a DEFF below 2.0 and 1.5 were also com-
puted. To assess changes in survey design and implemen-
tation during the study period, one-way ANOVA was 
used to quantify annual changes in the mean cluster size, 
number of clusters, and total sample size.

One main goal of our analysis was to model DEFF. 
Univariable models were run to observe the unadjusted 
relationship between DEFF and each predictor variable. 
For each of the multivariable models, we included the 
five predictors: prevalence, SD of the Z-scores, mean 
cluster size, survey location, and survey year. Survey year 
was modeled as a categorical variable as there was not a 
clear linear relationship between DEFF and survey year. 
Prevalence, SDs and mean cluster size were modeled as 
continuous linear terms; models with prevalence and 
SD as quadratic terms were considered but did not sig-
nificantly improve model fit, thus the linear predictors 
were used for ease of interpretation. Generalized linear 
models with all five predictors of DEFF were run using 
SAS version 9.3 [20]. Model diagnostics including plot-
ting full and Jackknife residuals, checking for points with 
high leverage and outliers, and assessing Cook’s distance 
for each point, were run in RStudio for each of the three 
models. Observations with significantly high leverage or 
Cook’s distance were removed from the multivariable 
analyses [22–27]. Surveys with a Z-score SD less than 0.8 
were also excluded, separately for each model, to remove 
the possibility of including falsified data [13, 19, 28]. 
All figures were produced in RStudio [22]. Coefficients 
for prevalence and Z-score SDs were scaled to 0.1 unit 
increases for ease of interpretation.

Results
A total of 394 surveys conducted between 2006 and 2013 
in 28 different countries were examined for this study, 
as seen in Table 1. Fourteen surveys were excluded from 
the analysis: seven surveys had sample sizes greater than 
1500 children, two surveys had sample sizes smaller 
than 196 children, four surveys had fewer than 25 clus-
ters, and one survey had both fewer than 25 clusters 
and a sample size smaller than 196 children, yielding 
380 surveys included for analysis. The median number 
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of children per survey was 887.00 [Interquartile Range 
(IQR): 687.50–947.00].

Predictor variables
The number of surveys varied by year with a maximum of 
92 surveys conducted in 2008 and a minimum of 10 sur-
veys conducted in 2013, as seen in Table 2. The number 
of surveys also varied by location, with both Sudan and 
Democratic Republic of Congo having more surveys than 
any other region, justifying the segregation of those two 
countries from larger regional groupings.

Table  3 presents measures of central tendency and 
dispersion for the prevalence of wasting, stunting, and 

underweight as well as the SDs of the continuous Z-score 
distributions for weight-for-height, weight-for-age, and 
height-for-age across all surveys. Median prevalence of 
wasting (10%) was generally lower than that of under-
weight (27%) or stunting (42%). Furthermore, the high-
est reported prevalence for wasting was 38% while both 
underweight and stunting had maximum prevalences at 
or greater than 70%, as seen in Table 3. The median SDs 
of WHZ and WAZ were 1.03 (IQR: 0.99–1.08) and 1.04 
(IQR: 0.97–1.11), respectively, lower than that of HAZ 
[1.23 (IQR: 1.14–1.31)].

The surveys included had a smaller mean cluster size 
and larger mean number of clusters than prescribed by 

Table 1 Number of surveys by location, country and exclusion criteria

a Democratic Republic of Congo and Sudan had a much larger number of surveys than any other countries and were kept separate from larger regional groupings
b One survey had both fewer than 25 clusters and fewer than 150 children and was counted twice in the exclusion columns but only once in the initial and final 
numbers of surveys columns

