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Defective HIV‑1 genomes and their potential 
impact on HIV pathogenesis
Jeffrey Kuniholm1, Carolyn Coote2 and Andrew J. Henderson1,2* 

Abstract 

Defective HIV-1 proviruses represent a population of viral genomes that are selected for by immune pressures, and 
clonally expanded to dominate the persistent HIV-1 proviral genome landscape. There are examples of RNA and pro-
tein expression from these compromised genomes which are generated by a variety of mechanisms. Despite the evi-
dence that these proviruses are transcribed and translated, their role in HIV pathogenesis has not been fully explored. 
The potential for these genomes to participate in immune stimulation is particularly relevant considering the accu-
mulation of cells harboring these defective proviruses over the course of antiretroviral therapy in people living with 
HIV. The expression of defective proviruses in different cells and tissues could drive innate sensing mechanisms and 
inflammation. They may also alter antiviral T cell responses and myeloid cell functions that directly contribute to HIV-1 
associated chronic comorbidities. Understanding the impact of these defective proviruses needs to be considered as 
we advance cure strategies that focus on targeting the diverse population of HIV-1 proviral genomes.
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Introduction
Virus replication requires successful entry into a host 
cell, generation of the viral genome, packaging of virion 
contents, and transmission of these contents to a new 
target cell. However, intrinsic host cell restriction fac-
tors and the inefficient and error-prone nature of viral 
replicative processes lead to the generation of defective 
virus genomes and particles. Defective viruses are gen-
erated by several RNA viruses including Measles, Sen-
dai and Ebola Viruses [1–7]. They are also generated 
by retroviruses including human immunodeficiency 
virus-1 (HIV-1) [8–10], the focus of this review. Defec-
tive proviruses accumulate crippling mutations during 
infection and replication which render them unable to 
complete their replication cycle. Despite their inability 
to contribute to new infections, these defective viruses 
still potentially influence viral pathogenesis by divert-
ing productive anti-viral immunity and propagating 
damaging inflammatory responses. Therefore, defective 
viruses may be critical contributors to viral immune 

escape, persistence, and pathogenesis and not simply 
viral genome “junk”.

The focus of HIV cure strategies has primarily been 
on eliminating or suppressing the intact latent provirus 
genomes that fuel the rebound of HIV replication upon 
interruption of antiretroviral therapy [11, 12]. However, 
the number of intact proviral genomes that are small, 
estimated to be 2% of all infected cells which includes 
a rarer population that contributes to viral rebound 
(one in 100,000 to 1  ×  106 cells in peripheral blood 
and lymph nodes) in people living with HIV (PLWH) 
on antiretroviral therapy (ART). Secondary lymphoid 
tissues also harbor HIV-1 infected CD4+ T cells with 
frequencies of intact, defective and inducible proviral 
genomes similar to those observed in blood suggesting 
peripheral blood is an appropriate surrogate for evalu-
ating persistent proviral sequences [13]. Furthermore, 
intact and defective proviral genomes are found in 
most CD4+ T cells subsets in comparable frequencies 
indicating multiple CD4+ cell types in multiple tissues 
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contribute to HIV-1 persistence and latency [14]. How-
ever, it will be critical to have standardized clinically 
validated assays to evaluate latent reservoirs and persis-
tent proviral genomes in blood and immune tissues to 
monitor the effectiveness of therapeutic approaches for 
HIV-1 cure [15].

With the majority of proviral sequences harboring 
deleterious mutations [8] how these defective HIV pro-
viruses contribute to various persistent comorbidities 
and pathogenesis in people living with HIV remains an 
important unanswered question. When considering dif-
ferent cure strategies, whether genome editing to cripple 
HIV-1, “block-and-lock”, or “shock-and-kill” approaches, 
it will be critical to determine whether remnants of viral 
genomes are expressed and biologically active. In this 
review we highlight findings that demonstrate that HIV 
infection results in dynamic populations of defective 
genomes, discuss the expression and evolution of these 
defective proviruses in PLWH, and consider whether 
their expression contributes to HIV immune evasion, 
persistent inflammation, and pathogenesis.

