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in the development of HIV‑1 specific broadly 
neutralizing antibody responses
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Abstract 

The induction of HIV-1-specific antibodies that can neutralize a broad number of isolates is a major goal of HIV-1 
vaccination strategies. However, to date no candidate HIV-1 vaccine has successfully elicited broadly neutralizing 
antibodies of sufficient quality and breadth for protection. In this review, we focus on the role of follicular helper CD4 
T-cells (Tfh) in the development of such cross-reactive protective antibodies. We discuss germinal center (GC) forma-
tion and the dynamics of Tfh and GC B cells during HIV-1/SIV infection and vaccination. Finally, we consider future 
directions for the study of Tfh and offer perspective on factors that could be modulated to enhance Tfh function in 
the context of prophylactic vaccination.
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Background
A sterilizing HIV-1 vaccine would greatly facilitate the 
fight against the HIV-1 epidemic. Research efforts over 
the past 35  years have afforded unique insights into 
the biology, virology and immunology of HIV-1 infec-
tion including a better appreciation of the importance 
of cross-clade reactive, broadly neutralizing antibod-
ies (bnAbs) [1, 2]. HIV-1 is a highly diverse pathogen 
and successfully evades immunity by constantly shift-
ing its antigenicity through evolution [3]. The failure 
of the Merck adenovirus type 5 (Ad5)-based vaccine in 
the STEP trial to induce robust protective cell-mediated 
immunity (CMI) responses to either prevent HIV-1 
infection or suppress viral load in infected individu-
als refocused vaccine development efforts on humoral 
immunity [4]. bnAbs are antibodies that recognize highly 
conserved sites of vulnerability in many different circulat-
ing strains of HIV-1 [5, 6]. As such, they hold great prom-
ise for HIV-1 vaccine development. Studies of passive 
bnAb transfer in non-human primates and humans have 
been shown to prevent infection and reduce viral loads, 

suggesting that combinations of durable bnAb levels 
could be used prophylactically as well as therapeutically 
[1, 2, 7–13]. However to date, despite the use of potent 
immunogens and delivery strategies, efficacy in HIV-1 
vaccine trials remains either very low or absent [14–17]. 
This apparent disconnect between potent immunogen 
delivery and optimal response elicitation has sparked a 
renewed interest in the tissue-specific dynamics of bnAb 
development, including the selection and expansion of 
specific germline BCR precursors in B cell follicles, and 
the immunological correlates of those dynamics. Such 
topics have traditionally been hard to study in lymph 
node (LN) samples due to the difficulty in obtaining LN 
material from HIV-1+ individuals. More recently how-
ever, the availability of longitudinal biopsies from non-
human primates in combination with the advancement of 
multi-parameter imaging and flow cytometry techniques 
have opened new avenues for tissue-specific immunity 
exploration [18, 19]. Here, we review the recent literature 
on Tfh cells and bnAbs in the context of chronic HIV-1/
SIV infection and vaccination and offer perspective on 
open questions that need to be addressed in order to 
design vaccine strategies that will optimally engage the 
humoral arm of the adaptive immune system.
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Tfh cells and their role in GC responses
Tfh are cells that localize to the lymph nodes, within 
well-defined structures called B-cell follicles (Fig. 1) [20, 
21]. They are critical for the maturation, isotype switch-
ing, and somatic hypermutation (SHM) of B cells as 
well as for the survival of memory B cells and antibody-
secreting plasma cells [20, 22, 23]. Their role thus is 
instrumental for the generation of high affinity antibod-
ies. Tfh cells express low levels of CCR7 and are classi-
cally defined by the expression of the surface receptors 
CXCR5 and costimulatory receptors PD-1 and ICOS 
[20]. Their unique phenotype is preserved among dif-
ferent species including mice [24], non-human primates 
[25] and humans [21]. Although their ontogeny is not 
entirely clear, Tfh cells share characteristics with other 
CD4 T-cell lineages [26, 27]. However, their transcrip-
tional regulation and gene expression profiles are dis-
tinct from all other lineages such as Th1, Th2, Th17 and 
regulatory T cells [28, 29]. Maturation of Tfh cells begins 
with antigen priming by DCs in the T cell zones sur-
rounding the lymphoid follicles [30] and continues at the 
follicular T-B border with cognate interactions between 
Tfh and B-cells [31, 32]. These events lead to the induc-
tion of the transcription factor Bcl-6 as well as c-Maf 
that control lineage commitment to the Tfh fate [33, 34]. 
These early Tfh-B cell interactions require expression of 
the surface receptors ICOS, OX40 and CD40-ligand as 
well as expression of the cytokines IL-4 and IL-21 and 
have been shown to influence both Tfh fate commitment 
and the survival and ability of B cells to enter the GC 
response [29, 35–37]. B-cells activated during these early 
Tfh-B cell cognate interactions can subsequently move 
in extrafollicular areas for proliferation and differentia-
tion into short-lived, antibody-secreting plasma cells or 
migrate into B cell follicles to establish a GC [38]. What 
determines either fate is not entirely clear but evidence 
exists to suggest that the decision might be contingent 
on the affinity of the B cell receptor (BCR) for the for-
eign antigen [39, 40], the density of antigen-MHC class II 
complex engagement [41], and the costimulatory signals 
received from T cells [38]. In these early steps of GC for-
mation, the relative density of MHC class II expression 
on B cells appears to reflect the affinity of a given BCR 
precursor for antigen and the efficiency of BCR-mediated 
antigen uptake [42]. Thus, early cognate Tfh-B cell inter-
actions may represent an important bottleneck in the 
ability of Tfh to recruit B cells of a given specificity into 
the response [43]. The follicular recruitment, frequency 
and function of Tfh, is additionally influenced by the rela-
tive abundance of antigen and availability of chemokines 
such as CXCL13 and SDF-1 [44]. In the GC, B cells con-
stantly migrate between the light zone (LZ) and the dark 
zone (DZ) and thus the process of GC selection is highly 

