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Abstract 

Novel broadly neutralizing antibodies targeting HIV-1 hold promise for their use in the prevention and treatment of 
HIV-1 infection. Pre-clinical results have encouraged the evaluation of these antibodies in healthy and HIV-1-infected 
humans. In first clinical trials, highly potent broadly neutralizing antibodies have demonstrated their safety and signifi-
cant antiviral activity by reducing viremia and delaying the time to viral rebound in individuals interrupting antiret-
roviral therapy. While emerging antibody-resistant viral variants have indicated limitations of antibody monotherapy, 
strategies to enhance the efficacy of broadly neutralizing antibodies in humans are under investigation. These include 
the use of antibody combinations to prevent viral escape, antibody modifications to increase the half-life and the 
co-administration of latency-reversing agents to target the cellular reservoir of HIV-1. We provide an overview of the 
results of pre-clinical and clinical studies of broadly HIV-1 neutralizing antibodies, discuss their implications and high-
light approaches for the ongoing advancement into humans.
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Background
Pathogen-specific antibodies are a hallmark of an effec-
tive immune response following infection or vaccina-
tion [1, 2]. Their development is the result of a cascade 
of events ranging from antigen uptake and presentation 
to B cell induction and antibody production [3]. Pas-
sive immunization, i.e., the administration of immuno-
globulins, bypasses these steps. As such, it is an effective 
concept for immediate but transient protection from 
infections including hepatitis A, hepatitis B and rabies 
[4]. Moreover, the principle of antibody-mediated immu-
notherapy of infectious diseases has long been estab-
lished by the use of toxin-specific antibodies to treat 
diphtheria or tetanus [5].

Advances in antibody production technology have ena-
bled the development of highly active and specific clini-
cal products. Antibodies have gained widespread medical 
use at an accelerating pace, with more than half of the 

> 70 available monoclonal antibodies and derived con-
structs having been approved over the span of the past 
5 years [6]. Most of these antibodies are used in the treat-
ment of malignant or autoimmune diseases. In contrast, 
approval of monoclonal antibodies that target infectious 
pathogens or pathogen-derived substances has been lim-
ited to antibodies against the respiratory syncytial virus 
and toxins produced by Clostridium difficile or Bacillus 
anthracis. Recently, the antibody ibalizumab has been 
approved for the treatment of multidrug-resistant HIV-1 
infection [7]. While ibalizumab does not directly interact 
with the circulating virus or HIV-1-infected cells, it tar-
gets an extracellular CD4 domain and therefore interferes 
with the binding of HIV-1 to its primary receptor on tar-
get cells [7].

Despite being proposed early on [8], the idea of neu-
tralizing antibody-mediated immunotherapy of HIV-1 
infection was long abandoned because of limited activity 
in animal models and early clinical trials [9–14]. How-
ever, the isolation of highly potent broadly neutralizing 
anti-HIV-1 antibodies (bNAbs) has renewed enthusiasm 
about the potential application of these antibodies and 
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resulted in numerous clinical trials investigating different 
concepts of bNAbs for HIV-1 infection.

Main text
First monoclonal HIV‑1 neutralizing antibodies
Most HIV-1-infected individuals develop limited neutral-
izing serum activity. Accordingly, facing the enormous 
diversity of HIV-1, passive transfer of plasma or purified 
immunoglobulins from HIV-1-infected donors resulted 
in inconsistent or no detectable treatment effects in 
humans [15–18]. Similarly, the first monoclonal anti-
HIV-1 antibodies failed to demonstrate significant anti-
viral effects in early clinical trials [19–23]. Limitations in 
potency and breadth remained for the first generation of 
broadly neutralizing antibodies [24–26]. However, proof-
of-concept studies in non-human primates (NHPs) and 
humanized mice demonstrated that monoclonal anti-
bodies can protect from infection with chimeric simian/
human immunodeficiency virus (SHIV) and HIV-1 [27–
41]. Nevertheless, these antibodies were not generally 
considered applicable for clinical use in HIV-1 preven-
tion mainly because of an overall low neutralizing activity 
against the majority of viral strains. The bar for treatment 
of established infection proved even higher, as combina-
tions of these early antibodies failed to significantly sup-
press viremia or prevent the development of resistance 
in animals and humans [9–14]. Thus, the results of these 
experiments reinforced the need for more potent anti-
bodies that cover a wide spectrum of viral strains to facil-
itate bNAb-mediated prevention and treatment of HIV-1 
infection.