Location Country Initial number 
of surveys

Number excluded 
due to SS <196

Number excluded 
due to <25 clusters

Number excluded 
due to SS >1500

Final number 
of surveys

Americas Bolivia 1 0 0 0 1

Guatemala 1 0 0 0 1

Haiti 13 0 0 0 13

Central/Southern 
Africa

Angola 1 0 0 0 1

Central African 
Republic

9 0 0 0 9

Madagascar 1 0 0 0 1

Chad 17 0 0 0 17

Democratic  
Republic of 
Congoa

129 0 3 0 126

East Africa Burundib 4 2 1 0 2

Ethiopia 6 0 0 0 6

Kenya 26 0 0 0 26

Somalia 4 0 0 0 4

South Sudan 6 0 0 0 6

Uganda 18 0 0 6 12

Middle East Pakistan 12 0 0 1 11

Afghanistan 9 0 0 0 9

South Asia Bangladesh 16 0 0 0 16

India 1 0 0 0 1

Myanmar 7 0 0 0 7

Nepal 8 1 0 0 7

Philippines 4 0 0 0 4

Sudana 69 0 1 0 68

West Africa Burkina Faso 5 0 0 0 5

Guinea 5 0 0 0 5

Mali 8 0 0 0 8

Mauritania 2 0 0 0 2

Niger 11 0 0 0 11

Sierra Leone 1 0 0 0 1

Total 394 3b 5b 7 380
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the formerly used ‘30  ×  30’ design. The average mean 
cluster size between 2006 and 2013 was 24.68 children 
(median 26.90, range 6.90–59.88 children). The average 
number of clusters per survey was 34.40 (median 30.00, 
range 25.00–63.00 clusters). Both average cluster size 
and average number of clusters changed significantly 
over time (p  <  0.001 for both). The average cluster size 
decreased from 28.93 (SD 5.50) in 2006 to 14.07 (SD 6.92) 
in 2013. The average number of clusters increased from 
30.58 (SD 3.01) in 2006 to 42.30 (SD 13.20) in 2013. Over 
the same period, total sample size declined significantly 
from a mean of 878.24 children (SD 150.88) in 2006 to a 
mean of 556.50 children (SD 235.70) in 2013 (p < 0.001). 
These trends in the survey design during 2006–2013 are 
illustrated in Fig. 1.

Design effects
The mean design effect for all three indicators fell 
below 2.00 (Table  4). Median DEFF for each of these 
three indicators was lower than the mean value, indi-
cating a distribution skewed to the right. These right-
skewed distributions are shown in the histogram plots 
in Fig.  2. The median DEFF for wasting (1.35) was 

lower than that for underweight (1.69), which was in 
turn lower than that for stunting (1.77). More than half 
of the DEFFs for underweight and stunting fell below 
2.00, while this value exceeded 85% for wasting. Fur-
thermore, the majority (63%) of DEFFs for wasting fell 
below 1.50.

Median DEFF for wasting, stunting and underweight 
varied by region (Table 5). For all three indicators, DEFF 
was highest for surveys in the Middle East. For each 
region and year, the median DEFF for wasting was lower 
than that of underweight or stunting. Median DEFF 
for underweight was lower than that of stunting except 
in East Africa, the Americas, and for survey year 2010, 
where the two DEFFs were almost the same.

Modeling
Results for the univariable and multivariable models 
for all three anthropometry indicators are presented in 
Table 6. For all multivariable models, outliers and obser-
vations with high leverage were excluded which resulted 
in exclusion of 2 observations from the wasting model, 1 
observation from the underweight model and 4 observa-
tions from the stunting model. Additional observations, 2 

Table 2 Distribution of number of surveys by location and year

Survey location Survey year

2006 2007 2008 2009 2010 2011 2012 2013 Total

Americas 0 0 5 8 1 1 0 0 15

Middle East 4 2 2 0 2 6 4 0 20

South Asia 3 2 4 2 6 7 3 8 35

Democratic Republic of Congo 18 13 32 23 20 14 6 0 126

Sudan 26 23 18 1 0 0 0 0 68

Central/Southern Africa 1 3 8 6 5 1 4 0 28

East Africa 11 8 13 7 4 7 6 0 56

West Africa 4 9 10 2 1 2 2 2 32

Total 67 60 92 49 39 38 25 10 380

Table 3 Distribution of anthropometric predictor variables (n = 380)

Predictor variable Mean SD Median IQR Minimum Maximum

Wasting

Prevalence 0.12 0.07 0.10 0.06–0.17 0.00 0.38

SD of WHZ 1.04 0.08 1.03 0.99–1.08 0.84 1.33

Underweight

Prevalence 0.28 0.12 0.27 0.19–0.36 0.05 0.70

SD of WAZ 1.04 0.10 1.04 0.97–1.11 0.78 1.37

Stunting

Prevalence 0.40 0.18 0.42 0.29–0.54 0.03 0.79

SD of HAZ 1.22 0.15 1.23 1.14–1.31 0.56 1.68
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for the underweight model and 5 for the stunting model, 
were excluded as they had an observed Z-score SD less 
than 0.8. The final models contained 378 observations 
for wasting, 377 for underweight, and 371 for stunting. 
Variance inflation factors (VIFs) were calculated for each 
model; no VIFs exceeded the standard cutoff of 10, and 
most met the criteria for low multicollinearity, with VIFs 
in the range of 1–5 [29, 30].