Defective HIV‑1 genomes dominate the proviral 
landscape
Characterization of the HIV-1 proviral reservoir in dif-
ferent CD4+ T cell subsets through deep sequencing, 
single-cell approaches, ex  vivo viral outgrowth assays, 
and quantitative droplet digital PCR has led to insights 
into how persistent infection and latency are established, 
maintained, and reactivated [8, 9, 14, 16–23]. From these 
efforts it has become apparent that the proviral landscape 
is dynamic and evolving during chronic HIV-1 infection 
[24–29]. Intact HIV-1 proviruses which have the poten-
tial to support viral rebound, have been estimated to 
represent 2–5% of the persistent provirus pool as meas-
ured in peripheral blood mononuclear cells (PBMCs) [8, 
9]. Longitudinal tracking of intact provirus sequences 
in PLWH before and after ART initiation suggests that 
most of the latent intact HIV reservoir has been seeded 
at the time of ART initiation and there is no additional 
infection post-ART [30–32], although ART initiation has 
been suggested to shape the latent reservoir [30–32]. It 
has also been suggested that the virus circulating at the 
time of ART initiation is overrepresented in the reservoir 
[30]. The size of the persistent provirus population varies 
among individuals and the mechanisms that determine 
if a proviral genome is capable of reactivation remain 
inadequately understood. Studies of CD4+ T cells from 
individuals who naturally control HIV-1 infection dem-
onstrated that intact proviruses are enriched in hetero-
chromatic regions of the host genome while defective 

proviruses are detected in euchromatic regions [19, 33]. 
These observations support that enhanced immune 
detection and clearance in these individuals shapes the 
persistent provirus reservoir over time, relegating intact 
proviruses to relatively silent loci of the host genome 
[34]. Examining the reactivation of provirus from periph-
eral blood obtained from PLWH that are undergoing 
ART indicates that relatively small subsets of latently 
infected cells are easily induced to express new viri-
ons while a second larger subset of infected cells harbor 
intact provirus that are more resistant to reactivation [9]. 
The mechanisms that are responsible for this spectrum of 
inducibility of intact proviruses is unclear and may reflect 
phenotypes and functions of cells that harbor HIV-1 
infections, proviral integration sites, or even stochastic 
mechanisms such as bursts of Tat-dependent transcrip-
tional activity [35–42].

The majority of proviral sequences detected, greater 
than 90%, are defective [8, 9, 16]. These defective 
genomes harbor large deletions, sequence inversions, 
hypermutations, and defective splice donor and acceptor 
sites that prevent viral replication. During the course of 
treatment, the persistent proviral landscape shifts with 
outgrowths of dominant clones that include defective 
proviral genomes [24]. Proposed mechanisms that drive 
the shaping, selection, and expansion of HIV-1 proviral 
clones include depletion of cells that express HIV anti-
gens, antigen driven and cytokine driven clonal expan-
sion, homeostasis of T cell subsets that harbor HIV 
proviruses, and expansion of proviruses integrated near 
genes that influence cell survival and proliferation [24, 
25, 43–47]. Longitudinal studies have revealed that defec-
tive proviruses are subjected to different levels of immu-
nological targeting and clearance depending on their 
transcriptional and translation competence [24, 26, 48]. 
Proviruses which retain the ability to transcribe HIV-1 
RNAs and translate viral proteins can be preferentially 
cleared during sustained immunological pressure [29] 
leading to proviruses with little transcriptional or transla-
tional activity clonally expand to form the majority of the 
reservoir [24, 25, 29]. However, HIV-1 proviral genomes 
that are transcriptionally active and express gag have also 
been posited to drive clonal expansion [25]. Sequencing 
proviral genomes have suggested that persistent defec-
tive proviruses are established within the first few weeks 
following infection, although initiation of antiretroviral 
therapy may influence repertoire of defective HIV provi-
ral sequences [8, 26]. It remains unclear whether defec-
tive proviruses play a role in subverting the anti-HIV 
immune responses or perpetuating the chronic inflam-
mation which has been described in PLWH on ART.
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Generation of defective HIV‑1 genomes
Multiple mechanisms contribute to the generation of 
defective HIV-1 proviruses including the inefficiency of 
reverse transcription and the activity of host cell restric-
tion factors. HIV reverse transcriptase lacks proofread-
ing ability and is error prone, introducing approximately 
1.4 × 10–5 mutations per base pair per cycle [49, 50]. Suc-
cessful reverse transcription also requires dissociation 
and re-initiation of reverse transcription on the RNA 
genome template leading to a propensity to produce 
mutated and truncated HIV DNA intermediates [51–53]. 
For example, sequence analysis of HIV proviral sequences 
obtained from CD4+ T cells from PLWH on ART attrib-
uted approximately 40% of the internal deletions detected 
to negative strand synthesis during reverse transcription 
[54]. Recombination, a process by which genetic diversity 
is introduced through template-switching between the 
two copies of the HIV RNA genome packaged in virions, 
also contributes to the mutation rate of reverse transcrip-
tion products [55–58].

