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Abstract

Background: Florida State has reported autochthonous transmission of Zika virus
since late July 2016. Here we assessed the transmissibility associated with the
outbreak and generated a short-term forecast.

Methods: Time-dependent dynamics of imported cases reported in the state of Florida
was approximated by a logistic growth equation. We estimated the reproduction
number using the renewal equation in order to predict the incidence of local cases
arising from both local and imported primary cases. Using a bootstrap method together
with the logistic and renewal equations, a short-term forecast of local and imported cases
was carried out.

Results: The reproduction number was estimated at 0.16 (95 % Confidence Interval: 0.13,
0.19). Employing the logistic equation to capture a drastic decline in the number of
imported cases expected through the course of 2016, together with the low estimate of
the local reproduction number in Florida, the expected number of local reported cases
was demonstrated to show an evident declining trend for the remainder of 2016.

Conclusions: The risk of local transmission in the state of Florida is predicted to
dramatically decline by the end of 2016.
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Background
The state of Florida has reported over 735 travel-related Zika cases since February

2016, becoming the first state in the continental USA to report multiple laboratory-

confirmed autochthonous cases of Zika [1]. The state of Florida has not only experi-

enced local transmission of Zika but also dengue and chikungunya viruses, which are

transmitted via the common vector Aedes species.

To assess the risk of infection for local residents and travelers, it is critical to under-

stand whether local transmission is sustained as well as forecast the duration and size

of the outbreak. In this study, we carried out a risk assessment of Zika transmission in

Florida aimed to estimate the extent of local transmission potential of Zika, e.g., are

on-going local chains of transmission sustained in Florida? We also generated a short-

term forecast of the expected burden of Zika for the remainder of 2016.
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Methods
Patients’ data

In order to keep Florida residents and visitors abreast of the presence of Zika

cases in the state, the Florida Department of Health has maintained up-to-date

counts of the number of Zika cases diagnosed in this state [2] while strengthen-

ing a robust mosquito-borne illness surveillance system. Our study relies on con-

firmed cases of Zika virus infection. Before 29 June 2016, except for pregnant

women, only those cases exhibiting at least two of the following symptoms: fever,

rash, joint pain and red eyes and having an epidemiological link (travel history or

sexual contact with travelers from Zika-affected areas or suspected contact with

cases) underwent laboratory diagnosis by serology or rRT-PCR. From 29 June, all

laboratory-confirmed asymptomatic cases were counted. Non-pregnant cases with

recent travel history to an area with widespread Zika virus transmission were

classified as either travel-related or non-travel related cases [3]. Hereafter, travel-

related cases are referred to as imported cases, while non-travel related cases are

referred to as local cases. We analysed the temporal evolution of confirmed Zika

cases from 1 May to 23 September 2016. Since epidemiological and diagnostic

procedures typically required 7 days [3], we analysed weekly case counts with

week 0 starting on 1 May 2016.

Modelling method

In order to quantify the extent of local transmission, we first set out to estimate

the average and uncertainty of the reproduction number, R, associated with the

Zika outbreak in the state of Florida. R is interpreted as the average number of

secondary “local” transmission events caused by a single primary case. A primary

case can be either a local or an imported case. Assuming that congenital or sex-

ual transmission cases of Zika are rare in the state of Florida, our modelling ex-

ercise focused on mosquito-borne transmission alone. Let ct and it be local and

imported cases in week t, and let ws represent the probability mass function of

the serial interval of length s weeks, which was obtained by

ws ¼ Gð7sÞ−G
�
7ðs−1Þ

�
; ð1Þ

for s > 0 where G(.) represents the cumulative distribution function of the gamma

distribution with mean of 14 days and standard deviation of 2 days [4]. We describe an

expected value of local cases E(ct) as

E ctð Þ ¼
X∞

s¼1
R ct−s þ it−sð Þws; ð2Þ

as discussed elsewhere [5]. Assuming that variation in case counts in week t is

sufficiently captured by the Poisson distribution, in agreement with the

underlying mechanism of the infection process in deterministic models, the

maximum likelihood estimate of R is obtained by minimizing the Poisson-

distributed likelihood function that uses the right-hand side of (2) for the ex-

pected value. A constant R is supported by the negligible impact of herd immun-

ity on the transmission dynamics due to the limited scope of the epidemic in this

area thus far.
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Subsequently, we assume that the dynamics of cumulative counts of imported cases,