Wasting
Univariable analyses for wasting revealed that preva-
lence, SD of WHZ, mean cluster size, survey location, 
and survey year were all significantly associated with 
DEFF. In the multivariable model for wasting, a 0.10 
unit increase in prevalence was significantly associated 
with a 0.27 unit increase in DEFF (95% CI 0.19 to 0.35, 
p  <  0.001). Similarly, an increase in mean cluster size 

Fig. 1 Trends in average mean cluster size (a), average number of clusters (b), and average sample size (c), 2006–2013

Table 4 Distribution of DEFFs by indicator

Indicator Mean SD Median IQR Minimum Maximum % below 2.00 % below 1.50

Wasting 1.50 0.54 1.35 1.10–1.72 1.00 5.21 85.79 62.63

Underweight 1.79 0.60 1.69 1.35 –2.08 1.00 4.46 71.32 37.63

Stunting 1.96 0.81 1.77 1.41–2.30 1.00 6.60 62.11 31.05
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Fig. 2 Distributions of design effects for wasting (a), underweight (b), and stunting (c)

Table 5 Distribution of DEFFs by location and year

Wasting Underweight Stunting
Median (IQR) Median (IQR) Median (IQR)

Location West Africa 1.28 (1.07–1.63) 1.51 (1.21–1.88) 1.57 (1.35–2.00)

East Africa 1.38 (1.22–1.67) 1.63 (1.36–2.01) 1.62 (1.37–2.11)

Central/Southern Africa 1.29 (1.07–1.49) 1.56 (1.38–1.85) 1.57 (1.28–2.12)

Democratic Republic of Congo 1.36 (1.15–1.72) 1.77 (1.44–2.20) 1.78 (1.48–2.34)

Sudan 1.46 (1.13–1.84) 1.60 (1.33–2.08) 1.87 (1.44–2.50)

Middle East 1.71 (1.34–2.03) 1.99 (1.52–2.71) 2.31 (1.79–2.81)

South Asia 1.17 (1.00–1.59) 1.44 (1.16–1.85) 1.61 (1.21–1.98)

Americas 1.09 (1.00–1.58) 1.80 (1.28–2.17) 1.78 (1.50–2.47)

Survey year 2006 1.43 (1.10–2.05) 1.83 (1.40–2.29) 2.01 (1.48–2.77)

2007 1.41 (1.25–1.75) 1.52 (1.29–1.97) 1.61 (1.38–2.20)

2008 1.43 (1.17–1.71) 1.77 (1.44–2.25) 1.86 (1.51–2.42)

2009 1.31 (1.06–1.55) 1.64 (1.28–2.00) 1.65 (1.36–2.07)

2010 1.31 (1.11–1.58) 1.73 (1.36–1.99) 1.71 (1.29–2.09)

2011 1.21 (1.00–1.47) 1.53 (1.32–1.87) 1.57 (1.23–1.93)

2012 1.35 (1.17–1.70) 1.71 (1.41–2.20) 1.76 (1.43–2.81)

2013 1.09 (1.00–1.15) 1.53 (1.14–1.82) 1.56 (1.15–1.91)
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Table 6 Univariable and multivariable models of anthropometric DEFFs