regulated spatiotemporally [45]. T cell help in the LZ has 
been shown to activate the mTORC1 pathway, promot-
ing a phase of anabolic growth that precedes and sustains 
the successive cycles of DZ proliferation [46]. Thus, Tfh 
in the LZ determine the cycling speed and number of cell 
divisions that a GC B cell will undergo as well as the asso-
ciated number of B cell receptor (BCR) mutations in the 
GC per round of selection [43, 47, 48]. These data sug-
gest that optimal GC reactivity and bnAb development 
depend on the phenotype of Tfh, as well as their spati-
otemporal localization.

HIV‑1/SIV infection and bnAb development
Role of Tfh cell quality
HIV-1/SIV infection and the resulting viremia influence 
the signals and mechanisms that regulate the dynam-
ics of Tfh cells as well as the dynamics of Tfh-GC B cell 
interaction in LN follicles. Tfh induction can be traced 
as early as 14  days post-infection in NHPs challenged 
with SIV [49] and studies in humans and NHPs show 
that despite CD4 T cells being depleted during chronic 
HIV-1/SIV infection, the frequency of CXCR5+ PD-1hi 
CD4 T cells significantly increases both in the blood as 
well as in the LNs [50–53]. However, the increase in the 
frequencies of Tfh is not directly translated into higher 
bnAb levels. Only 20–30% of infected individuals are 
capable of mounting broadly neutralizing antibodies with 
HIV-1-specificities that have the potential to bind multi-
ple HIV-1 envelope spikes of heterologous lineage during 
the first three years of infection [54]. Why some individu-
als and animals are able to develop bnAbs in the context 
of viremia whereas others do not is not entirely clear but 
both virologic, genetic and immunologic factors seem to 
influence this outcome. Virologic parameters that have 
been linked to bnAb production include characteristics 
of the infecting strain (ie viral loop length) [55–57] and 
degree of viral diversity [56]. For instance, exposure to 
multiple variants, as in the case of superinfection, has 
been shown to predict the development of bnAbs [56, 58] 
and studies in NHP and humans point to antigenic diver-
sity (ie Env) being an important parameter with high viral 
loads and greater sequence evolution predicting a greater 
breadth of neutralization [56, 58, 59]. Host genetic fac-
tors, such as expression of specific HLA alleles have also 
been associated with bnAb activity in some cohorts [60, 
61] whereas from an immunological stand-point, two 
parameters considered important are the ability of Tfh 
cells to provide help to B cells [62] and level of T-cell reg-
ulation [63].