A new generation of antibodies targeting HIV‑1
Advances in antibody isolation and cloning methods, 
combined with the identification of subjects with excep-
tional neutralizing serum activity, resulted in the isola-
tion of a new generation of anti-HIV-1 bNAbs [42–47]. 
These antibodies are orders of magnitude more potent 
than those isolated before and neutralize the majority of 
viral strains [48]. All bNAbs recognize the HIV-1 enve-
lope glycoprotein (Env) by targeting defined vulnerable 
epitopes on its surface [49, 50]. Among them, antibod-
ies against the CD4 binding site (3BNC117, VRC01) and 
the V3 loop (10-1074) have progressed beyond first-in-
human trials to studies focusing on potential strategies 
for treatment and prevention of HIV-1 infection (Fig. 1). 
Additional antibodies targeting the CD4 binding site 
(N6-LS and VRC07-LS), the V3 loop (PGT121) or other 
epitopes (V1/V2 loop, PGDM1400; membrane proximal 
external region (MPER) of gp41, 10E8V-LS) are being 
investigated in early phase studies (Fig. 1). Indeed, more 
than 30 clinical trials have been initiated and will result in 
the enrollment of over 4000 study participants receiving 

one or a combination of novel broadly neutralizing anti-
bodies (Fig. 1).

Paving the way for prevention
Members of the new generation of highly potent bNAbs 
can protect from infection in parenteral, vaginal, rec-
tal and/or oral viral challenge models [51–71]. In fact, 
bNAbs have been shown to prevent (S)HIV infection by 
high titer virus mucosal challenge across a number of 
animal studies investigating different bNAbs, viral strains 
and/or routes of transmission [55–67]. While mucosal 
application of high titer virus ensures robust infec-
tion after a single challenge, this model does not reflect 
the limited frequency of transmission seen for a single 
sexual contact or breastfeeding [72, 73]. Thus, it may 
underestimate the efficacy of bNAbs to prevent HIV-1 
transmission in humans. Low-dose repeated mucosal 
challenge mimics clinical scenarios more closely. In such 
models, the administration of a single bNAb can signifi-
cantly delay the time to infection [68–71]. For example, 
macaques intrarectally challenged with SHIVAD8 were 
protected from infection after a single administration of 
10-1074, 3BNC117 or VRC01 until the median serum 
antibody concentrations declined to 0.17–1.83  µg/ml 
[70]. These levels were approximately 3-fold higher than 
the IC50s determined against the challenge virus in vitro 
[70]. Higher ratios of protective serum antibody con-
centrations and in  vitro IC50s were observed for first-
generation bNAbs in low-dose challenge models [68, 
69]. However, these differences might be accounted for 
by the use of different virus strains, challenge routes and 
other conditions including the experimental thinning of 
epithelia in vaginal transmission models. Nevertheless, 
if the results from low-dose rectal challenge in NHPs 
hold true in humans, bNAb serum levels of 10 µg/ml are 
likely to be sufficient to prevent infection from a large 
fraction of circulating viruses [74]. When infused intra-
venously (i.v.), 3BNC117, VRC01 and 10-1074 showed 
mean half-lives of 11–24 days in healthy individuals [75–
79]. Following an infusion of either antibody at a dose of 
20–30 mg/kg, bNAb levels of > 10 µg/ml were measured 
for approximately 8–16 weeks [75–77]. Importantly, this 
period can be substantially extended by antibody modifi-
cations discussed below.

In contrast to the challenge with selected monoclo-
nal viruses in animal models, humans are exposed to a 
wide range of viral strains with different antibody sen-
sitivities. Thus, whether bNAbs can afford a meaningful 
degree of protection from HIV-1 infection in humans 
can only be demonstrated in clinical trials. Two large 
placebo-controlled studies aim to answer this question 
using the CD4 binding site antibody VRC01. To this 
end, VRC01 is given at 10 or 30 mg/kg every 2 months 
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to individuals at high risk of acquiring HIV-1 infection 
(NCT02568215, women living in sub-Saharan Africa; 
NCT02716675, men and transgender persons who have 
sex with men) [78, 80]. These are critical proof-of-con-
cept studies, however, more potent antibodies or bNAb 

combinations may provide more effective options for 
prevention.