Covariables Univariable Multivariable

Estimate 95% CI p value Type III p 
value

Estimate 95% CI p value Type III 
p value

Wasting

Prevalencea 0.18 0.11 to 0.26 <0.001 <0.001 0.27 0.19 to 0.35 <0.001 <0.001

WHZ SDa 0.20 0.13 to 0.27 <0.001 <0.001 0.10 0.03 to 0.17 0.009 0.009

Mean cluster 
size

0.02 0.01 to 0.02 <0.001 <0.001 0.02 0.00 to 0.03 0.013 0.013

Location West Africa – – – 0.003 – – – <0.001

East Africa 0.21 −0.02 to 0.44 0.079 0.20 0.00 to 0.40 0.054

Central/Southern 
Africa

−0.02 −0.28 to 0.25 0.911 0.04 −0.19 to 0.28 0.710

Democratic 
Republic of 
Congo

0.19 −0.02 to 0.40 0.071 0.16 −0.05 to 0.38 0.141

Sudan 0.17 −0.05 to 0.40 0.127 −0.18 −0.40 to 0.04 0.104

Middle East 0.52 0.22 to 0.81 <0.001 0.40 0.14 to 0.67 0.003

South Asia 0.02 −0.23 to 0.28 0.868 0.27 0.03 to 0.51 0.028

Americas −0.10 −0.43 to 0.22 0.532 0.29 −0.02 to 0.59 0.063

Survey year 2006 – – – 0.003 – – – 0.102

2007 −0.16 −0.34 to 0.03 0.092 −0.03 −0.19 to 0.13 0.723

2008 −0.17 −0.34 to −0.01 0.040 −0.05 −0.20 to 0.10 0.520

2009 −0.30 −0.49 to −0.10 0.003 −0.16 −0.35 to 0.03 0.109

2010 −0.31 −0.52 to −0.10 0.004 −0.23 −0.43 to −0.03 0.028

2011 −0.38 −0.59 to −0.16 <0.001 −0.29 −0.49 to −0.08 0.006

2012 −0.21 −0.45 to 0.03 0.094 −0.11 −0.34 to 0.11 0.313

2013 −0.56 −0.91 to −0.20 0.002 −0.29 −0.63 to 0.05 0.095

Underweight

Prevalencea 0.09 0.03 to 0.13 0.001 0.001 0.12 0.06 to 0.18 <0.001 <0.001

WAZ SDa 0.10 0.03 to 0.16 0.002 0.002 0.01 −0.07 to 0.08 0.834 0.834

Mean cluster 
size

0.02 0.01 to 0.03 <0.001 <0.001 0.03 0.02 to 0.04 <0.001 <0.001

Location West Africa – – – 0.010 – – – 0.004

East Africa 0.08 −0.18 to 0.33 0.551 0.22 −0.03 to 0.48 0.091

Central/Southern 
Africa

0.05 −0.25 to 0.34 0.765 0.10 −0.18 to 0.39 0.479

Democratic 
Republic of 
Congo

0.27 0.04 to 0.50 0.021 0.03 −0.24 to 0.29 0.840

Sudan 0.12 −0.13 to 0.37 0.336 −0.04 −0.31 to 0.23 0.756

Middle East 0.51 0.18 to 0.84 0.003 0.52 0.20 to 0.84 0.002

South Asia 0.00 −0.28 to 0.28 0.990 0.10 −0.21 to 0.41 0.521

Americas 0.14 −0.23 to 0.50 0.462 0.50 0.12 to 0.87 0.010

Survey year 2006 – – – 0.010 – – – 0.086

2007 −0.26 −0.47 to −0.06 0.013 −0.20 −0.40 to −0.01 0.045

2008 −0.01 −0.19 to 0.18 0.928 0.05 −0.13 to 0.23 0.605

2009 −0.24 −0.45 to −0.02 0.032 −0.16 −0.39 to 0.07 0.168

2010 −0.20 −0.43 to 0.03 0.092 −0.14 −0.38 to 0.10 0.261

2011 −0.33 −0.57 to −0.09 0.007 −0.21 −0.46 to 0.04 0.106

2012 −0.07 −0.34 to 0.20 0.596 0.01 −0.26 to 0.29 0.974

2013 −0.41 −0.80 to −0.02 0.040 −0.07 −0.49 to 0.35 0.734
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was significantly associated with an increase in DEFF, 
with every one person increase in mean cluster size 
being associated with an increase of 0.02 in DEFF (95% 
CI 0.00 to 0.03, p =  0.013). Location was significantly 
associated with DEFF (p < 0.001) as seen in Table 6, and 
certain locations including the Middle East and South 
Asia were significantly higher when compared to DEFFs 
in West Africa. Although not significant as a whole 
(p  =  0.102), survey year was significantly related to 
decreased DEFFs for the years 2010 (β = −0.23, 95% CI 
−0.43 to −0.03) and 2011 (β = −0.34, 95% CI −0.49 to 
−0.08) when compared with 2006. Increasing SD of the 
WHZ distribution was significantly related to increasing 
DEFF: for every 0.10 unit increase in SD, DEFF increased 
by approximately 0.10 units (95% CI 0.03 to 0.17, 
p = 0.009). The overall fit of the multivariable model for 
wasting, assessed via the adjusted R2 value, was 0.24.