CD4 T cells in the LN are a major target for HIV-1 
infection. CXCR5+ PD-1hi cells in infected LNs have 
been shown to harbor a significantly increased frequency 
of HIV-1 DNA compared with non-Tfh cells [52] and 
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Fig. 1  Sequence of events leading to GC induction and the production of high affinity antibodies. (1) The induction of Tfh takes place in 
the T-cell zone upon interaction with DCs. (2) In the T–B border, B cells present antigen in complex with MHC-II to Tfh. These early cognate 
interactions determine which B cells will migrate to the GC to undergo somatic hypermutation and clonal expansion and which will become 
plasmablasts. (3) GC B cells constantly migrate between the LZ and DZ sampling antigen on FDCs and receiving help from Tfh. The nature of these 
interactions determines which GC B cells will survive and become plasma cells as well as the number of rounds of affinity maturation and somatic 
hypermutation a B cell will undergo before selection and exit to the periphery. (4) GC B cells become either antibody secreting plasma cells or 
memory B cells upon GC exit. Tfh, follicular T-helper cell; GC, germinal center; DC, dendritic cell; MHC, major histocompatibility complex; LZ, light 
zone; DZ, dark zone; FDC, follicular dendritic cell; BCR, B cell receptor; ICOS, Inducible T-cell costimulator; TCR, T cell receptor
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to represent a major reservoir of latent virus in humans 
receiving antiretroviral therapy [64, 65]. In addition, their 
localization in close proximity to virion-ladden follicu-
lar dendritic cells (FDCs) in B cell follicles makes them 
increasingly susceptible to infection (Fig.  2) [66, 67]. 
Tfh cells isolated from HIV-1-infected patients produce 
less IL-21, a critical cytokine for GC formation, GC B 
cell proliferation and B cell maturation [68] . Exogenous 
administration of IL-21 has been shown to improve 
memory B cell frequencies, which suggests that IL-21 
deficiency may, at least in part, impair the formation of 
memory B cell responses [69, 70]. HIV-1/SIV infection 
also imparts defects in the PD-1/PD-L1 axis. GC B cells 
from HIV-1 infected individuals express elevated levels of 
PD-L1 and have been shown to reduce ICOS and IL-21 
expression in Tfh cells upon PD-1 ligation which could 
further compromise their ability to provide help to B cells 
[62]. The in vivo cycling capacity of Tfh cells is also com-
promised compared with other CD4 T-cell populations 
within the lymph nodes of infected NHP [53]. Moreo-
ver, in chronic untreated HIV-1+ infection Tfh become 
functionally skewed and oligoclonally restricted [71] 
Thus, HIV-1/SIV infection potentially alters the ability 
of Tfh to provide help to GC B-cells through a number 
of mechanisms. However, to what extend tissue-specific 
Tfh responses, including ICOS, CD40L expression and 
cytokine secretion differ between broadly neutralizers 
and non-neutralizers remains poorly understood. More 
recently, a number of studies have pointed to the hetero-
geneity of the Tfh population within the GC but less is 
known about the exact ontogeny of these individual phe-
notypes [72–74]. For instance, Tfh cells expressing CD57, 
show a significantly higher frequency of HIV-1 infection 
compared with extrafollicular CD4 T cells [75, 76] and 

transcriptional signatures that show differences when 
compared to CD57- [72]. Moreover, chronic SIV infec-
tion has been shown to promote expansion of CXCR3+ 
expressing, IFN-γ producing GC Tfh cells (Th1-like) 
which are functionally distinct from CXCR3− Tfh in 
terms of phenotype and cytokine production [77]. To 
what extend these alterations affect the development of 
bnAbs is not currently known. Differences in the antigen-
specificity or clonality of Tfh cells may also account for 
differences in the HIV-1-specific GC B-cell responses 
[71]. Even though the in vitro quantification of antigen-
specific Tfh cells has been challenging [78] data support-
ing different roles for phenotypically distinct Tfh cells are 
available. In one study, IL-4 producing Env-specific Tfh 
but not those producing IFN-γ favored the development 
of Env-specific IgG+ GC B cells in NHP challenged with 
SHIVAD8 in the chronic phase [59]. Further research is 
needed to understand how viral infection modulates the 
ability of Tfh cells to provide help to B cells, their posi-
tioning, Tfh subtype transcriptional differences as well as 
the factors that contribute to Tfh persistence in the face 
of chronic viremia.