Passively administered bNAbs need to be applied 
repeatedly to maintain levels above a threshold con-
centration required for effective protection. Transgenic 
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Fig. 1  Clinical trials of new-generation broadly neutralizing antibodies. Numbers show (prospective) trial participants receiving bNAb(s). Letters 
encode the ClinicalTrials.gov study identifier. Healthy and HIV-1-infected individuals are indicated by green and red colors, respectively. Studies 
shown in dark colors have been completed, while studies shown in light colors are ongoing or not yet recruiting. Asterisk indicates that the number 
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bNAb expression could be a feasible approach to over-
come this limitation. For example, administration of 
adeno-associated viruses (AAVs) can result in sustained 
transgene expression, and their safety has been demon-
strated throughout a number of clinical trials [81]. In 
humanized mice, AAV-mediated bNAb expression can 
protect from HIV-1 infection by repeated mucosal viral 
challenge [82, 83]. To investigate this concept of vectored 
immunoprophylaxis in humans, phase I studies of AAVs 
encoding for the anti-V1/V2 loop antibody PG9 or the 
CD4 binding site antibody VRC07 have been initiated 
(NCT01937455, NCT03374202).

Gaining traction for treatment
The identification of novel highly potent bNAbs 
prompted the re-assessment of antibody-mediated 
therapy of established infection in humanized mice and 
non-human primates [67, 84–91]. Treatment of HIV-
1-infected mice with single bNAbs resulted in the rapid 
emergence of mutations at antibody target sites that were 
associated with viral rebound [84–86, 88, 89]. However, 
in contrast to earlier bNAbs, combinations of new-gen-
eration bNAbs targeting non-overlapping epitopes effec-
tively maintained suppression of viremia [84, 85, 87]. 
Sequence analyses of viruses obtained during and after 
treatment demonstrated the lack of concurrent escape 
mutations at all antibody target residues [84, 87]. Thus, 
similar to combinations of classical antiretroviral drugs, 
combination antibody therapy can prevent the develop-
ment of viral resistance in humanized mice.

In SHIV-infected non-human primates, the dura-
tion and magnitude of viral suppression during bNAb 
monotherapy appeared to be more pronounced than in 
humanized mice [67, 90, 91]. These differences might be 
explained by the fully functional immune system that is 
present in non-human primates but absent in humanized 
mice. Indeed, host immunity does play a critical role for 
the antiviral activity of HIV-1 neutralizing antibodies as 
demonstrated for Fc-mediated effector functions in both 
animal models [51, 52, 92, 93]. Underlining the impact 
on bNAb-mediated antiviral activity, the combination of 
bNAbs in NHPs prolonged suppression of sensitive SHIV 
strains and limited the development of viral resistance 
compared to single bNAbs [67].

bNAb monotherapy in humans
Early phase clinical trials started translating these find-
ings to HIV-1-infected humans, beginning with the 
CD4 binding site antibodies 3BNC117 [75] and VRC01 
[94], and  followed by the V3 loop antibody 10-1074 
[76]. Importantly, the administration of these antibod-
ies was found to be safe and very well tolerated across 
all trials completed to date [75–78, 94–98]. Moreover, 

infusion of either 3BNC117, VRC01 or 10-1074 at a dose 
of 30–40 mg/kg to sensitive viremic individuals resulted 
in rapid reduction of viremia by an average of 1.5, 1.1 
and 1.5 log10, respectively [75, 76, 94]. However, suppres-
sion of viral load below the limit of detection was only 
rarely achieved, and viral rebound generally occurred 
within 4 weeks. Rebound was associated with increased 
resistance against the administered bNAbs in most cases, 
although the extent differed between antibodies. Follow-
ing the administration of the V3 loop antibody 10-1074, 
a rapid selection of fully resistant escape variants was 
observed in all study participants [76]. In contrast, infu-
sion of the CD4 binding site antibodies 3BNC117 or 
VRC01 resulted in a general trend of reduced viral sensi-
tivity, but was not consistently associated with the devel-
opment of full resistance [75, 94]. For example, in six 
sensitive viremic individuals receiving 3BNC117 at a sin-
gle dose of 10 or 30 mg/kg, autologous culture outgrowth 
viruses remained partially sensitive to 3BNC117 with an 
increase of the geometric mean IC50 against 3BNC117 
from 0.2  µg/ml to only 1.7  µg/ml [75]. These findings 
might indicate that antibodies with similar effects on the 
viral load differ in their capacity to restrict viral escape. 
Importantly, the envelope protein targeted by broadly 
neutralizing antibodies has a critical function in the viral 
replication cycle, and escape from some bNAbs has been 
associated with reductions in viral fitness [76, 99, 100]. 
For example, in vitro studies of naturally occurring muta-
tions that confer resistance against the CD4 binding site 
antibody VRC01 showed a negative impact on the viral 
replicative capacity that could, however, be restored 
through compensatory mutations [99].