Underweight
Univariable analyses for underweight show that preva-
lence, SD of WAZ, mean cluster size, survey location, and 
survey year were all significantly associated with DEFF. 

As for wasting, in the multivariable model for under-
weight increased mean cluster size and increased preva-
lence were both significantly associated with an increase 
in DEFF (p < 0.001 for both). Location was significantly 
associated with DEFF for underweight (p = 0.004); both 
the Americas and the Middle East were significantly 
associated with increased DEFFs when compared to 
West Africa (p = 0.010 and p = 0.002, respectively). Sim-
ilar to the model for wasting, survey year in the under-
weight model was as a whole not significantly associated 
with DEFF (p = 0.086), although surveys conducted dur-
ing 2007 had significantly lower DEFFs when compared 
to 2006 (p = 0.045). SD of WAZs was positively associ-
ated with DEFF. However, this relationship was only 
significant in the univariable model, a contrast to the 
relationship in the model for wasting. The overall fit of 
the multivariable model for underweight, assessed via the 
adjusted R2 value, was 0.18.

Stunting
In the univariable models for stunting, only survey year, 
survey location and mean cluster size were significantly 

Table 6 continued

Covariables Univariable Multivariable

Estimate 95% CI p value Type III p 
value

Estimate 95% CI p value Type III 
p value

Stunting

Prevalencea −0.03 −0.08 to 0.02 0.254 0.254 −0.03 −0.09 to 0.03 0.343 0.343

HAZ SDa −0.06 −0.12 to 0.01 0.076 0.076 −0.08 −0.14 to −0.01 0.023 0.023

Mean cluster 
size

0.03 0.02 to 0.04 <0.001 <0.001 0.04 0.02 to 0.06 <0.001 <0.001

Location West Africa – – – 0.043 – – – 0.001

East Africa −0.00 −0.35 to 0.35 0.995 −0.12 −0.43 to 0.20 0.475

Central/Southern 
Africa

0.02 −0.39 to 0.42 0.942 0.09 −0.27 to 0.45 0.619

Democratic    
Republic of 
Congo

0.25 −0.06 to 0.56 0.112 −0.25 −0.60 to 0.10 0.158

Sudan 0.36 0.03 to 0.70 0.036 −0.20 −0.55 to 0.14 0.255

Middle East 0.55 0.10 to 1.00 0.016 0.53 0.13 to 0.93 0.010

South Asia 0.09 −0.29 to 0.48 0.629 0.34 −0.03 to 0.72 0.076

Americas 0.17 −0.32 to 0.66 0.493 0.33 −0.12 to 0.78 0.152

Survey year 2006 – – – 0.010 – – – 0.068

2007 −0.36 −0.64 to −0.09 0.011 −0.18 −0.43 to 0.07 0.160

2008 −0.08 −0.33 to 0.17 0.521 0.11 −0.13 to 0.34 0.365

2009 −0.41 −0.70 to −0.11 0.007 −0.10 −0.39 to 0.20 0.518

2010 −0.31 −0.63 to 0.00 0.053 −0.03 −0.33 to 0.28 0.864

2011 −0.47 −0.80 to −0.13 0.006 −0.32 −0.65 to 0.01 0.062

2012 −0.17 −0.54 to 0.19 0.351 0.07 −0.27 to 0.41 0.680

2013 −0.63 −1.16 to −0.10 0.021 −0.36 −0.89 to 0.16 0.179

Values in italics represent statistical significance at the 0.05 level
a Coefficients and confidence intervals for prevalence and SD are scaled to represent a 0.1 unit change in prevalence and SD
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associated with DEFF. In the multivariable model, as for 
both wasting and underweight, increased mean cluster 
size was significantly associated with an increase in DEFF 
(p  <  0.001). Similarly, location was significantly associ-
ated with DEFF for stunting (p = 0.001); specifically, the 
Middle East was significantly associated with increased 
DEFFs when compared to West Africa (p = 0.010). Simi-
lar to the models for both wasting and underweight, 
survey year in the stunting model was as a whole not sig-
nificantly associated with DEFF (p = 0.068). In contrast 
to what was seen in both the wasting and underweight 
models, prevalence was not significantly associated with 
stunting DEFFs. Finally, continuing the inconsistent 
trend in the relationship between DEFF and SD, a 0.1 
unit increase in SD of HAZ was associated with a sig-
nificant 0.08 unit decrease in DEFF for stunting (95% CI 
−0.14 to −0.01, p = 0.023); notably, this relationship was 
non-significant in the univariable model. The overall fit 
of the multivariable model for stunting, assessed via the 
adjusted R2 value, was 0.15.

