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Total HIV DNA: a global marker of HIV 
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Abstract 

Among the different markers of HIV persistence in infected cells, total HIV DNA is to date the most widely used. It 
allows an overall quantification of all viral forms of HIV DNA in infected cells, each playing a different role in HIV repli‑
cation and pathophysiology. The real-time PCR technology is to date, a precise, sensitive and reproducible technology 
that allows the description of the distribution of HIV infected cells in blood and tissues. The objective of this review is 
to present some examples which show the interest to quantify total HIV DNA levels. This marker brought an undeni‑
able and considerable contribution to reservoir studies. Many results, both in clinical and basic research, allowed to 
get a large overview of the distribution of infected cells in the body, at all stages of HIV disease and during therapy. 
Future clinical studies aiming at reducing HIV reservoirs will benefit from HIV DNA quantification in blood and tissues, 
in association with other markers of HIV reservoir activity.
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Background
Among the different markers of HIV persistence in 
infected cells, total HIV-1 DNA is to date the most 
widely used marker. This marker is often considered as 
imperfect. However, it is the one that has brought and 
will bring the most results in HIV reservoir studies. The 
major criticism is that this marker makes it possible to 
quantify all forms of HIV-DNA, without differentiating 
the defective forms from the latent ones that can produce 
infectious viruses. This drawback can also be considered 
an advantage because it therefore allows an overall quan-
tification of all viral forms of HIV DNA, each playing a 
different role in HIV replication and pathophysiology. 
In fact, defective proviruses participate in HIV patho-
genesis, as they can produce viral antigens, incomplete 
viruses, can induce activation/inflammation in infected 
tissues, thereby maintaining viral replication and facili-
tating the persistence of HIV reservoirs throughout the 
body [1]. Clearly, all reservoir cells represent the engine 
of the viral infection and merit to be measured. The 

pathophysiology of HIV-1 reservoirs is complex and dif-
ferent in infected compartments and tissues, that justifies 
to explore multiple markers together, each one having a 
different meaning. The question is not what is the best 
marker, but rather what is the best association of reser-
voir markers for each program [2]. Among all reservoir 
markers, total HIV DNA represents one of the master 
pieces to build the puzzle.

Technical aspects of total HIV DNA quantification
Total HIV DNA, also called cell-associated HIV DNA 
(CA-HIV DNA), is a marker of HIV reservoirs that per-
mits the quantification of all forms of HIV DNA includ-
ing stable integrated proviruses and unintegrated forms, 
including extrachromosomal 2-LTR, 1-LTR forms and 
linear forms. All these forms co-exist in infected cells 
during viral replication and their levels may vary among 
patients, according to the stages of HIV disease [3].

The most frequently used method for measuring total 
HIV DNA is the quantitative real-time PCR based assay 
[4]. HIV-1 DNA PCR assays are performed on total DNA 
extracts from cells. Amplification has to be done with 
primers and probe, targeting conserved regions of the 
viral genome. LTR, pol and gag genes are the most often 
selected, but the high viral genetic diversity has to be 
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taken into account, especially in countries where there 
are high numbers of various CRF and non-B subtypes. 
The quantification of the copy number is based on a 
standard curve prepared by serial dilutions of a standard, 
such as 8E5 cell line containing one genome per cell. The 
initial quantification of total DNA by the measurement 
of the optical density at 260 nm (OD260), or by quantify-
ing a cellular gene in parallel by PCR (such as CCR5 or 
albumin), is necessary to assess the cell number tested 
in a PCR and to calculate the frequency of infected cells 
per one million cells [5]. It is generally assumed that there 
is one copy per infected cell, in particular in latently 
infected cells which are dominant, especially among 
patients receiving a prolonged and effective antiretrovi-
ral treatment. The frequency of infected cells being very 
low, the objective is to quantify a rare event. Such quan-
tification follows the Poisson probability distribution. So, 
whatever the technique used, it is necessary to test high 
numbers of cells, in order to reach low detection levels. 
Since the amount of total DNA is limited per PCR well, 
it is often necessary to test several replicates, in order to 
increase the number of cells tested and to estimate the 
frequency of infected cells, as well as possible (especially 
in case of very low frequency). The Boston patients and 
the Mississippi baby cases confirmed that the latent res-
ervoir can persist at a level below the limit of detection 
of current assays, allowing the rebound of HIV infection 
months later. An ultra-sensitive protocol could be used 
by testing six to eight replicates, to explore a high num-
ber of cells and detect low levels as it has been done for 
Elite controllers and Post Treatment Controllers (also 
called VISCONTI patients) [6–8]. The same technology 
has been also developed for HIV-2 infected patients, hav-
ing usually low reservoir levels. A new assay for HIV-2 
DNA quantification based on the same technology has 
also been developed [9].

