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Type I interferon responses are impaired 
in latently HIV infected cells
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Abstract 

Background:   The latent HIV-1 reservoir represents the primary barrier to the eradication of HIV-1 infection. The 
design of novel reservoir-clearance strategies, however, is impeded in part by the inability to distinguish latently HIV-
infected cells from uninfected cells. Significant impairment of the type I interferon (IFN-I) response is observed during 
productive HIV-1 infection. Although this remains poorly described in the context of latent HIV-1 infection, presence 
of potential defects may serve as a novel therapeutic target. Therefore, IFN-I pathways were characterized using two 
latently HIV-1-infected cell lines, U1 and OM10.1, in comparison to their respective uninfected parental U937 and 
HL60 cell lines.

Findings:  Constitutive expression and induction of important mediators of IFN-I signaling including IFNα/β 
cytokines, IFNAR1, MHC-I, ISG15, and PKR were evaluated following exogenous IFNα or poly(I:C) treatment. Differences 
in basal expression of IFNAR1, MHC-I, and PKR were observed between the latently HIV-1 infected and uninfected 
cell lines. In parallel, significant impairments in the induction of MHC-I, ISG15 and PKR, as well as secretion of IFNα/β 
cytokines were observed in response to appropriate exogenous stimulation within the two latently HIV-infected U1 
and OM10.1 cells, relative to their HIV-uninfected parental cells.

Conclusions:  In comparison to the HIV-uninfected U937 and HL60 cell lines, widespread defects in IFN-I responsive-
ness were observed within the latently HIV-infected U1 and OM10.1 cells. These impairments represent novel thera-
peutic targets, which may be amenable to strategies currently employed in cancer therapy.
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Findings
Combination antiretroviral therapy (cART) effectively 
suppresses viral replication in HIV-1 infected individuals. 
However, due to the persistence of the virus as integrated 
proviral DNA in long-lived latent reservoirs, cART fails 
to eradicate HIV-1 [1, 2]. The latent HIV-1 reservoir not 
only evades immune surveillance, but can also serve as 
a source of infectious virus upon treatment cessation. 
Therefore, identification of potential targets that distin-
guish latently HIV-1 infected cells from normal cells may 
be necessary for the development of curative therapies.

Cancer pathogenesis presents a unique platform for 
studying HIV-1 latency. Anti-proliferative innate immune 

defenses such as the type I interferon (IFN-I) system exert 
significant selective pressure on cancers. This often results 
in tumor cells that have impairments in IFN-I pathways, 
thereby facilitating their escape from tumor suppressive 
immune responses [3]. Several defects in IFN-I pathways 
have been characterized in tumors, including reduction 
in IFNα/β secretion and IFNα/β-receptor subunit-1 
(IFNAR1) expression [4, 5], and altered induction of down-
stream IFN-stimulated genes (ISGs) such as major histo-
compatibility complex-I (MHC-I) [6], interferon regulatory 
factor-3 (IRF3) [7], retinoic acid-inducible gene 1 (RIG-I) 
[8], and protein kinase R (PKR) [9]. Although such defects 
promote tumor survival and immune evasion, they can be 
used to distinguish tumor cells from healthy cells, and have 
therefore been exploited as therapeutic targets [10].

A significant antiviral IFN-I response is also observed 
during the acute phase of HIV-1 infection and can 
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effectively suppress viral replication [11]. Sandler and col-
leagues demonstrated that IFNα-2a treatment prior to SIV 
infection in rhesus macaques resulted in significant resist-
ance to viral transmission [12]. Interestingly however, the 
IFN-I response to HIV-1 infection represents a double-
edged sword with the capacity to potentiate disease patho-
genesis. Within the study, ongoing exposure to IFNα-2a 
resulted in significant IFN-I desensitization, impaired ISG 
expression, increased viral load, and accelerated CD4+ 
T cell decline [12]. Similarly, during the chronic phase of 
HIV-1 infection in  vivo, persistent elevation in plasma 
IFNα has been correlated with higher viral loads and faster 
disease progression [13]. Therefore, further investigation 
and elucidation of the complex interplay between HIV-1 
and the antiviral IFN-I system is necessary.