Role of antigen and immune inflammation
Broadly neutralizing antibodies have been shown to 
develop after several years of infection in HIV-1+ 
individuals, with the first cross-neutralizing antibody 
responses appearing on average at 2.5 years post- infec-
tion [79]. Such bnAbs are characterized by a number of 
unusual features; they possess high-levels of somatic 
hypermutation reaching, in some cases, frequencies of 
32% and 20% in heavy- and kappa- chain V genes respec-
tively [5], extraordinarily long CDR3 antigen-contact-
ing sites [5, 80, 81] and are poly- or autoreactive [82]. 

a bCD4CD20FDC CD4CD20FDC

Fig. 2  Convergence of CD4+ T cells, B cells and FDC in a B cell follicle. Confocal imaging microscopy showing the convergence of immune 
populations contributing to the development of bnAbs in a lymph node B cell follicle derived from a HIV- individual. CD4 T cells are shown in green, 
CD20 in blue and FDCs in red. Images were acquired at ×40 (NA 1.3). Captions are a 50 μm and b15 μm respectively
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Their unique characteristics, potency and breadth arise 
through a continuous process of B cell adaptation and 
affinity maturation which may be fueled by a prolonged 
exposure to antigen [83, 84]. Antigenic persistence and 
antigen dose both determine the size and duration of the 
Tfh response and GC reaction [85] and Tfh cell accumu-
lation in the chronic phase of HIV-1 infection is substan-
tially decreased by ART [51–53]. Therefore, prolonged 
antigen availability within GCs in the context of HIV-1/
SIV may be contributing to bnAb development by affect-
ing both Tfh and B cell dynamics.

Role of GC B cell quality
Another hallmark of HIV-1/SIV infection is B cell dys-
regulation [86]. Several B cell abnormalities manifest 
during HIV-1 infection including phenotypic changes, 
polyclonal B cell activation and hypergammaglobulinae-
mia, as well as B cell unresponsiveness to T-cell inde-
pendent and T-cell dependent B cell activation, all of 
which might affect the ability of HIV-1 infected individu-
als to develop bnAbs and respond to therapeutic vaccina-
tion or prophylactic vaccination against other infectious 
diseases such as hepatitis B and influenza [86–91]. The 
accumulation of Tfh cells in chronic HIV-1 [51, 52] and 
SIV [53] is associated with expansion of GC B cells and 
plasma cells. Maturation however into memory B cells 
is reduced [92]. In addition, B cells from patients with 
HIV-1 have low expression of the CXCL13 receptor 
CXCR5 compared with healthy controls and secrete large 
amounts of CXCL13 upon polyclonal stimulation which 
could, under physiological conditions alter the homing of 
B-cells [93]. Currently, there is little information on how 
B cell impairment affects the bnAb response in HIV-1/
SIV infection. A better understanding of (1) the antigen-
specific LN B cell responses, (2) the molecular profile and 
of GC B cell maturation process and (3) the spatial organ-
ization of GC immune reactions in the context of HIV-1/
SIV are warranted in order to successfully design future 
vaccination strategies.

