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Cytokine enrichment in deep cerebellar 
nuclei is contributed by multiple glial 
populations and linked to reduced amyloid 
plaque pathology
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Abstract 

Alzheimer’s disease (AD) pathology and amyloid-beta (Aβ) plaque deposition progress slowly in the cerebellum 
compared to other brain regions, while the entorhinal cortex (EC) is one of the most vulnerable regions. Using 
a knock-in AD mouse model (App KI), we show that within the cerebellum, the deep cerebellar nuclei (DCN) has par-
ticularly low accumulation of Aβ plaques. To identify factors that might underlie differences in the progression 
of AD-associated neuropathology across regions, we profiled gene expression in single nuclei (snRNAseq) across all 
cell types in the DCN and EC of wild-type (WT) and App KI male mice at age 7 months. We found differences 
in expression of genes associated with inflammatory activation, PI3K–AKT signalling, and neuron support functions 
between both regions and genotypes. In WT mice, the expression of interferon-response genes in microglia is higher 
in the DCN than the EC and this enrichment is confirmed by RNA in situ hybridisation, and measurement of inflam-
matory cytokines by protein array. Our analyses also revealed that multiple glial populations are responsible for estab-
lishing this cytokine-enriched niche. Furthermore, homogenates derived from the DCN induced inflammatory gene 
expression in BV2 microglia. We also assessed the relationship between the DCN microenvironment and Aβ pathol-
ogy by depleting microglia using a CSF1R inhibitor PLX5622 and saw that, surprisingly, the expression of a subset 
of inflammatory cytokines was increased while plaque abundance in the DCN was further reduced. Overall, our study 
revealed the presence of a cytokine-enriched microenvironment unique to the DCN that when modulated, can alter 
plaque deposition.
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Introduction
Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder that accounts for 60–80% of total dementia 
cases [1]. The clinical presentation of AD is paralleled by 
the progression of pathology across brain regions with 
different functional specialisations [2, 3]. The hippocam-
pus and entorhinal cortex (EC), which are critical for the 
encoding of memories of events, places and time, are the 
first to show neuropathological hallmarks of AD, while 
the cerebellum, which is primarily involved in motor 
function, is spared until much later [3–6]. A similar pro-
gression of pathology is also observed in various mouse 
models of Alzheimer’s disease including, but not limited 
to, APP/PS1 [7], 5xFAD [8] and APPswe/PSEn1dE9 [9]. 
Overall, the differences in pathology between the cerebel-
lum and EC are well conserved between human patients 
and animal models of the disease.

The major features of AD pathology are neurotoxic pro-
tein accumulations in the form of Aβ plaques and neu-
rofibrillary tangles [6]. Aβ plaques are aggregates of Aβ 
protein fragments, formed by cleavage of amyloid pre-
cursor protein (APP) at specific sites [10]. Histopatholog-
ical studies of AD brains have shown that there are fewer 
Aβ plaques in the cerebellum, with a delay in the appear-
ance of pathology relative to the EC and hippocampus [5, 
6]. With more sensitive histological techniques, regional 
differences in Aβ pathologies within the cerebellum have 
been reported, with the majority of Aβ deposits being 
found in the molecular, granular and Purkinje cell lay-
ers of the cerebellar cortex, but still largely absent in the 
deep cerebellar nuclei [5, 11–13]. Importantly, tau neu-
rofibrillary tangles have never been widely detected in 
the cerebellum [5, 14]. Because of the low levels of Aβ 
pathology, the cerebellum is routinely employed as a ref-
erence region to calculate cortical-to-cerebellum stand-
ardised uptake value ratio (SUVr) in PET imaging studies 
to quantify amyloid load [15–17].

By studying how Aβ pathology develops differently 
in the cerebellum in comparison to the regions affected 
earliest in the disease, and why specific regions of the 
cerebellum such as the DCN are relatively devoid of 
pathology, we can gain insight into the mechanisms of 
AD and potentially identify protective mechanisms that 
may lead to the development of novel treatments. We 
reasoned that the differences in pathologies may arise due 
to the unique microenvironments established, in part, 
by the distinct cell type compositions of the two brain 
regions. To identify differentially regulated genes and 
cellular pathways in these regions that may influence Aβ 
pathology, we profiled single-nuclei transcriptomes of EC 
and DCN in both wild-type (WT) and AD model mice. 
For this study, we examined the homozygous AppNL-

G-F/NL-G-F knock-in (App KI) mouse which expresses a 

humanised mutant form of APP containing three muta-
tions associated with familial Alzheimer’s disease [18]. 
In these mice, mutations in the Aβ region of APP pro-
mote cortical deposition of plaques in mice beginning as 
early as 2 months and reaching saturation by 7 months 
[18]. Importantly, the expression of APP is regulated by 
the endogenous mouse promoter which avoids artefacts 
of overexpression. In addition, no increases in hyper-
phosphorylated tau or neurofibrillary tangles have been 
reported in App KI animals [18, 19].