The quantitative real-time PCR offers a number of 
technical advantages, making the total HIV DNA the 
most widely used marker for exploring HIV reservoirs. 
There are multiple reasons for this situation: the assay 
is the most feasible and reproducible, it is quick, easy 
to perform, precise, accurate, sensitive and with a large 
dynamic range of quantification. Compared to other 
assays, such as QVOA which may need more than 100 ml 
of fresh blood, small amounts of blood or tissue can be 
tested and samples can be stored frozen before test-
ing. Moreover, it is less expensive and time consuming. 
The technique has a good reproducibility, as shown with 
the intra-laboratory control reported in a recent review 
[10], the Inter-assay coefficient of variation was at 0.07, 
in the same range than a recent one at 0.15 [11]. Lastly, 
the results obtained, within inter-laboratories control, 

has confirmed that this technique could be implemented 
within multi-centric protocols and clinical trials [12].

One standardized quantitative assay based on real-
time PCR has been commercialized (Biocentric, Bandol, 
France). This has enabled access to both basic research 
and clinical research teams to use the same quantitative 
tool, making possible comparisons between studies [13].

Similarly to assays which have been developed for HIV 
RNA quantification, the total HIV DNA real-time PCR 
assay is easy to be adapted to automated nucleic acid 
extractors and real time-PCR machines. It takes around 
4 h to test more than 80 samples within one run, making 
this technique well adapted to test large series of samples. 
This has provided good statistical power, which was very 
helpful to demonstrate that the total HIV DNA level in 
Peripheral Blood Mononuclear Cells (PBMC) predicts 
disease progression and to explore the dynamics of this 
marker, using mathematical models [14, 15].

Some teams also propose to use the digital droplet PCR 
(ddPCR) technology, which can precisely quantify with 
accuracy and reproducibility nucleic acids such as total 
HIV DNA [16, 17]. Jones et  al. demonstrated that a six 
logs linear dynamic range of ddPCR is approaching the 
seven logs, achievable by real-time PCR. Its drawbacks 
include the cost of equipment and the complexity of the 
assay, while real-time PCR is widely used in research and 
clinical laboratories [18]. This technique has been mainly 
applied to blood samples, and results obtained are very 
close to those obtained with real-time PCR [19]. On the 
whole, ddPCR gives accurate quantification of low levels 
of HIV DNA, but false positive results with ddPCR may 
occur [17, 19, 20]. Less frequently, other technologies 
have been proposed to quantify total HIV-DNA, such as 
seminested real-time PCR, nested PCR assays [21–24]. 
Furthermore, PCR with amplification of extracts, at lim-
iting dilution, and detection by real-time fluorescence 
confirmed by melt curve, is also commonly used [25].

Lastly, in order to explore the consistency between 
blood reservoir markers, a comparative analysis of meas-
ures of markers, in acute and chronic patients, reported 
correlations between markers. This includes correlations 
between total HIV DNA and integrated HIV DNA and 
HIV DNA in rectal CD4 + T cells [26]. Of course, the 
correlations cannot be perfect, each marker having a dif-
ferent meaning and playing a different role in HIV reser-
voir persistence.

Total HIV DNA quantification applied to many 
kinds of samples
The quantification of total HIV DNA permits to estimate 
of the total number of all infected cells, resting or acti-
vated, present in blood, in tissues and biopsies.
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Quantification in peripheral blood  Total HIV DNA 
level is mainly quantified within pellets of PBMC, usually 
separated from plasma on Ficoll–Hypaque density gradi-
ent. The technique can also be readily adapted to quan-
tify total HIV DNA directly on whole blood samples, 
the frequency of infected cells is then obtained by taking 
into account the blood formula. The predictive value of 
total HIV DNA has been reported, whatever the mode of 
expression of the results, per million CD4 + T cells, per 
million PBMC, or per ml of whole blood [27].

Because blood is the most accessible and easily quantifi-
able compartment, the majority of other reservoir mark-
ers, whether exploring the number of producing cells or 
measuring transcriptional activity, are also done mostly 
from the peripheral blood. So, the majority of studies 
have explored blood reservoirs, despite criticism that the 
majority of infected cells are in tissues and that the blood 
contains only a small number of infected cells. It would 
therefore be unrepresentative. It is true that the normal 
distribution of lymphocytes is 2% in the blood, while it is 
98% in tissues. However, such a criticism does not seem 
to take into account the fact that the same criticism could 
apply to the quantification of blood CD4 + T lymphocytes 
and HIV RNA in plasma, whereas they are routinely used 
and they represent clinical markers definitely considered 
essential. The peripheral blood reservoir quantification 
is the most logical and clinically feasible approach, as are 
the use of CD4 + T cell count and plasma HIV RNA level 
for patient monitoring. In addition, the total level of HIV 
DNA in PBMC is the only marker of HIV reservoirs for 
which the predictive value of the risk of progression to 
AIDS and death has been well demonstrated [14, 28]. This 
confirms that the level of HIV DNA in peripheral blood 
level is representative of the total reservoir. However, it is 
true that infected blood cells may not adequately reflect 
all critical events occurring outside the bloodstream, nei-
ther the whole story of HIV reservoirs.