I(τ), at day τ is sufficiently captured by a logistic curve, i.e.,

I τð Þ ¼ K
1þ exp −γ τ−t0ð Þð Þ ; ð3Þ

where K is referred to as the carrying capacity (i.e., the expected total number of

cases during the outbreak), γ, the steepness of the curve, and t0 the time of the sig-

moid’s midpoint. In addition to the recent interest in using phenomenological models

that generalize the logistic equation [6], the SIR (susceptible-infectious-recovered)

model can be approximated by the logistic curve [7]. Hence, it may not be surprising

that eq. (3) can be useful to capture single-epidemic transmission dynamics. Using (3),

the expected weekly counts in week t was obtained by E(it) = I(7 t)-I(7(t −1)) for t > 0.

Assuming again that variation in imported case counts in week t is sufficiently captured

by the Poisson distribution, maximum likelihood estimates of K, γ and t0 are obtained

by minimizing the likelihood function that uses the right-hand side of (3) for the

expected value. Profile likelihood was employed to compute the 95 % confidence

intervals (CI).

Lastly, we employ a parametric bootstrap method to resample R, K, γ and t0 to gener-

ate short-term forecasts for case counts from week 21 (week starting with 25 Septem-

ber 2016) to 34 (week starting with 25 December 2016) [8]. The number of imported

cases can be simulated using (3) and the number of local cases can be obtained by

additionally using (2), accounting for the dependence among the estimated parameters.

Posterior 95 % prediction intervals were derived by taking 2.5th and 97.5th percentile

points from 1000 bootstrap simulations.

Results
Figure 1 shows weekly case counts of reported Zika cases according to travel history in

the state of Florida. A maximum count of 84 imported cases was observed in week 15

Fig. 1 Observed weekly counts of confirmed cases of Zika virus infection, Florida, 2016. Imported cases
have travel history to a country with widespread Zika virus transmission, while local cases were considered
to arise from mosquito-borne transmission within Florida. Weekly counts start on 1 May 2016 and week 34
represents the last week of 2016
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(week starting with 15 August), while the maximum count of 24 local cases was ob-

served in week 19 (week starting with 11 September). The reproduction number R in

Florida was estimated at 0.16 (95 % CI: 0.13, 0.19).

Figure 2a overlays the fit of our logistic model with imported cases. The cumulative

number of imported cases was predicted to be 750 (95 % CI: 686, 823). As a function

of time, the number of imported cases appears to be on a declining trend. From week

21 to 34 (i.e. remainder of 2016), we predict a total of 114 (95 % Prediction Interval

(PrI): 85, 146) cases.

Figure 2b compares observed and predicted local cases of Zika virus infection in Flor-

ida. Due to the expected decline in the number of imported cases together with our

low and subcritical estimate of the reproduction number that lies substantially below

1.0, the number of local cases are also expected to wane over time, with only a few add-

itional cases expected towards the end of 2016. Our predicted number of additional

imported cases from week 21 to 34 was estimated at 41 (95 % PrI: 29, 54) cases. It is

worth noting that at the last time of writing, case counts for weeks 22–23, indicated an

additional 36 imported and 33 local reported cases, which is in line with our forecast

and the predicted decreasing trend in case counts.

Discussion
In this study we analysed case series of reported cases of Zika virus infection in Florida

State, May-September 2016, in order to estimate the local transmission potential and

generate forecasts of the number of expected reported cases for the remainder of 2016.