Role of follicular regulatory T‑cells (Tfr)
FoxP3+ CD4+ Treg cells play an important role in the 
regulation of B cell responses as in their absence the lev-
els of circulating antibodies increase [94]. T follicular 
regulatory (Tfr) cells, are a subset of FoxP3+ CD4+ Treg 
cells that localize to the GC during immune responses to 
control the magnitude of the response [95]. Phenotypi-
cally, Tfr express CXCR5+ alongside the classical Treg 
marker CD25 [96] but their exact function in the GC, 
especially in the context of HIV-1 is not yet clear. Given 
that FoxP3 is expressed in memory non-Treg CD4 T cells 
too, further phenotypic characterization of LN Tregs 
is necessary. Under physiological conditions, a skewed 

presence of Tfr cells in extrafollicular areas compared 
to follicles has been shown [97]. In chronic HIV-1/SIV 
infection, the absolute number of Tfr cells within total 
LN CD4 T cells is increased [98, 99]. However how this 
may be impacting upon neutralizing B- cell development 
remains to be found. Studies in LNs of NHP, have shown 
an inverse correlation of the frequency of LN Tfh cells 
with Tfr frequency and the avidity of antibodies recog-
nizing the SIV gp120 protein in plasma. Hence, Tfr could 
act to limit the maturation of antigen-specific responses 
[100] with bnAb development during HIV-1/SIV infec-
tion being favored by a relaxation in the regulatory 
control of GC antibody production [101, 102]. Further 
research in NHP LN biopsies and human FNA samples 
are thus warranted to address in more detail the role of 
Tfr responses in the expansion of B cells with neutraliz-
ing and non-neutralizing reactivities.

Lessons from vaccination
The realization that many individuals harbor bnAb pre-
cursors in their naïve B cell repertoires has reignited the 
hope that a bnAb-based HIV-1 vaccine might be attain-
able. Precursor frequency for bnAbs in the naïve rep-
ertoire is usually low, with those of the VRC-01 class 
estimated at ~1 out of 400,000 naïve B cells [103]. In 
addition, the affinity of such germline precursors for anti-
gen is also low [104]. Thus, one critical question is how 
to optimally engage these precursors at tissue-level. The 
introduction of germline-targeting immunogens, namely 
immunogens aiming at activating B cells that express 
specific germline BCRs, represents one strategy to tackle 
low precursor frequencies [105, 106]. Furthermore, 
immunization studies indicate that for optimal vaccine 
efficacy the following conditions must be met: (1) B cell 
precursors must be present in the repertoire at sufficient 
frequencies [106, 107] (2) B cell precursors must have 
sufficient affinity for antigen for recruitment into the GC 
and competitive success [106, 107] (3) B cells and mem-
ory B cells must express a favorable antibody class [108] 
(4) the right structural context and T-B cell stoichiometry 
must occur in GC for optimal engagement and somatic 
hypermutation [107] (Table 1).

Tfh cells are central to GC formation and there-
fore their quantity and quality play a major role. In the 
absence of T cells, GCs formed in response to T-inde-
pendent antigens collapse shortly after compartmentali-
zation into the DZ and LZ [38]. To date, most of the data 
investigating Tfh quality and phenotype in the context of 
prophylactic vaccination come from circulating Tfh cells 
(pTfhs). Although the latter are often used as biomark-
ers of GC activity the lineage relationship between bona 
fide Tfh in LN and circulating Tfh is not clear [109–111]. 
The high heterogeneity of pTfh cell phenotypes and gene 
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expression profiles further complicates the interpretation 
of relevant studies [74, 112, 113]. Of all subsets, PD-1+ 
CXCR3− CXCR5+ CD4 T cells found in the blood have 
been found to be the population most related to GC Tfh 
cells by gene expression, cytokine expression profile and 
ability to provide help to B cells in  vitro [110]. Higher 
expression of Tfh-associated genes, including CD40L, 
IL-21 and ICOS has been observed in animals mount-
ing strong neutralizing antibody responses [43] and in 
the RV144 trial that produced some efficacy in humans, 
HIV-1-specific IL-21 producing pTfh cells were elevated 
[102, 110, 114, 115]. In addition, HIV-1 infected indi-
viduals with strong neutralizing responses harbor higher 
frequencies of pTfh [102, 110]. However, an association 
between pTfh and bnAb development is not always pre-
sent [109]. Further research is needed to delineate the 
relationship between GC Tfh, pTfh and bnAbs in the 
context of prophylactic and therapeutic vaccination.