Discussion
This is the first review of DEFF for child anthropomet-
ric indicators across small-scale nutrition surveys in 
emergency settings since the release of the new SMART 
guidelines and WHO Growth Standards in 2006. Con-
sistent with current field survey guidance recommend-
ing the use of a DEFF of 1.5 for wasting in the absence of 
information on prevalence and DEFFs from previous sur-
veys, evidence presented here suggests that median DEFF 
for wasting was approximately 1.35 [19, 31, 32]. DEFF for 
wasting fell below 1.5 the majority of the time, suggest-
ing that in most settings estimating sample size based 
on this value would allow for a sufficiently large sample 
to achieve desired precision. This finding supports pre-
vious research findings that DEFFs for nutrition indica-
tors routinely fall below 2.0 [8, 9]. Where underweight 
or stunting are the primary indicator of interest, as may 
be the case in more stable settings, a higher DEFF should 
be expected. The proportion of surveys with DEFF less 
than 1.5 for wasting (63%) is approximately the same as 
the proportion of surveys for stunting (62%) and under-
weight (71%) with a DEFF less than 2.0. This relationship 
was consistent across all regions and years, providing 
further evidence to consider a larger DEFF when under-
weight or stunting rather than wasting are the primary 
outcomes of interest. Our evidence suggests that a DEFF 
of 2.0 may be an appropriate estimate to use in sample 
size calculations in the absence of other information for 
these two indicators.

Prevalence of wasting observed in the surveys included 
in this analysis ranged from 0% to values well exceeding 
emergency thresholds (max: 38%) [33]. As expected, the 

median prevalence of wasting (10%) was lower than that 
for underweight (27%) or stunting (42%) [34]. The preva-
lences of underweight and stunting were closer to 50% 
than for wasting, which may in part explain the higher 
values of DEFF for underweight and stunting observed 
[2].

The SD of WHZ and WAZ were approximately 1.00, as 
expected in high-quality anthropometry surveys (WHZ 
median = 1.03, WAZ median = 1.04). The SDs for HAZ 
were on average higher than those for WHZ or WAZ. As 
noted, SD of Z-scores is considered a measure of both 
heterogeneity as well as anthropometric data quality. It 
has been observed that SD for HAZ is often greater than 
WAZ given the greater difficulty of measuring height rel-
ative to weight since the introduction of electronic scales. 
In addition, in contexts where date of birth is unknown 
and age is therefore estimated, the imprecisions in age 
determination add additional random variability to the 
data and SD for HAZ may be expected to be wider than 
for WHZ [31].

As a parameter used to calculate DEFF, mean cluster 
size was included in our statistical models. We observed 
a gradual, but significant decline in mean cluster size 
over the period studied. This decline is likely a response 
to the 2006 release and gradual implementation of the 
SMART guidelines for small-scale field emergency nutri-
tion surveys which recommended individualized sample 
size calculations for each survey rather than a prescribed 
standard cluster size of 30 children [11, 32]. This trend 
occurred in parallel with a significant increase in the 
mean number of clusters. The shift to a larger number of 
smaller clusters in more recent years has resulted in an 
overall decrease in sample size.

The models presented here for DEFF confirm empiri-
cally what can be illustrated mathematically from the 
DEFF formula—that mean cluster size is positively asso-
ciated with DEFF. Mean cluster size was significantly 
positively related to DEFF for all three anthropometry 
indicators. This is important to consider when design-
ing a survey, as the impact of a change in mean cluster 
size can be sizable depending on the magnitude of the 
change. Our modeling suggests that reducing the mean 
cluster size from the formerly prescribed 30 children to 
20 children would decrease the DEFF by 0.20–0.40 on 
average, depending on the indicator.