Driven by antiviral pressures exerted by the IFN-I sys-
tem, HIV-1 has evolved countermeasures similar to those 
seen in cancer cells. For instance, transmitted/founder 
viruses have been identified to be relatively resistant to 
inhibition by IFNα, potentially conferring a  selective 
advantage during early infection [14]. In parallel, defects 
in IFN-I signaling have been demonstrated during pro-
ductive HIV infection including the inhibition of IRF3 by 
HIV Vpr [15], disruption of MHC-I by HIV Nef [16], deg-
radation of RIG-I by HIV protease [17], and Tat-mediated 
impairment of PKR [18]. IFN-I signaling and responsive-
ness in the context of HIV-1 latency, however, has yet to 
be characterized. We therefore investigated components 
of the IFN-I pathway within latently HIV-infected cells, 
which, if impaired, may facilitate selective eradication 
using novel treatment approaches currently employed in 
cancer therapy [10].

Due to the complex mechanisms involved in the estab-
lishment of HIV latency [19], none of the existing in vitro 
models truly recapitulate latency as occurs in  vivo. As 
such, cell line models are often used to delineate features 
of HIV-1 latency, not only because of the homogenous 
presence of latently infected cells within the clonal pop-
ulation, but also the capacity to induce viral replication 
upon appropriate stimulation [20]. Therefore, IFN-I sign-
aling was characterized in the latently HIV-infected U1 
[21] and OM10.1 cells [22] (NIH AIDS Reagent Program, 
Divison of AIDS, NIAID, NIH), as well as the respective 
parental HIV-uninfected U937 (CRL-1593.2) and HL60 
(CCL-240) cells (ATCC, Manassas, VA, USA). Cells were 

maintained in RPMI-1640 supplemented with 10 % heat-
inactivated FBS, penicillin (100 U/mL), and streptomycin 
(100 μg/mL) at 37 °C and 5 % CO2.

Aspects of the IFN-I pathway shown to be altered dur-
ing productive HIV-1 infection, including IFN-I cytokines 
(IFNα/β), IFNAR1, and the antiviral ISGs, MHC-I, Inter-
feron  stimulated gene-15 (ISG15), and PKR, were inves-
tigated. Surface expression of IFNAR1 (Clone-85228, 
R&D Systems, Minneapolis, MN, USA) and MHC-I 
(clone-W6/32, eBioscience, San Diego, CA, USA), as well 
as intracellular expression of ISG15 (clone-851701, R&D 
Systems) and PKR (clone-6H3A10, Abcam, Toronto, 
ON, Canada) were quantified by flow cytometry both 
at basal levels and following stimulation with increas-
ing concentrations of IFNα for 24  h (PBL Assay Sci-
ence, Piscataway, NJ, USA). In addition, IFNα-induced 
mRNA expression of ISG15 and PKR was quantified by 
RT-PCR using the following primers: ISG15 forward 
(5′-GAGAGGCAGCGAACTCATCT-3′) and reverse 
(5′-CTTCAGCTCTGACACCGACA-3′) [23] and PKR 
forward (5′-TCTTCATGTATGTGACACTGC-3′) and 
reverse (5′-CACACAGTCAAGGTCCTTAG-3′) [24].

Basal expression of IFNAR1, MHC‑I, and PKR is lower 
in latently HIV‑infected cells
The constitutive expression of IFNAR1 was ~twofold 
lower in the latently HIV-infected U1 and OM10.1 cells, 
than in the HIV-uninfected controls (Fig. 1a). Addition-
ally, surface expression of MHC-I, an antiviral protein 
known to be downregulated during HIV replication 
[16], was demonstrated to be significantly lower in both 
U1 and OM10.1 cells, than in the respective uninfected 
parental cells (Fig.  1b). There was minimal constitutive 
expression of ISG15, an IFN-inducible ubiquitin-like 
antiviral protein, in all cell lines (Fig. 1c). Similarly, there 
was no difference in the basal expression of PKR, a dou-
ble-stranded RNA-sensing pattern recognition receptor 
(PRR), between U1 and U937 cells. In contrast, OM10.1 
cells had higher expression of PKR in comparison to 
the HIV-uninfected HL60 cells (Fig. 1d). This pattern of 
PKR expression for both cell lines pairs was confirmed 
by Western blot (Additional file  1). In summary, differ-
ences in basal levels of IFNAR1, MHC-I, and PKR, were 
observed between two independent latently HIV-infected 
and uninfected cell line pairs.