Here, we report that the DCN exhibits an elevated 
cytokine expression that is independent of Aβ pathol-
ogy. While the cerebellum has been previously reported 
to be enriched with a population of interferon-response-
associated microglia, our data extend this observation 
by showing that multiple cell types in the DCN exhibit a 
basally elevated cytokine transcriptional signature, indi-
cating a coordinated cellular program to establish the 
immune niche. We confirmed that the cytokine enrich-
ment extends to the protein level by performing immu-
noassays as well as treatment of BV2 microglia cell lines 
with brain tissue homogenates to show a robust inflam-
matory transcriptional response. Finally, we depleted 
microglia in App KI brains and show altered plaque dep-
osition in the DCN that is consistent with the hypothesis 
that the cytokine-enriched microenvironment plays a 
critical role in Aβ plaque deposition.

Results
Distinctions in Alzheimer’s disease pathology between EC 
and DCN
In the EC of App KI mice, Aβ plaques, assessed by immu-
nohistochemistry using 6E10 antibody, are already pre-
sent at 3 months of age and plaque load increases steeply 
over the following months (Fig.  1A, B). In contrast, the 
cerebellum is virtually devoid of Aβ plaques at 3 months 
and deposition increases steadily over time, with the 
overall density at 12 months still significantly lower than 
in the EC (Fig.  1A, B). Within the cerebellum, plaque 
abundance in the DCN is strikingly low and increases 
very gradually over time (Fig.  1A, B). Surprisingly, the 
average plaque size measured in the EC does not appear 
to change much over time, while plaques in the cerebellar 
cortex continue to increase in size before reaching a pla-
teau at 9 months of age (Fig. 1A and C). It is notable that 
even though the density of plaques is low in the cerebellar 
cortex, on average plaques are larger relative to both the 
EC and DCN (Fig. 1A and 1C). Furthermore, plaques in 
the vermis of the cerebellar cortex also have a distinctly 
elongated morphology that is consistent with observa-
tions in both humans and APP/PS1 transgenic mice 
(Fig.  1A) [5, 20, 21]. Overall, we observed significantly 
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fewer Aβ plaques in the cerebellum, and in particular the 
DCN in App KI mice.

Analysis of single‑nuclei transcriptomes from EC and DCN 
in App KI mice
We next used snRNAseq to characterise individual tran-
scriptomes for all cell types in the DCN and EC and 
analyse expression differences associated with App KI 
pathology. We assessed tissues from 7-month-old male 
mice, as Aβ pathology at this time point is substantial in 
EC but only beginning to emerge in the cerebellum, with 
particularly few extracellular Aβ deposits in the DCN. 
We dissected the EC and DCN (Additional file 1: Fig. S1; 
N = 2 WT and N = 2 App KI for a total of 8 samples), then 
isolated nuclei in parallel using a sucrose cushion ultra-
centrifugation method and performed 10X droplet-based 
sequencing (Additional file  1: Fig. S2) [22]. To enhance 
read depth and improve cell type characterisation, we 
aligned reads to a pre-mRNA reference genome as a rela-
tively high proportion of nuclear RNA reads originate 
from intronic regions [23].