Compared to active viral replication in viremic indi-
viduals, ART-mediated suppression at the onset of 
bNAb therapy may impede the development of escape 
mutations. In agreement with this idea, single antibod-
ies were more effective in maintaining viral suppression 
in HIV-1-infected humanized mice following an initial 
period of antiretroviral therapy [85]. To test this con-
cept in humans, monotherapy with the bNAb 3BNC117 
or VRC01 was administered to HIV-1-infected indi-
viduals undergoing analytical treatment interruption 
(ATI) of antiretroviral therapy [95, 96]. While 3BNC117 
or VRC01 delayed the time to viral rebound to 10 or 
4 weeks, respectively, rebound did occur in the presence 
of high bNAb serum levels in most cases and was associ-
ated with increased antibody resistance [95, 96].

Taken together, first clinical trials demonstrated the 
safety and significant antiviral activity of novel broadly 
neutralizing antibodies targeting HIV-1. However, the 
emergence of viral escape variants has highlighted the 
limitations of antibody monotherapy.
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Combining antibodies for HIV‑1 therapy
Based on the well-established concept of preventing viral 
escape through combinations of antiretroviral drugs 
and similar results for bNAbs in pre-clinical studies, 
clinical trials that combine new-generation bNAbs were 
initiated  (Fig.  1). In the first study, the combination of 
3BNC117 and 10-1074 showed similar safety and phar-
macokinetic profiles to either antibody alone [97, 98]. In 
four viremic individuals determined to be infected with 
viruses sensitive to both antibodies, treatment with up 
to three infusions of 3BNC117 and 10-1074 resulted in 
an average drop in viremia of 2.0 log10 copies/ml [97]. In 
most of these individuals, reduced viral loads were main-
tained for as long as both of the administered antibodies 
were detectable in the serum (8–12 weeks after the last 
antibody infusion) [97]. Moreover, in contrast to 10-1074 
monotherapy [76], antibody escape did not develop in all 
instances [97]. However, despite the significant reduc-
tion of the viral load, full suppression was only achieved 
in study participants with relatively low levels of viremia 
(below 3000 copies/ml) [97].

More pronounced effects were observed in individuals 
infected with antibody-sensitive viruses undergoing ATI. 
These participants received the antibody combination at 
0, 3 and 6  weeks after stopping ART. In contrast to the 
time to rebound without intervention (2.4 weeks, histori-
cal controls) or 3BNC117 monotherapy (9.9 weeks) [96], 
the combination of 3BNC117 and 10-1074 maintained 
viral suppression for a median of 21  weeks or nearly 
4 months after the last antibody infusion [98].

Of note, 12 out of 13 individuals (4 viremic, 9 undergo-
ing ART interruption) with viruses sensitive to 3BNC117 
and 10-1074 did not experience viral rebound as long as 
both antibodies had serum concentrations above 10 µg/
ml [97, 98]. Thus, combinations of new generation 
bNAbs at sufficient antibody concentrations are effective 
in maintaining viral suppression in humans infected with 
sensitive viruses.

Preparing for practice
Antiretroviral drugs are highly effective in treating HIV-1 
infection and reducing the risk of infection when used 
as pre-exposure prophylaxis. Moreover, they are well-
established, easily distributable, increasingly available in 
generic form and long-acting injectable drugs are at the 
final stages of development [101]. Clinical implementa-
tion of broadly neutralizing antibodies will therefore not 
only require safe and highly active products, but also 
depend on the ease of administration, cost-effectiveness 
and well-designed strategies for their use.

Neutralizing potency and breadth are the most obvi-
ous prerequisites for the activity of bNAbs in  vivo. In 
addition, the capacity to restrict viral escape is likely 

to be an equally critical parameter  for the efficacy of 
bNAbs. Results from bNAb monotherapy  trials indicate 
that combinations of antibodies are required to reduce 
the development of viral resistance. All current combina-
tion studies target two non-overlapping epitopes (CD4 
binding site and V3 loop; V1/V2 loop and V3 loop; CD4 
binding site and MPER of gp41) (Fig.  1). Strategies that 
target more than two epitopes may further impede the 
development of viral resistance as well as increase the 
probability of capturing partially resistant variants. As an 
alternative to antibody combinations, bi- or tri-specific 
antibody-like molecules have been demonstrated to have 
similar or enhanced antiviral activity and clinical trials 
are about to be initiated [53, 64, 102, 103]. Finally, com-
binations of antibodies that bind to overlapping epitopes 
may restrict escape pathways for the given  target [87]. 
This may be particularly effective for antibody target 
sites that are limited in their capacity to accommodate 
mutations.