(See figure on next page.) 
Fig. 1  Expression of IFNAR1, MHC-I, ISG15, and PKR in HIV-uninfected and latently HIV-infected cells. Constitutive expression of several ISGs was 
quantified by flow cytometry in latently HIV-infected U1 and OM10.1 cells. Surface expression of a IFNAR1 (n = 5) and b MHC-I (n = 6) were signifi-
cantly lower in the latently HIV-infected U1 and OM10.1 cells, than in uninfected parental controls. c Constitutive intracellular expression of ISG15 
(n = 6) was minimal in all cell lines. d Intracellular PKR expression was higher in latently HIV-infected OM10.1 cells, than in uninfected HL60 cells 
(n = 6). No difference in basal PKR expression was observed between U937 and U1 cells (n = 6). Representative histogram and cumulative data for 
each ISG is shown. *p < 0.0001, **p = 0.002, ***p < 0.0017 by unpaired T test
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Responsiveness to exogenous IFNα is impaired in latently 
HIV‑infected cells
Next, the responsiveness of latently HIV-infected cells 
to exogenous IFNα was investigated by characterizing 
the  expression of downstream ISGs. MHC-I expression 
was upregulated in response to IFNα in all cell lines, but 
was significantly lower in the latently HIV-infected U1 
(Fig.  2a) and OM10.1 cells (Fig.  2b) when compared to 
their respective controls. Similarly, IFNα enhanced the 
expression of ISG15 in a dose-dependent manner in all 
cell lines, but the level of ISG15 expression was lower in 
the latently HIV-infected U1 (Fig. 3a) and OM10.1 cells 
(Fig. 3b) than in the HIV-uninfected controls. Although 
no difference in the expression of ISG15 mRNA was 
observed between U937 and U1 cells following IFNα 
treatment, a significantly lower level of ISG15 expres-
sion was observed in OM10.1 cells relative to HL60 cells 
(Additional file  2A). Finally, IFNα-induced PKR expres-
sion was found to be impaired in OM10.1 cells relative 
to HL60 cells (Fig. 4b), but did not differ between U1 and 
U937 cells (Fig. 4a). Consistent with this, lower levels of 

IFNα-induced PKR gene expression were observed in 
OM10.1 cells than in HL60 cells, but no difference was 
observed between U1 and U937 cells (Additional file 2B).  

Poly(I:C)‑induced activation of IFN‑I pathways is defective 
in latently HIV‑infected cells
The observed impairments in IFNα-induced ISG expres-
sion in latently HIV-infected U1 and OM10.1 cells com-
pared to healthy parental controls can potentially be 
explained by differences in IFNAR1 expression (Fig. 1a). 
To address this possibility, cell lines were transfected 
with the synthetic RNA analog, polyinosinic: polycyti-
dylic acid (poly(I:C)). Recognition of poly(I:C) by vari-
ous intracellular RNA-sensing PRRs, including toll-like 
receptor-3, PKR, RIG-I, and melanocyte-differentiation 
factor 5, has been shown to directly induce ISG expres-
sion [25]. Therefore, transfection of cells with poly(I:C) 
provided a means by which to measure ISG induction in 
the absence of exogenous IFN-I stimulation.