Following pre-processing of each sample, we integrated 
the data and performed clustering, UMAP visualisa-
tion and identification of cell populations by expression 
of canonical markers (Fig. 2A, B). After filtering, a total 
of 83,332 individual transcriptomes were used in the 
final analysis (average 20,833 cells per condition). We 
identified all major cell types in both regions, including 
astrocytes, excitatory and inhibitory neurons, micro-
glia, oligodendrocytes, oligodendrocyte precursor cells 
(OPCs), and vascular cells (endothelial, pericytes and lep-
tomeningeal cells), as well as small numbers of ependy-
mal cells and Bergmann glia in the DCN samples, Cajal 
Retzius cells in the EC, and committed oligodendrocyte 
precursors and peripheral immune cells in both regions, 
indicating that our method of nuclear isolation was 
robust across different cell types (Fig.  2A, B and Addi-
tional file  1: Fig. S3). Astrocytes and oligodendrocytes 
each formed two large subclusters, broadly correspond-
ing to newly formed/myelinating (OLIG1) and mature 
(OLIG2) subtypes  for oligodendrocytes, and fibrous 

(AST1) and protoplasmic (AST2) subtypes for astrocytes 
based on expression of marker genes [Fig.  2A, B, [24]]. 
Overall, we found excitatory neurons to be the most 
abundant cell type across all samples, accounting for 
45.7% of our dataset. For glial subtypes, astrocytes, OPCs 
and microglia are more abundant in our EC samples, 
while oligodendrocytes are enriched in DCN samples 
(Additional file 1: Fig. S4). While utmost care was taken 
to isolate EC and DCN, some of the differences in the dis-
tribution of cell types profiled could be due to isolation of 
surrounding tissues.

Shared and distinct molecular signatures of App KI 
pathology in the EC and DCN
To begin, we analysed differential expression between 
App KI and WT tissues in each region. For these and fur-
ther downstream analyses, we chose to focus on glia as 
initial analysis of neuronal subtypes revealed diverse sub-
populations that are highly divergent between regions, 
making comparative analyses more challenging to inter-
pret. Moreover, there is now overwhelming evidence that 
glial subtypes play major roles in the pathophysiology of 
AD, with multiple risk genes for sporadic AD primarily 
expressed in glial cells [25–28].

Overall, we found more than three times as many 
differentially expressed genes (DEGs) in EC glia com-
pared to DCN glia, of which 280 genes overlapped 
(Fig.  2C). Notably, more than half of App KI DEGs 
are also differentially expressed between regions in 
WT mice, suggesting that underlying differences in 
glial transcriptomes directly contribute to differences 
in resistance and vulnerability to pathology between 
regions (Fig. 2C). In the EC, robust differential expres-
sion between WT and App KI genotypes was found 
in all glial cells, with the greatest number of DEGs in 
microglia (374 genes), followed by astrocytes (290 and 
236 genes in AST1 and AST2, respectively; Fig.  2D–F 
and Additional file  1: Fig. S5). UMAPs also show that 
the most striking differences in cellular state between 
genotypes are in microglia, with substantial transcrip-
tional changes particularly evident in the EC (Fig. 2D). 

Fig. 1  Amyloid-beta plaque burden in EC and DCN of App KI mice. A Immunohistochemistry of brain sections from 6-month-old AppNL-G-F mice 
using 6E10 antibody to detect Aβ plaques (red), IBA1 to detect microglia (green), and DAPI to stain nuclei (blue). Images were taken at 20X 
magnification. Left: regions of interest (ROIs) are indicated on whole brain sections: entorhinal cortex (EC, a), cerebellar cortex (CBX, b) and deep 
cerebellar nuclei (DCN, c). Scale bar at 1000 µm. Right: ROIs with an example of an Aβ plaque in each region indicated and enlarged in the top-right 
corner. Scale bar at 100 µm. B Density of 6E10+ positive plaques per mm2 in the EC, CBX and DCN using size filters of > 10 μm2 and > 100 μm2. 
Quantification was performed on N = 3 subjects, n = 3 sections/subject. Graphs indicate mean ± SEM. C Quantification of the average size of 6E10+ 
plaques per mm2 using size filters of > 10 μm2 and > 100 μm2. Graphs indicate mean ± SEM. Two-way ANOVAs were performed on within-subject 
means to test for main effects of region and genotype and interaction effects, followed by Tukey HSD post hoc tests indicated by currency sign (¤). 
Asterisks (*) indicate within-timepoint differences between regions. Daggers (†) above bar indicate between-timepoint differences within regions. * 
p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Several publications have already identified a subpopu-
lation of microglia that emerges with the progression 
of AD pathology in mouse models identified as DAMs, 
ARMs, MGnD, etc. [29–33]. In accordance with these 
publications, we observed a significant upregulation of 
genes that define the AD-associated microglia includ-
ing subsets involved in lipid metabolism and chemot-
axis (e.g. Fgf13, Myo1e, Igf1, Ccl3, Ctnna3, Ank), with 
a corresponding downregulation of homeostatic genes 
(e.g. Tmem119, P2ry12 and Cx3cr1; Fig. 2G and Addi-
tional file  1: Fig. S5). Like microglia, both subclusters 
of astrocytes, AST1 and AST2, exhibit a substantial 
number of DEGs, including those previously identified 
in ‘disease associated astrocytes’ (DAAs) in the hip-
pocampus and cortex of 5xFAD mice (e.g. downregula-
tion of Id1, Id3 in AST1, and enrichment of Gfap, Stat3, 
Mt2, C4b, Ncam2 and Usp53 in both clusters; Fig.  2G 
and Additional file 1: Fig. S5) [34].