The reproduction number R of local Zika virus transmission in Florida was estimated

to lie in the range of 0.13–0.19, likely reflecting primarily limited transmission potential

and perhaps the effects of intensive vector control efforts including the strong advice of

draining standing water, covering clothing and bare skin with repellent, and covering

windows with screens. This finding indicates that local transmission chains in this area

have not been sustained in the absence of continued importation of infected individ-

uals. Moreover, the number of imported Zika cases has been declining since mid-

Fig. 2 Observed and predicted time-dependent dynamics of Zika virus infection, Florida, 2016. a. Imported
cases and b. local cases. Continuous line in a and dotted line in b represents the predicted results from
maximum likelihood estimates of the reproduction number and parameters for logistic equation. Dashed
lines in both panels from week 22 to 34 represent the prediction interval based on a Bootstrap method.
Weekly counts start on 1 May 2016 and week 34 represents the last week of 2016
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August. If the declining trend continues for the remainder of 2016, our forecast based

on the logistic growth model indicates a drastic decline in the number of imported

cases expected by the end of 2016. This finding and our subcritical estimate of the local

reproduction number in Florida point to a declining trend in the expected number of

local reported cases for the remainder of 2016. Although the risk of local transmission

within 2016 will not necessarily decline to zero, as transmission via the sexual route

cannot be ruled out, the infection risk will be likely very small as the epidemic ap-

proaches the end of 2016. Although we employed a phenomenological model (e.g., did

not explicitly account for seasonal mosquito population dynamics), our forecast may

even be an overestimate as a significantly reduced risk of mosquito transmission can be

expected during the winter season.

Our study is the first to have demonstrated that the effective transmission potential

of Zika virus is substantially low in the state of Florida even in an area with a history of

sustained transmission of dengue and chikungunya during the summer months. Our

estimate of the local reproduction number at 0.16 is far below those estimates previ-

ously reported from areas with widespread Zika virus transmissions [9–12]. Reflecting

the decline in the number of infections in Central America (e.g. Mexico) and South

America (e.g. Colombia), the frequency of imported cases is also expected to decrease

over time. At the same time, we have shown that local cases are also expected to de-

cline [13]. With substantially decreased local transmission risk through the remainder

of 2016, Florida could provide a basis for model-based transmission analyses and risk

assessments of Zika across the world [14].

This study was conducted for real-time risk assessment of Zika virus infection, in-

volving a number of important limitations. First, the dataset inherently involved report-

ing delays. It is likely that some symptomatic cases were retrospectively diagnosed by

serology dating back to their date of illness onset. Rather than explicitly assessing the

precise temporal transmission dynamics, we deemed sensible to generate an estimate of

R based on a series of weekly case counts of limited precision. Second, asymptomatic

transmission of Zika virus is known to be common [15], and the growing awareness of

Zika virus among physicians is likely affecting differential diagnosis. Thus, observed

confirmed cases must have experienced ascertainment bias. Third, the diagnostic cri-

teria for reported cases confirmed with Zika was revised on 29 June 2016 to include

asymptomatic individuals. This change was caused by the approval of a revised interim

case definition in June 2016, which was originally issued in February 2016, along with

the revision in their reporting system that partly relies on commercial laboratory test-

ing. The ascertainment bias is likely to have been greatly reduced afterwards. Rather

than attempting to provide a detailed analysis of the transmission dynamics of this out-

break using mechanistic models, we have intended to capture the overall temporal

course of imported cases using a phenomenological approach. Fourth, our model did

not explicitly account for the seasonality of local transmission. For this reason, our

forecast for expected cases through the remainder of 2016 is likely an overestimate for

a conservative assessment of the transmission risk associated with the outbreak.

While the revised version of this study was prepared in mid-October, a confirmed

case was reported from Miami-Dade County. Despite possible transient increase in the

number of cases, the expected decreasing trend of importation and limited transmis-

sion potential in Florida remains unchanged. Despite these limitations, we strongly
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believe that the present study sheds light on two critical issues, i.e. (i) transmission of

Zika virus has not been locally sustained in Florida without continued external forcing

and (ii) given a near-future reduction in imported cases, it is not farfetched to expect

to dramatic decline in the number of local cases in Florida.

Conclusions
A case series of reported cases of Zika virus infection in Florida State was analysed, to

estimate the local transmission potential and generate forecasts of the number of ex-

pected reported cases for the remainder of 2016. The reproduction number R of local

Zika virus transmission in Florida was estimated to lie in the range of 0.13-0.19, indi-

cating that local transmission chains cannot be sustained in the absence of continued

importation of infected individuals. Moreover, the number of imported Zika cases has

been declining since mid-August. The expected number of local reported cases is very

likely to show an evident declining trend for the remainder of 2016.
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