Using the Lipofectamine®2000 reagent (ThermoFisher 
Scientific, Waltham, MA, USA), cells were transfected 
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Fig. 2  IFNα-induced expression of MHC-I is impaired in latently HIV-infected U1 and OM10.1 cells. Cell lines were stimulated with 10, 100, or 
1000 U/mL of exogenous IFNα for 24 h. Following stimulation, cells were collected and surface expression of MHC-I was assessed by flow cytometry. 
Representative histogram and summary data of IFNα-induced MHC-I expression normalized to unstimulated controls is shown for a U937 and U1 
cells (n = 6) and b HL60 and OM10.1 cells (n = 6). †p < 0.0001 by one-way ANOVA and p < 0.05 by pairwise Dunnett’s test compared to unstimu-
lated cells. *p < 0.05; **p < 0.01, and ***p < 0.001 by Two-way ANOVA with Bonferroni post-test for multiple comparisons
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with various concentrations of poly (I:C) (InvivoGen, 
San Diego, CA, USA) for 48  h. Similar levels of trans-
fection  efficiency were confirmed in all cell lines using 
Rhodamine labelled poly(I:C) (Invivogen). Follow-
ing stimulation, IFNα/β secretion was assessed using 
the HEK-Blue™ IFNα/β (InvivoGen) biologic assay as 
described [26], and intracellular ISG15 and PKR expres-
sion were assessed as before. Low levels of endogenous 
IFNα/β were detectable in culture supernatant of unstim-
ulated U937 and U1 cells (Fig. 5a). However, upregulation 
of IFNα/β production in response to poly(I:C) transfec-
tion was only observed in U937 cells (Fig.  5b). While 
poly(I:C) caused a dose-dependent increase in intra-
cellular ISG15 expression in U937 cells, no effect was 
observed in the latently HIV-infected U1 cells (Fig.  5c). 
Similarly, poly(I:C)-induced PKR expression was 
impaired in the U1 cells, when compared to U937 cells 
(Fig. 5d). Similar defects in IFN-I pathway induction fol-
lowing poly(I:C) stimulation were also quantified within 
HL60 and OM10.1 cells (Additional file 3).

Utilizing two independent cell line models of HIV-
latency, we have demonstrated widespread IFN-I path-
way defects, including impaired secretion of IFNα/β and 
expression of IFNAR1, MHC-I, ISG15, and PKR, fol-
lowing exogenous IFNα or poly(I:C) stimulation. Inter-
estingly, antagonism of IFNAR1 in rhesus macaques 
in the context of SIV infection resulted in significant 
impairment in ISG expression, particularly in the path-
ways associated with PRRs [12]. The observed defects in 
IFNAR1 in latently HIV-1 infected cells may therefore 
not only promote escape from IFN-mediated immune 
responses, as reported in several tumors [5], but also 
facilitate the establishment of the latent reservoir. ISG15 
plays critical antiviral roles both by regulating IFN-I 
mediators such as RIG-I and IRF3, as well as through 
direct inhibition of viral proteins [27]. Impaired expres-
sion of ISG15 in latently HIV-infected U1 and OM10.1 
cells may therefore contribute to downstream defects 
in the activation of IFN-I pathways crucial for antiviral 
defense. In addition, impaired induction of MHC-I and 
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tions of exogenous IFNα for 24 h. Following stimulation, cells were fixed and permeabilized, after which intracellular ISG15 expression was measured 
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PKR can contribute to abnormalities in viral sensing and 
antigen presentation, which may facilitate the establish-
ment and maintenance of HIV latency. Interestingly, we 
observed an impaired induction of PKR in OM10.1 cells, 
but not in U1 cells. The higher constitutive expression of 
PKR in OM10.1 cells when compared to HL60 cells may 
in part contribute to the impaired induction observed. 
Given the importance of HIV-1 Tat in inhibiting PKR 
activation, similar PKR induction observed in U937 and 
U1 cells may be explained by the presence of defects in 
Tat in U1 cells [18, 28].

The underlying mechanism(s) for the defective IFN-I 
response observed within the latently HIV-infected cell 
line models employed have yet to be elucidated. Similar 
defects in IFN-I signaling have previously been observed 
during productive HIV-1 infection, largely mediated by 
viral proteins including Tat, Vpu, Vif, and Nef. Although 

latent HIV-1 infection in U1 and OM10.1 cells is char-
acterized by minimal p24 antigen expression (Additional 
file  4), low-level gene transcription and expression of 
viral proteins, including those known to interfere with 
IFN-I signaling, may be present [22, 29]. A recent report 
demonstrated that a Tat-inhibitor can further suppress 
OM10.1 cells into a state of ‘deep latency’ marked by 
transcriptional silence, thereby suggesting that within 
models of HIV latency viral proteins such as Tat may be 
present and functional [30]. Consistent with this, Pace 
and colleagues have demonstrated the presence of viral 
transcripts encoding Gag, Env, Vif, and  Tat/Rev within 
their primary CD4+ T cell model of HIV latency [31]. An 
alternate explanation for our observations may be that 
the initial HIV-1 infection induces permanent changes 
to the cell, resulting in IFN-I defects that persist during 
latency.
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Further studies investigating defects in the IFN-I path-
way in the setting of HIV latency, as well as elucidating 
the underlying mechanisms for such alterations will be 