Intrinsic host defenses and anti-viral restriction fac-
tors limit replication and reverse transcription effi-
ciency contributing to the generation of defective HIV 
genomes. APOBEC 3G, a cytosine deaminase, targets 
single-stranded DNA intermediates and promotes HIV-1 
hypermutation by inducing guanine-to-adenine changes 
during the process of reverse transcription [59–63]. Ster-
ile Alpha Motif- and HD-domain containing protein 1 
(SAMHD1), a host viral restriction factor which reduces 
the concentration of intracellular nucleotides in resting 
CD4+ T cells and myeloid cells, limiting the efficiency 
and completion of reverse transcription [64–67].

RNAs and translation products from intact 
and defective HIV‑1 proviruses
HIV-1 transcription is regulated by multiple mechanisms 
and combinatorial events which have been extensively 
reviewed (recent reviews include [68–70]). In general, 
the HIV-1 long terminal repeat (LTR) acts as an enhancer 
and promoter, recruiting host cell transcriptional activa-
tors, repressors, chromatin remodeling factors, and the 
RNAP II complex which all influence transcriptional acti-
vation or repression. HIV Tat binds the TAR stem loop 
element at the 5ʹ end of the HIV-1 initiated transcript 
to recruit PTEFb a cofactor that enhances RNAPII pro-
cessivity and recruits cofactors that influence proviral 
chromatin organization and transcription [71–73]. Cur-
rent antiretroviral therapies do not target HIV transcrip-
tion; however, during ART there is immune selection 
against cells actively transcribing HIV genes. The func-
tion of intrinsic transcription factors and repressive epi-
genetic regulators contribute to the repression of HIV-1 
transcription in intact latent proviruses. However, it is 
important to note that HIV-1 transcripts are detected in 
individuals on ART [74–77]. Single-genome HIV RNA 
sequencing at limiting dilution showed that up to 7% of 
HIV-1 provirus in PBMCs from patients undergoing ART 
remain transcriptionally active [78].

A potential source of residual HIV-1 transcripts 
detected during ART are defective proviruses (Fig.  1). 
Defective HIV-1 proviruses are transcribed despite 
mutations that compromise efficient transcription and 
replication such as deletions of the 5ʹLTR or altered 
splice acceptor and donor sites, including the psi pack-
aging element [24, 54]. Despite these defects, spurious 

Fig. 1  Summary of a subset of RNAs that are transcribed by HIV-1 outlined in the review. Dashes represent spliced sequences
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transcription, possibly through alternative transcrip-
tional start sites and/or alternative splice site usage, has 
been reported [24]. Proviruses with defects in their major 
splice donor sequence overcome this defect by using 
alternative splicing mechanisms. The use of alternative 
and cryptic splice sites is suspected to enable translation 
of chimeric and non-canonical HIV-1 fusion proteins 
[79]. Antisense transcription from the 3ʹ LTR is another 
mechanism for generating HIV-1 transcripts; however, 
whether antisense transcription is regulated by the same 
signaling cascades as transcription from the 5ʹ LTR, and 
its functional relevance, is unclear [80–83].

Intragenic cis-acting elements have been proposed for 
HIV-1 and other retroviruses and represent additional 
mechanisms to support the transcription of defective 
proviruses [84–88]. The presence of intragenic tran-
scriptional elements in the HIV-1 genome has been 
postulated for decades but the function and regulation 
of such elements have not been fully appreciated. Cis-
acting repressive sequences (CRS) have been reported 
and have been proposed to limit HIV-1 transcription, 
splicing, and nuclear export [89, 90]. CRS functions are 
partially achieved through interactions with host cel-
lular transcription factors [90]. Such interactions have 
also been described for cis-acting elements involved in 
regulating the alternative splicing of HIV-1 transcripts 
[91]. In addition, sequences within the HIV-1 env gene 
have been identified as potential elements that con-
trol intragenic transcriptional activity and include tran-
scription binding sites, the presence of methylated CpG 
islands, and increased DNAse I sensitivity which corre-
lates with transcriptionally active elements [92–94]. We 
have extended these observations using 5ʹ RACE PCR to 
demonstrate that HIV transcripts are generated from an 
intragenic promoter within the envelope gene in in vitro 
infected primary cells [95]. Potential aberrant RNAs that 
contained env and nef but lacked 5ʹ LTR derived untrans-
lated regions (UTRs) were detected in cDNAs generated 
from cell-associated RNA from PLWH on ART using 
multiplex reverse transcriptase droplet digital PCR [92]. 
A limitation with cDNA synthesis is that prematurely 
terminated cDNAs molecules would be included in the 
library. However, taken together these results lead to 
speculation that spurious transcription driven by cis-act-
ing elements that remain active in defective HIV-1 pro-
viruses could provide a mechanism for the generation of 
RNA when LTR-mediated transcription is repressed or 
compromised. Whether this transcription from defective 
proviruses is relevant to HIV-1 pathogenesis is an out-
standing question as are mechanisms that regulate these 
intragenic promoters.