Quantification from sorted cells  This assay has also 
been developed and largely applied to the quantification 
of infected cells within fractions of sorted blood or tissue 
cells, such as CD4 + T lymphocytes, CD4 + T cell sub-
sets, including naïve (TN) central memory (TCM), tran-
sitional memory (TTM) and effector memory (TEM). 
Resting T and activated T cells are also informative to the 
pathophysiology of HIV infection. It is also interesting to 
combine assays, such as total HIV DNA quantification 
and capacity to produce HIV RNA in cell culture, using 
cell sorter such as FacsAria on the same living fractions 
[7, 29].

Quantification in tissue biopsies  Total HIV DNA has 
proved very useful to describe the distribution of infected 

cells in tissues and anatomic reservoirs. That also allowed 
to document infected areas in which the distribution of 
medicinal products must be particularly important [30], 
including anatomic compartments, such as CNS that may 
also act as sanctuaries. The assay could be performed on 
small fragments, using a specific method for nucleic acid 
extraction [31]. Studies performed in non-human pri-
mate models have also benefitted from this marker with 
extensive quantifications in many tissues. This includes 
autopsies, showing the high number of infected cells, and 
more specifically the major role of lymph-nodes at the 
origin of viral dissemination throughout the organism 
[32, 33].

Total HIV DNA at different stages of HIV disease
The spectrum of total HIV DNA levels in PBMC during 
HIV infection have been presented in a recent and exten-
sive review, confirming the major impact of this marker 
to get a global overview of HIV reservoir levels in dif-
ferent groups of infected patients. Of note, we used the 
same assay in all studies, that permits to compare patient 
groups [10].

During the natural history of HIV infection  The data 
showed that the reservoir is seeded very early in infec-
tion, with high levels in primary infection at the peak, 
then the HIV DNA set point is rapidly established [34, 
35]. Total HIV DNA in blood and gut levels are signifi-
cantly lower in patients with primary infection, at stage 
Fiebig I, versus Fiebig II–IV [23]. Total HIV DNA level in 
PBMC were also described in children [36], at the AIDS 
stage [37] and was found strongly associated with HIV-
associated neurocognitive disorders, independent of 
plasma HIV RNA, indicating the neurologic impact of a 
larger reservoir [38, 39]. Elite controllers are character-
ized by a very low reservoir level, especially those bearing 
HLA protective alleles [8, 40].

Interestingly, total HIV DNA levels in PBMC cor-
relate positively with plasma HIV RNA and negatively 
with CD4 + T cell count [14]. There is a link between 
HIV reservoir levels and activation [41, 42]. Lastly, sev-
eral reports confirmed the high predictive value of the 
total HIV-DNA level in PBMC during natural history 
[14, 28, 43–45]. HIV reservoirs play a major role within 
lymph-nodes, including in the B cell follicle sanctuary 
[32, 33]. The distributions of HIV DNA and HIV RNA 
differ between gut and blood [46], and in gut associ-
ated lymphoid tissue of controllers and non-controllers 
[47]. Quantification of HIV DNA in kidney, as well as 
in adipose tissue, indicates that they can be considered 
as anatomical reservoirs [48, 49]. Measuring HIV DNA 
in genital compartments may indicate the presence of 
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infected cells and may help to explore this risk of sexual 
transmission [50, 51].

Under antiretroviral therapy  The impact of antiretrovi-
ral therapy on HIV DNA is less than that on plasma HIV 
RNA. The decay of the total HIV DNA in blood is faster 
in acute infected patients receiving early treatment, com-
pared to a slow decrease in patients treated at the chronic 
stage, in whom the kinetics shows a first phase of decay 
in the first year, then followed by a sort of plateau [52]. 
On the contrary, among acutely infected patients, the 
decrease continues beyond 4  years of primary infection 
treatment, while no further decay is noted in chronic 
treated patients [15, 35]. The earlier the treatment is initi-
ated, the more prominent is the total HIV DNA decrease 
[34]. Studies of the total HIV DNA decay dynamics in 
blood, during more than a decade of suppressive antiret-
roviral therapy, indicates a slow decline during these 
last years, with a remarkable stability of a plateau, bal-
anced by homeostatic proliferation [52–55]. High total 
HIV DNA levels in PBMC are informative when meas-
ured at treatment interruption, as they predict a shorter 
time to treatment resumption, independently of the CD4 
nadir [56], while low levels predict a higher probability of 
maintaining viral control [57, 58].