In the DCN, oligodendrocytes have the highest num-
bers of DEGs among glial populations in App KI mice 
(179 genes in OLIG1 and 148 genes in OLIG2; Fig. 2C–
E). Expression fold changes in oligodendrocytes are also 
the most strongly correlated between regions (r = 0.407–
0.434), with 25–30% of DEGs in the DCN shared with the 
EC for both oligodendrocyte subtypes (Fig. 2F). In both 
regions, the most robust DEGs in App KI oligodendro-
cytes include Zbtb16, Sgk1, Rcan2, Adipor2, Snca, Anln 
(upregulated) and Cdk8 and Kirrel3 (downregulated; 
Fig. 2G and Additional file 1: Fig. S5). All of these genes 
have been identified as risk factors or shown to have 
altered expression in AD [35–42]. For the microglia and 
astrocyte subpopulations in the DCN, we identified fewer 
DEGs than in the EC, likely reflective of the lower levels 
of Aβ pathology in the region (Fig. 2E–G). Only a small 
subset of these DEGs is shared with EC and linked to 

disease-associated microglia (DAMs) [29] and astrocytes 
(DAAs) [34].

While many of the EC-specific and shared DEGs are 
likely altered in response to Aβ plaques, changes in gene 
expression in the DCN are largely independent of plaque 
deposition and could instead be linked to pathways 
underlying resistance to Aβ pathology in the region, such 
as alternate amyloid clearance mechanisms. To explore 
common pathways modulated by App KI among glial 
populations in the DCN but not EC, we performed net-
work analyses on DCN-specific DEGs combined across 
all glial subpopulations (228 genes). Enriched pathways 
across multiple databases (KEGG, ReactomeDB, Wikip-
athways) were linked to insulin receptor signalling, PI3K 
signalling cascade and Rho-GTPases (Fig.  2H). While 
each of these pathways are individually associated with 
diverse cellular functions, they are also remarkably 
interconnected. Activation of insulin receptors, along 
with Rho-GTPases, can trigger the PI3K–AKT signal-
ling pathway, initiating cellular programs responsible 
for regulating metabolism, cell survival and cell growth 
[43–45]. Analysis of protein–protein interactions via 
STRING revealed additional genes linked to PI3K–AKT/
Rho GTPase signalling, with the majority expressed in 
astrocytes (e.g. Pik3r1, Fgf1, Prkca, Bcl2, Gulp1) and oli-
godendrocytes (e.g. Prkcz, Igf1r, Ptpn11, Pip4k2a, Rhoj) 
which is to be expected as the bulk of DEGs are located 
in these glial cell types. In addition, we also identified a 
small cluster of interferon pathway genes expressed in 
microglia (Ifi204, Ifi207, Oasl2, Sp100) and oligodendro-
cyte lineage cells (Ifi27, Aim2, Traf6; Fig.  2I and J). The 
most highly connected node in the network is Pik3r1 
(Phosphoinositide-3-Kinase Regulatory Subunit 1; 
degree = 18), a major astrocytic hub gene and a subunit of 
PI3K that has been identified as a novel genetic variant in 