A critical question regarding potential roles of these 
cryptic or alternative RNA sequences is whether they are 

translated. It has been shown that point mutations within 
the HIV-1 provirus generate alternative reading frames 
and these can allow for translation of proteins [96, 97]. 
Similarly, internal deletions and inversions within defec-
tive proviral genomes can generate novel open reading 
frames and translation of proteins [54, 98]. HIV-1 pro-
teins are also translated from transcripts generated from 
intragenic promoters and there have been reports of an 
antisense protein [80, 82, 95, 99]. Translation from these 
aberrant or spurious RNAs would be consistent with the 
detection of HIV-1 proteins in PWLH on ART and in 
latently infected cells in the absence of viral replication. 
For example, Nef and Gag have been observed intracel-
lularly in PBMCs from PLWH on ART, although tech-
nical concerns have been raised about these studies and 
protein detection has often required ex vivo stimulation 
[100–102]. HIV-1 Gag has been shown to be a source of 
defective ribosomal products (DRiPs) which are rapidly 
degraded by the proteasome and loaded onto MHC-I 
molecules [103]. HIV-1 antisense protein (ASP) has been 
reported in infected cell samples from PLWH and anti-
bodies against this protein have been detected in the sera 
of a subset of infected individuals [82, 104, 105]. The pos-
sible generation of viral transcripts and proteins from 
defective HIV-1 proviruses begs the question of whether 
these viral products play an immunomodulatory role in 
chronically infected individuals.

Defective viruses, immune dysfunction, and cure 
strategies
Immunological selection and clonal expansion of cells 
harboring HIV proviral genomes shapes the persistent 
reservoir [24, 33, 46, 106, 107]. For example, cells that 
express HIV-1 generate MHC-I associated peptides that 
are targeted and eliminated by CD8+ T cells. This pool 
of HIV peptides includes cryptic epitopes produced 
from alternative reading frames (ARFs) throughout the 
HIV-1 genome [97, 105, 108, 109]. ELISA and ELISpot 
assays demonstrated that CD8+ T cells from PLWH on 
ART are activated by peptides predicted to be generated 
by ARFs which exist in sense and antisense orientations 
in the HIV-1 genome [24, 105]. These responses were 
greater in magnitude for CD8+ T cells from chronically 
infected PLWH as opposed to those with an acute infec-
tion. These data support a model whereby ARFs shape 
the composition of persistent proviruses by being targets 
for CD8+ T cells and driving the homeostasis of CD8+ 
T cell-mediated immunity against these cryptic proteins. 
Studies that have demonstrated the ability of defective 
proviruses to produce viral proteins suggest that sub-
sets of the defective provirus population could contrib-
ute to this phenomenon [98, 101, 102]. We speculate that 
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defective proviral genomes act as one source of ARF gen-
erated peptides. Ex  vivo expression of defective HIV-1 
provirus clones has shown that defective HIV-1 genomes 
can be translated into proteins which activate cytotoxic 
T lymphocytes (CTLs) specific for HIV-1 peptides [24]. 
These data support that the adaptive immune response is 
influenced by protein expression from a subset of defec-
tive proviruses (Fig. 2).

One consequence of chronic HIV infection is the func-
tional exhaustion of HIV-specific CD8+ T cells [110, 
111]. Polyfunctional HIV-specific CD8+ T cells, those 
which produce a wide breadth of cytokines, chemokines, 
and cytotoxic molecules, correlate with control of HIV-1 
in non-progressors who control HIV infection [110, 111]. 
Longitudinal analysis of polyfunctional HIV-specific 
CD8+ T cells in  vivo has shown that, in the context of 
persistent antigen stimulation, the breadth of cytokines 
produced declines, and this correlates with increased 
expression of PD-1, TIGIT, and LAG-3, molecules asso-
ciated with exhaustion [110, 112, 113]. While HIV-1 
specific CD8+ T cell numbers remain high in chroni-
cally infected individuals, they produce less IFNγ, express 
relatively high levels of co-inhibitory receptors like PD-1, 
and have altered metabolomic profiles [114–116]. Addi-
tionally, CD4+ T cell depletion promotes exhaustion by 
diminishing helper T-cells that facilitate antiviral CD8+ 
T cell responses [117, 118]. In addition, there is evidence 
that cryptic peptides may have the capacity to drive viral 
escape from cellular immunity driving escape muta-
tions which prevent proteasomal cleavage and antigen 

presentation of these otherwise protective epitopes [119]. 
Therefore, during chronic HIV infection, spurious and 
chronic antigen expression from the defective persistent 
provirus pool could subvert anti-HIV immunity by driv-
ing T cell exhaustion, diversion and depletion.