necessary. Nevertheless, the defects in IFN-I signaling and 
responsiveness reported here may serve as novel therapeu-
tic targets in the search for HIV-1 eradication strategies.
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fectamine®2000) with media alone or 0.1, 1, or 10ug/mL of poly(I:C) for 48 h. a Minimal constitutive secretion of of IFNα/β (n = 5) was observed in 
U937 and U1 cells, as quantified using using the HEK-Blue™ IFNα/β biologic assay (dashed line denotes lower limit of detection of assay = 0.15 U/
mL). b Secretion of IFNα/β by U937 cells, but not latently HIV-infected U1 cells was detected following poly(I:C) transfection (n = 5). c Poly(I:C) 
induced ISG15 expression (n = 5), as measured by flow cytometry, was observed only in the HIV-uninfected U937 cells. d Similarly, poly(I:C) induced 
expression of PKR (n = 5) was impaired in U1 cells, but not in U937 cells. Representative histogram and cumulative summary of poly(I:C)-induced 
ISG expression is shown. †p = 0.03; ‡p = 0.0004 as measured by one-way ANOVA and p < 0.05 by pairwise Dunnett’s Test compared to unstimulated 
cells. *p < 0.01; **p < 0.001, ***p < 0.05 by Two-way ANOVA with Bonferroni post-test for multiple comparisons
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Representative blots are shown.

Additional file 2. IFNα-induced ISG15 and PKR mRNA expression was 
lower in OM10.1 cells than HL60 cells, but no difference was observed 
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with increasing concentrations of exogenous IFNα for 16 h. Cell-asso-
ciated ISG15 and PKR mRNA expression was then quantified by RT-PCR. 
GAPDH and RPS18 (Prime PCR, BioRad) were used as reference genes. A. 
mRNA expression of ISG15 normalized to unstimulated controls is shown 
for U937/U1 (n = 4) and HL60/OM10.1 (n = 4) cell lines pairs. B. mRNA 
expression of PKR normalized to unstimulated controls is shown for 
U937/U1 (n = 4) and HL60/OM10.1 (n = 4) cell lines pairs. † p < 0.0001, 
‡ p = 0.0015, § p = 0.043 by one-way ANOVA and p < 0.05 by pairwise 
Dunnett’s Test compared to unstimulated cells. *p < 0.05 and **p < 0.0001 
by two-way ANOVA with Bonferroni post-test for multiple comparisons.

Additional file 3. Poly(I:C)-induced expression of ISG15 and PKR was 
impaired in OM10.1 cells, but not in HL60 cells. HL60 and OM10.1 cells 
were transfected with increasing doses of poly(I:C) for 48 h as previously 
described. A. Both induction and level of expression of ISG15 (n = 5) was 
significantly lower in the OM10.1 cells when compared to HIV-uninfected 
HL60 cells. B. Although not significant, the qualitative PKR expression was 
lower in the latently HIV-1 infected OM10.1 cells than in HL60 cells (n = 6) 
in response to poly(I:C). *p < 0.05 by two-way ANOVA with Bonferroni 
post-test for multiple comparisons.

Additional file 4. Minimal constitutive p24 antigen expression was 
observed in latently HIV-infected U1 and OM10.1 cells. Intracellular 
expression of HIV-1 p24 antigen (6604667, Beckman Coulter, Missis-
sauga, Ontario, Canada) was quantified by flow cytometry. Minimal basal 
expression of p24 antigen was detected in the latently HIV-1 infected A. 
U1 (n = 7) and B. OM10.1 cells (n = 6). Representative dot plot and gating 
strategy, as well as summative data of intracellular p24 expression in both 
latently infected cell lines is shown.
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