Viral strains differ in their sensitivity to antibod-
ies. Moreover, the HIV-1 envelope protein diversifies in 
response to the autologous immune response and dif-
ferent viral variants co-exist within one person. Thus, 
the selection of bNAbs needs to be tailored to an indi-
vidual’s viral quasispecies to prevent treatment failure. 
Phenotypic sensitivity assays of viruses derived from 
bulk T cell outgrowth cultures fail to detect pre-existing 
resistant variants in a relevant number of cases [75, 76, 
96–98]. Limiting dilution outgrowth assays increase the 
sensitivity, however, they are time-consuming and costly 
[98, 104]. In contrast to phenotypic testing, antiretrovi-
ral therapy is mostly guided by prediction models based 
on viral sequences [105]. Similar approaches based on 
env sequences are under development but will need to be 
confirmed in prospective settings [106, 107].

While terminal elimination half-lives of most antiretro-
viral drugs range between a few hours to 2 days, the half-
lives of bNAbs are measured in weeks and result in long 
periods of effective plasma concentrations after a single 
administration. Notably, these periods can be further 
extended by modifications of the antibody Fc domains 
that enhance the affinity to the neonatal Fc receptor 
[108]. For example, the M428L and N434S (“LS”) muta-
tions prolong antibody half-life without compromis-
ing antigen-binding or other Fc-mediated functions 
[109]. Indeed, the LS variant of VRC01 demonstrated 
a half-life of ≈ 70  days in healthy individuals, which is 
a nearly 5-fold increase compared to the unmodified 
VRC01 [110]. The extended half-life of LS variants is also 
reflected in prolonged protective activity in pre-clinical 
studies [70, 71]. Thus, LS-modified bNAbs may facilitate 
dosing every few weeks to several months for treatment 
or even less frequently for prevention.
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Compared to the ease of oral application of most regu-
lar antiretroviral drugs, the intravenous route employed 
in most clinical trials of bNAbs can be impractical. Sub-
cutaneous (s.c.) injection, however, allows for easy (self-)
administration and bNAbs have shown similar half-lives 
when given s.c. or i.v. [77, 78, 94, 110]. While antibody 
peak concentrations are lower after s.c. application and 
injection volumes pose restrictions, these limitations can 
be compensated by advances in antibody formulations 
and extended half-lives. Finally, antibodies can be admin-
istered topically and vaginal application of anti-HIV-1 
bNAbs was generally safe in clinical trials [111, 112]. In 
proof-of-concept studies, this strategy protected animals 
from infection [113–115]. While these findings would 
need to be confirmed in humans, adherence to repeated 
and timely administration is a critical and potentially lim-
iting factor for the efficacy of topically applied antibodies 
[116].

Going forward and beyond neutralization
Despite substantial differences in their modes of action, 
both antiretroviral drugs and bNAbs suppress viremia. 
Thus, bNAbs may provide a treatment option for indi-
viduals infected with ART-resistant viruses as well as for 
individuals suffering from side effects or toxicities caused 
by ART. Effective ART with three active drugs leads to 
rapid reduction of high viral loads to levels undetectable 
by standard clinical assays. Whether this can be equally 
achieved by bNAb combinations remains to be deter-
mined. However, first results suggest that bNAb-medi-
ated therapy is particularly effective in individuals with 
low or suppressed starting viral loads [95, 96, 98]. There-
fore, an initial phase of ART followed by bNAb-mediated 
therapy is a promising strategy for long-term control of 
the virus. For all of these approaches, as well as for the 
potential application of bNAbs for pre-exposure prophy-
laxis, the long half-life of bNAbs can significantly reduce 
the burden of daily medication and the need for meticu-
lous adherence.