Chronic HIV infection is associated with persistent 
inflammation which has been implicated in various 
comorbidities and associated HIV-1 disease sequela con-
sistent with inflammaging in PLWH [120]. For example, 
PLWH receiving ART have increased risk of coronary 
heart disease, various cancers, HIV-associated neuro-
logical disorders (HAND), leaky gut syndrome, and other 
end-organ diseases [121–127]. These HIV associated 
conditions have been correlated with an accumulation 
of age-related epigenetic marks in cells from the blood 
and brain leading to the hypothesis that HIV-1 infec-
tion promotes accelerated aging [128–131]. Importantly, 
the inflammaging phenomenon does not correlate with 
plasma viremia and is observed in PLWH even when 
viremia is largely controlled by ART. This inflamma-
tory response may be driven by recognition of HIV pro-
teins and RNAs activating innate intracellular antiviral 
responses. Markers of chronic inflammation in PLWH on 
ART do not correlate with measurements of intact provi-
rus genomes but do correlate with cell associated HIV-1 
RNA [132]. Whether residual transcription from defec-
tive proviral genomes contribute to this inflammation is 
undefined.

HIV-1 proviruses generate a diverse set of transcripts 
which include RNAs with complex secondary structures, 

Fig. 2  Mechanisms by which cryptic HIV-1 peptides could influence T cell responses
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retention of intronic sequence, and post-transcriptional 
modifications including m6A modifications [133–136]. 
These features of HIV-1 transcripts provide multiple tar-
gets for detection by cellular innate nucleic acid innate 
immune sensors which can initiate signaling events that 
activate interferon responses and inflammatory cytokine 
production [133, 135, 137–141]. For example, the expres-
sion of intron-containing HIV-1 RNA exported from the 
nucleus in infected myeloid cells and microglia has been 
demonstrated to perpetuate inflammatory responses 
[134, 135]. Detection of these RNAs and the induction 
of IFN type 1 responses alter macrophage and dendritic 
cell function (Fig.  3) including antigen presentation 
thus influencing CD4+ and CD8+ T cell responses. 
Together, these studies support that the residual tran-
scription described in PLWH on ART have the potential 
to contribute to CD8+ T cell dysfunction and systemic 
inflammation.

Current cure strategies focus on either purging the 
HIV-1 provirus reservoir, permanently inactivating latent 
proviruses, or targeting the provirus with gene edit-
ing approaches [12, 142–147]. Examples of some these 
proposed approaches include shock-and-kill to activate 
the latent pool so it can be immunologically targeted, 
block-and-lock approaches that rely on compounds or 
engineered transcriptional repressors that inactivate or 
repress HIV proviral transcription such as didehydro-
Cortistatin, dCas9-KRAB or dCasDMNTs and targeting 
and inactivating proviruses using CRISPR-cas9 or zinc 
finger nucleases [148–158]. These approaches, in general, 
target the expression or elimination of intact proviruses 

and would have minimum impact on the presence of 
defective proviruses. Since there is scant information as 
to how these defective proviral sequences are transcrip-
tionally regulated, it is unknown whether latency rever-
sal agents or transcriptional repressors will impact the 
activity of intragenic cis-transcriptional elements and 
the expression of cryptic peptides. Depending on the 
sequences targeted by engineered nucleases, gene edit-
ing approaches have the potential to create additional 
defective proviral genomes. Furthermore, CRISPR–cas9 
approaches have been reported to promote viral escape 
through nonhomologous end joining and generate tran-
scriptionally active LTR circles [159, 160]. As we explore 
ways to target the latent reservoir, continued understand-
ing of the regulation and functional impact of defective 
proviruses need to be considered.

Conclusions
The persistent HIV-1 proviral genome landscape consists 
of mostly defective HIV-1 proviruses. Although RNAs 
and proteins are expressed from these proviral genomes 
their impact in HIV pathogenesis is unclear. We specu-
late that spurious expression of these RNAs and proteins 
contribute to immune dysfunction and T cell exhaustion 
that are associated with comorbidities of chronic HIV-1 
infection including inflammaging. Future cure strategies 
will need to address the importance of targeting the com-
plete array of intact and defective proviral genomes.
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