Antigen presentation and recognition are central to 
Tfh cell induction [30, 116] Therefore, increasing anti-
gen availability has emerged as a rational approach to 
enhance Tfh responses for neutralizing antibody produc-
tion in the context of vaccination [117]. Different strate-
gies are under investigation targeting an effective delivery 
of immunogens, including (a) the continuous immuno-
gen infusion whereby soluble native antigen degradation 
is reduced [118, 119], (b) the formation of immuno-com-
plexes and deposition of antigen on monocytes, DCs or 
FDCs [120, 121], (c) the use of delivery platforms such as 
nanoparticles, liposomes, viral particles and use of adju-
vants that can prolong antigen retention [122]. In parallel, 

approaches to induce affinity maturation of bnAb-class 
specific naïve B-cell precursors (ie VRC01 or PGT121-
class naïve B-cells) by delivering structurally optimized 
immunogens in sequential immunization protocols are 
also being tested [104, 123–125]. Combining such pro-
tocols with Tfh-boosting strategies will most likely be 
necessary for optimal vaccine efficacy. The type of prime-
boost strategy also affects ensuing Tfh responses. Prime-
boost strategies employing pure DNA instead of protein 
at priming, have been shown to increase Tfh differentia-
tion, GC reactivity and antigen-specific antibody titers in 
mice [126] although to what extend they increase specifi-
cally broadly neutralizing antibodies remains to be deter-
mined. The interval between priming and boosting is also 
important for optimal Tfh and B-cell kinetics as an early 
boost, at the time when Tfh and B-cell maturation are 
still ongoing, could lead to suboptimal responses [127].

Understanding recall responses is also critical. GC 
B cell sequencing data indicate that memory B cells 
actively re-circulate after each immunization and reseed 
new GCs, with moderately mutated memory B cell lin-
eages being more likely to participate in this reseeding. 
[128]. In a study by Havenar- Daughton et al, GC B cell 
frequencies in the draining LN in response to the final 
immunization were found to be the most predictive fac-
tor for the development of autologous nAbs with the 
top neutralizers having three fold more responding GC 
B cells than animals that only made non-neutralizing Ab 
responses [128]. Thus, understanding the recall kinetics 
of Tfh and B-cells in the context of serial immunizations 
will be key to developing prophylactic and therapeutic 
HIV-1 vaccines.

Conclusion
Much progress has been made over recent years in 
understanding Tfh cells and their implication in GC B 
cell responses. It is now clear that Tfh cells are instru-
mental for the generation of high affinity antibodies. 
Hence, manipulation of this subset and its microenviron-
ment will be necessary for optimal vaccine efficacy. Tfh 
cell induction and optimal antigen-specific Tfh- B cell 
interaction will most likely necessitate a combination of 
more than one strategy. Deeper insights into the dynam-
ics of Tfh cell induction, function and memory are also 
warranted. To this end, longitudinal studies in individu-
als with and without neutralizing activity with fine nee-
dle aspirates (FNA) could surpass the current limitations 
of LN biopsies and the need for complete removal of a 
LN at the site of induction. Powerful system immunol-
ogy approaches, including bioinformatics and next-
generation sequencing to uncover innate signatures and 
immune mechanisms that correlate with protection and 
that can improve vaccine induced long-lived neutralizing 

Table 1  Parameters linked to the development of broadly 
neutralizing antibodies

Parameter References

Tfh

 Frequency [50]

 Quality [50, 52, 61, 69]

 Phenotype / specificity [50, 61, 69]

B-cells

 Precursor frequency [40, 94, 95, 97, 
106, 107, 
116]

 BCR affinity for antigen [37, 40, 107]

 Isotype class [98]

 Amount of help received by Tfh [36, 40, 44, 52]

Antigen

 Persistence [76, 106]

 Diversity [69]

Tregs/Tfr

 Frequency [53, 90, 91]
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antibody responses will also be needed to guide the 
rational development of HIV-1 vaccines. A better under-
standing of those tissue-specific correlates that lead to 
robust GC B cell expansion, SHM and neutralization 
breadth will be key to achieving the goal of sterilizing 
HIV-1 immunity.
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