(See figure on next page.)
Fig. 2  DEG analyses of snRNAseq data indicate shared and distinct pathways regulated in EC and DCN of App KI mice. A Integrated UMAP 
of single-nucleus transcriptomes for all conditions showing main cell types. B Violin plots showing canonical marker gene expression for each 
labelled cell type: astrocyte 1 [AST1], astrocyte 2 [AST2], Bergmann glia [BG], ependymal [EP], excitatory neurons [EN], Cajal Retzius [CR], interneuron 
[IN], microglia [MG], peripheral immune [PI], oligodendrocyte 1 [OLIG1], oligodendrocyte 2 [OLIG2], committed oligodendrocyte precursor cells 
[COP], oligodendrocyte precursor cells [OPC], vascular endothelial [VE], pericytes [P] and leptomeningeal cells [LEP]. C Venn diagram showing 
overlap in differentially expressed genes (DEGs) found in glial and vascular cells, regardless of cell type, for following DE tests: APP vs WT in EC, APP 
vs WT in DCN, and EC vs DCN in WT mice. D UMAPs for glia and vascular cells in EC and DCN separated by genotype. Data are integrated separately 
for each region. Dotted regions highlight cell types with highest numbers of DEGs as indicated in (E): green: microglia (MG); red: astrocytes (AST); 
blue: oligodendrocytes (OLIG). E DEGs for each glial subtype in each region. “Up” and “Down” denote upregulated and downregulated DEGs 
in APP compared to WT, respectively. F Correlogram of APP vs. WT LFCs between regions. Upper-right triangle indicates strength of correlation (R) 
and lower-left triangle indicates % of shared/total DEGs. Darker blue squares and larger circles correspond to cell types that have more similar App 
KI pathology between regions. G LFC plots comparing differences in gene expression between genotypes in DCN vs. EC for astrocytes, microglia 
and oligodendrocyte lineage cell subtypes. DEGs in each region are indicated by colour (red: EC; blue: DCN; purple: EC and DCN; grey: not DE). H 
Top enriched pathways from KEGG, ReactomeDB and Wikipathways for App KI DCN-specific DEGs combined across all glia and vascular cells (228 
genes). I STRING protein–protein interactions among App KI DCN-specific DEGs with the top hub gene Pik3r1 labelled. Node size indicates node 
degree, node colour indicates cell type(s) and line thickness denotes strength of interaction. J Pik3r1 protein–protein interactions (as in I) labelled 
and enlarged
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Fig. 2  (See legend on previous page.)
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the progression of AD [46]. While the implications of the 
enrichment of insulin and PI3K–AKT/Rho GTPase sig-
nalling in the DCN remain to be determined, both path-
ways have been linked to AD [47–49].

Microglia in the DCN are enriched for expression of genes 
associated with interferon‑response and cytokine 
production
In addition to investigating differences in molecular 
pathways across genotypes and regions by DEG analysis, 
another approach is to identify modules of co-expressed 
genes defining cell subpopulations within each cell type 
using Monocle3 [50, 51]. These analyses are particularly 
suited for our dataset as they enable simultaneous iden-
tification of subsets of genes altered between regions and 
genotypes and are complementary to our DEG analyses.

We first analysed microglia as they showed the strong-
est transcriptional differences between App KI and WT 
mice in the EC. Numerous studies have found microglia 
to be affected early in the disease course of AD both in 
humans and in mouse models, with microglial states 
extensively profiled in RNAseq of sorted cells and in 
single cell transcriptomes [29–32]. Moreover, analysis 
of DEGs indicates a differential response to pathology 
between regions, with DCN-specific microglial DEGs, 
being primarily associated with interferon response path-
ways. While previous reports have shown increased pres-
ence of interferon-responsive microglia in the cortex of 
aging App KI animals, this population represents a small 
fraction of microglia in AD and has not been character-
ised in the DCN [30].

Cluster analysis of microglia with Monocle3 (4167 
cells) detected two groups of microglia. The clusters 
were labelled Clusters A (3215 cells) and B (952 cells) and 
broadly correspond to homeostatic and disease-associ-
ated (DAM) microglial states, respectively (Fig.  3A–C). 

Separately, we then took genes that were differentially 
expressed across the microglia population and subdi-
vided the genes into modules based on spatially corre-
lated expression profiles (minimum 50 genes; Mg.G1-G4; 
Fig.  3D–F). The gene modules and cell clusters were 
overlaid on a UMAP to profile gene expression patterns 
defining the diversity of microglia within and across 
genotypes and brain regions. It is important to note that 
UMAPs of the average expression profiles of gene mod-
ules may partially correspond to cell clusters but are not 
equivalent.