This marker has proved to be particularly useful and 
has shown interest in immuno- pathophysiological stud-
ies. First, the results showed that HIV DNA level in 
PBMC is predominantly composed of T CD4 + Central 
Memory Cells (TCM) in patients at the chronic stage 
[59]. These TCM are preserved from infection by early 
treatment initiated in primary infection [29, 60], while 
HIV DNA subspecies persist in both activated and rest-
ing memory CD4 + T cells during therapy [61]. Early 
antiretroviral treatment maintains the distribution with 
protection of the TCM [62, 63]. So, the measurement of 
total HIV DNA levels in PBMC contributed to show that 
early treatment initiation remains, so far, the best way to 
limit the size of the reservoirs.

Interestingly, the distribution pattern in CD4 + T cell 
subsets of VISCONTI patients seems to have also been 
frozen by early treatment, with TCM that contributes 
minimally to the total blood reservoir. Moreover, HIV 
DNA levels decrease over time in some of them: all this 
suggesting that the protection of TCM compartment 
might be necessary, and/or participates to the control of 
HIV replication [5, 7].

Interestingly, this marker was the only positive marker 
of HIV infection in the first VISCONTI child, who still 
presents a long-term remission with a sustained control 
of HIV replication since more than 12  years [64]. This 
marker permitted to estimate the impact of cytoreduc-
tive chemotherapy on HIV reservoir persistence [65], and 

the long-term impact in children and adolescents receiv-
ing treatment [66, 67]. The impact of treatments in dif-
ferent anatomical compartments, such as genital tract, to 
explore the residual risk of sexual transmission is impor-
tant in the context of various levels of drug diffusion in 
tissues. Blips of viral replication in semen correlate with 
the level in PBMC, among men having sex with men on 
successful antiretroviral regimen [50, 68]. Levels of HIV 
reservoirs have been also estimated in patients receiving 
suppressive antiretroviral therapy, showing a true impact 
on different tissues and compartments, such as rectal tis-
sue [24] and gut [46, 69, 70].

A particular context deserves to be discussed: the 
diagnosis of HIV infection in babies born to HIV posi-
tive mothers. For a long time, the detection of total HIV 
DNA in PBMCs has been the preferred technique, espe-
cially before access to viral load assays [69]. At present, 
the positive diagnosis of infection remains more difficult, 
particularly in cases of child infection despite maternal 
treatment. In such cases, the level of HIV is very low, 
because the viral replication is relatively blocked by the 
residual maternal treatment present in the child. So, HIV-
DNA level in PBMC could be the only positive marker. In 
this actual context, there is a need for very sensitive and 
specific HIV DNA assays [13].

Lastly, total HIV DNA has been a useful marker in 
many clinical trials, for example, in primary infection [62, 
71], in case of treatment with IL2, IL7 or alpha interferon 
[72–75]. Looking ahead to future clinical interventions 
aiming at reducing HIV reservoirs, the marker is also 
suitable, or even indispensable to the first step to select 
patients and to follow the impact of drugs and combina-
tions [76–79].

The question that arises now is whether this marker 
could provide information to clinicians for therapeutic 
management. There are several clinical situations where 
it can be informative [10]: for example, in patients with 
long-term efficient treatment, low levels of total HIV-
DNA indicate a low risk of disease progression, a low risk 
of viral rebound and development of drug resistance. On 
the contrary, in patients with a high level of total HIV-
DNA, it is important to explain to them the high risk of 
viral rebound in case of non-adherence to treatment.

Conclusions
Among the different markers of HIV persistence, total 
HIV DNA has a special place because it is by far the most 
studied, and because the measurement is simple, precise 
and specific. It can reliably characterize the global size of 
HIV reservoirs. This marker has already had an undeni-
able and considerable contribution to reservoir studies, 
resulting in numerous insights, both in clinical and basic 
research. This is giving the opportunity to get a large 
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overview of the distribution of HIV reservoir cells in the 
body, at all stages of HIV disease. Despite its drawback 
to quantify everything, including defective proviruses, 
total HIV DNA has enabled major advances, in particular 
in clinical research. However, there is an urgent need for 
other standardized markers of HIV reservoirs, in order to 
complete a panel of accurate tools that can constitute ref-
erences. The debate should take into account all practical 
and clinical aspects, and should not sterilize the research, 
but rather sustain the use of complementary markers, to 
better explore the mechanisms of viral persistence.
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