Broadly neutralizing antibodies differ from classical 
antiretroviral drugs in that they directly target the cir-
culating virus, recognize HIV-1-infected cells expressing 
HIV-1 Env and can engage with the host immune sys-
tem. Indeed, Fc-mediated interactions have been dem-
onstrated to be important for effective bNAb-mediated 
(S)HIV control and prevention in animal models [51, 52, 
92, 93]. In addition, passively administered bNAbs can 
influence the extent of the autologous antiviral immune 
response. For example, a single infusion of 3BNC117 was 
associated with the development of enhanced host neu-
tralizing antibody activity in HIV-1-infected individu-
als [117], corroborating similar observations made in 
SHIV-infected animals [118–121]. Moreover, bNAb 

therapy has been associated with enhancement of cellular 
immune responses [93, 122, 123]. Notably, administra-
tion of bNAbs 3BNC117 and 10-1074 during early SHIV-
infection resulted in long-term viral suppression. As 
demonstrated by rapid viral rebound after CD8+ T cell 
depletion, viral suppression was effectively mediated by 
T cells when the antibodies were no longer detectable in 
the serum [123]. Whether these effects can be exploited 
for an improvement of clinical outcomes in humans 
remains to be determined. In particular, the potential 
effects of bNAbs given during acute or early infection will 
be important to investigate in clinical trials.

Additionally, bNAbs contribute to the elimination of 
HIV-1-infected cells [93]. This activity may also extend 
to the clearance of viral foci established early after expo-
sure [58, 66]. The capacity of antibodies to mediate the 
elimination of HIV-1-infected cells will become particu-
larly relevant in strategies that target the HIV-1 reser-
voir. However, no significant changes in the size of the 
circulating latent reservoir were observed after the infu-
sion of 3BNC117 or VRC01 to individuals on ongoing 
suppressive ART, or after the combined administration 
of 3BNC117 and 10-1074 during interruption of ART 
[94, 98, 124]. However, these studies had relatively short 
observation periods (up to a few months), involved only 
a low number of antibody infusions and mainly included 
individuals with chronic HIV-1 infection. All of these fac-
tors may have limited bNAb-mediated effects on the viral 
reservoir or their detection.

Stimulation and induction of HIV-1 Env expression 
on the surface of latently infected cells make them an 
approachable target for bNAbs that can mediate their 
clearance by engaging the host immune system (so-
called shock and kill approach). Indeed, when bNAbs 
were combined with latency-reversing agents (LRAs), 
long-term viral suppression was observed in a fraction of  
(S)HIV-infected humanized mice and macaques [52, 
125]. To investigate this concept in humans, the histone 
deacetylase inhibitor romidepsin is being studied in com-
bination with 3BNC117 (NCT02850016, NCT03041012) 
as well as in combination with 10-1074 and experimen-
tal therapeutic vaccines (NCT03619278). When given 
to ART-treated individuals, romidepsin has been shown 
to result in transient viremia [126]. While the effects of 
romidepsin given in combination with bNAbs will be 
important to determine, latency-reversing strategies will 
likely require further optimization such as combinations 
of LRAs or use of additional drugs (e.g., interferon alpha 
[127]).
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Conclusions
Newly identified highly potent broadly neutralizing 
anti-HIV-1 antibodies have rapidly advanced from pre-
clinical experiments to clinical trials that have dem-
onstrated their safety and significant antiviral activity. 
Moreover, these studies have improved our under-
standing on how to establish bNAb interventions for 
clinical practice.

Preventing the development of viral resistance is 
a key factor for effective bNAb-mediated therapy 
and, similar to antiretroviral drugs, combinations of 
antibodies or poly-specific antibody variants will be 
required to increase the barrier for HIV-1 escape. In 
determining optimal combination partners, factors 
beyond mere HIV-1 coverage will be relevant and are 
likely to include the efficacy in restricting viral escape 
pathways. Equally important, improved and reliable 
screening methods are needed to guide clinicians in 
bNAb selection and the identification of candidates for 
effective bNAb therapy.

Ongoing and planned trials will aid in the development 
of effective treatment and prevention strategies. In par-
ticular, bNAbs appear to be especially useful in maintain-
ing viral suppression in a setting of ART interruption. 
Moreover, antibodies may contribute to a reduction in 
the reservoir of HIV-1-infected cells as part of future 
cure strategies. Finally, modified antibody variants with 
substantially increased half-lives facilitate infrequent 
dosing of antibodies, and improved formulations will 
allow for alternatives to i.v. application that will be of par-
ticular interest for the use of bNAbs in prevention.

By limiting disease progression and reducing viral 
transmission, antiretroviral drugs have profoundly 
affected the course of the HIV-1 pandemic. With highly 
potent broadly neutralizing antibodies now demonstrat-
ing their impressive potential in pre-clinical and clinical 
settings, novel agents for the treatment and prevention of 
HIV-1 infection have come into the reach of clinical real-
ity. Delineating the critical factors for successful appli-
cation of bNAbs will be essential to exploit the unique 
capabilities of antibodies to benefit HIV-1-infected 
patients and those at risk of acquiring HIV-1 infection.
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