As expected, prevalence was also significantly asso-
ciated with DEFFs for wasting and underweight. An 
increase in DEFF related to a 0.1 increase in preva-
lence is quite large—on the scale of 0.1–0.3, depending 
on indicator. This is essential to consider in the survey 
design phase as regions with an anticipated high preva-
lence of wasting or underweight, such as in some acute 
emergency settings, may exhibit higher DEFFs, thereby 
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requiring higher sample sizes. Previous research has 
demonstrated that the increase in DEFF is more gradual 
as prevalence nears 50% compared to the change at lower 
prevalences [2]. Given that our median stunting preva-
lence was 42%, this may have contributed to the lack of 
significance in the association between DEFF and preva-
lence for stunting, a contrast to the relationship observed 
for wasting and underweight for which median preva-
lences were lower [34].

A significant positive relationship between DEFF and 
SD of the Z-scores was observed in the model for wast-
ing, an interesting phenomenon not previously described. 
A 0.1 unit increase in the SD of WHZ would result in 
an increase of approximately 0.1 in DEFF. However, the 
model for stunting suggests a significant relationship of 
similar strength in the reverse direction, such that a 0.1 
unit increase in SD of HAZ would result in a 0.08 unit 
decrease in DEFF. It is unclear why the directionality of 
the relationship between SD and DEFF was opposite in 
these two models, and requires further research to fully 
understand. However, despite the preliminary nature of 
these findings, these have important implications on sur-
vey design, particularly for wasting which is frequently 
the outcome of interest in anthropometric surveys. In sit-
uations where data quality is anticipated to be low, it is 
recommended that DEFFs be estimated more conserva-
tively in order to take into account the loss of statisti-
cal efficiency due to increased WHZ SDs, and therefore 
increased DEFFs.

Location and year were also significantly associated 
with DEFF. While these are generally not modifiable 
parameters, this highlights the importance of research-
ing the results of previous studies in the same area prior 
to calculating sample size. The finding that surveys 
conducted in the Middle East were associated with sig-
nificantly higher DEFFs for all three indicators further 
reinforces this. Survey year was significantly associated 
with DEFF for stunting, and certain years were significant 
in the other two models. This may in part be a factor of 
the variability in the number of surveys per location per 
year, and thus an interaction term in the multivariable 
models may have better captured this relationship. How-
ever, in order to maintain interpretability of the models, 
no interaction terms were included.

There are a number of limitations to our analyses. First, 
the adjusted R2 value for each of the three models was 
quite low, indicating that a large part of the variability in 
DEFFs was not explained by the models, especially for 
stunting. Second, this analysis only includes surveys con-
ducted by ACF; including field surveys conducted by other 
agencies would make this analysis more comprehensive 
and generalizable. Finally, most countries were grouped 

broadly into regions based on the number of surveys and 
their general geographic location, but changes in these 
groupings may alter the results, particularly as the number 
of surveys was not equal across all regions. However, when 
the models were run using individual countries rather than 
geographical grouping of regions, these results did not 
change substantially (data not shown).

Conclusions
This research provides evidence as to the magnitude and 
variation in DEFF observed in small-scale nutrition sur-
veys. Our analyses suggest that for anthropometric sur-
veys focused on wasting, estimating that the expected 
DEFF will be approximately 1.50 is appropriate in the 
absence of more context specific information. For stunt-
ing and underweight, a higher estimate should be consid-
ered. However, given the observed relationship between 
region and DEFF, this study highlights the need to adapt 
the global guidance to each context and ideally take 
into consideration region- or country-specific estimates 
observed in previous surveys.

The DEFF models provide empirical evidence of a posi-
tive relationship between DEFF and both mean cluster 
size and prevalence. They further provide new evidence 
of factors related to DEFF, the most notable of which is 
the demonstration of a significant relationship between 
SD of the underlying continuous variable and DEFF of 
the derived categorical variable, even after controlling 
for other predictors. Further research is needed to better 
understand why the directionality of this relationship is 
not consistent across all outcomes.

While these models are not intended to be used for pre-
diction given the relatively low adjusted R2 values, they 
provide important insights into the magnitude and direc-
tionality of the effect of each of the predictor variables. 
As such, these results can inform the survey design deci-
sions of what value of expected DEFF to use in estimat-
ing sample size; survey designers should utilize DEFFs 
from surveys conducted recently in similar regions as a 
starting point, but should also consider the magnitude of 
effect observed for each of the predictors in the models 
to adjust these DEFFs accordingly.
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