The larger microglial cluster A contains cells from 
all conditions and has high expression of gene mod-
ule Mg.G1 (559 genes; Figs. 3A, B and F). Mg.G1 genes 
include markers of homeostatic microglial states (e.g. 
P2ry12, Tmem119, Cx3cr1) and have lower expression 
in EC App KI microglia compared to WT (Fig.  3D–G). 
Cluster B microglia, however, mostly originate from EC 
App KI samples (86.4%; Fig.  3B) and resemble DAMs 
identified in previous publications. A further 11.6% of 
cluster B microglia originate from DCN App KI samples, 
indicating the presence of small numbers of DAMs in the 
DCN. As expected, cluster B cells are strongly enriched 
for expression of gene module Mg.G2 (529 genes) which 
consists of genes associated with AD and expressed in 
DAMs (e.g. Ank, Lpl, Csf1, Igf1, Itgax; Fig.  3A,D–G) 
[30, 52]. Interestingly, expression of Mg.G2 (App KI-
enriched) genes is also basally enriched in the DCN 
compared to EC (Fig. 3D, E). Overall, Mg.G2 genes show 
enrichment of GO biological processes linked to AD, 
including inflammatory response, kinase signalling cas-
cades, cell surface signalling and regulation of angiogen-
esis (Fig. 3H).

Gene modules Mg.G3 and Mg.G4 were enriched in 
smaller populations of cells not identified as separate 
clusters. In particular, Mg.G3 (502 genes) is strongly 

Fig. 3  Subclustering of snRNAseq data reveals region- and genotype-specific subpopulations of microglia. A Subcluster UMAP of microglia nuclei 
transcriptomes showing two main clusters denoted as A and B. B Number of microglia per condition in each cluster. C Microglia UMAPs indicating 
cells from each condition (dark blue). D Boxplots of distributions of log2 gene expression for each module of co-expressed genes across conditions. 
Standard boxplot indicates box as median with upper and lower quartiles and whiskers as range excluding outliers (beyond 1.5*interquartile range 
from the upper/lower quartiles). E Dot plot indicating number of DEGs in each gene module (dot size) and average LFC (colour scale) for three DE 
tests: WT: EC vs. DCN, EC: APP vs. WT, DCN: APP vs. WT. F UMAPs showing aggregated expression of genes in the top 3 largest gene modules. Colour 
scale indicates expression in each cell relative to the cell with the highest expression of that module. G UMAPs of expression of selected top marker 
genes from each module showing percentage of maximum expression. H, I Gene Ontology analysis of biological processes enriched in genes 
in Mg.G2 (App KI-enriched; H) and Mg.G3 (DCN-enriched; I) compared to all detected microglial genes. Bar plot colour scale indicates -log10 p-value. 
J FISH assay to determine co-expression of IFN-regulated gene and microglia marker, Oasl2 (green) and Hexb (red) respectively, in the EC (top 
panel) and DCN (bottom panel) of WT and App KI tissues. White closed circles indicate Hexb-positive microglia expressing Oasl2 while broken circles 
indicate Hexb-positive cells that lack Oasl2 expression. Scale bar at 10 µm. K As (J), but for the colocalisation of Ifi204 and Hexb in the EC and DCN 
of WT and App KI tissue. Closed circles indicate Hexb-positive microglia that express Ifi204 while broken circles indicate microglia that do not 
express Ifi204. Scale bar at 10 µm. (L-M) Percentage of Hexb-positive cells that express Oasl2 (N = 3 subjects, n = 3 sections/subject; L) and Ifi204 (N = 3 
subjects, n = 3–4 sections/subject; M). Graphs indicate mean ± SEM. Two-way ANOVAs were performed on within-subject means to test for main 
effects of region and genotype and interaction effects, followed by Tukey HSD post hoc tests (¤). ** p < 0.01 

(See figure on next page.)
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enriched in the DCN compared to EC in WT mice 
(Fig.  3D, E). In the UMAP of microglia subpopulations, 
cells with strong expression of these genes formed a small 
spike protruding from the main cluster of homeostatic 
microglia and mainly comprised cells from DCN sam-
ples (Fig. 3C and F). GO analysis showed that this mod-
ule is strongly enriched for interferon (IFN) pathways, 

defence response to virus, cytokine production, NFKB 
signalling, and autophagy (Fig.  3I). Individual genes in 
this cluster include Sp100, Oasl2, Ifi204, Tlr1 and MHC 
class I antigen presentation genes H2-K1, B2m, and Tap2 
(Fig. 3G). The transcriptome profile for this population is 
most similar to “IRM” or “interferon-related” microglia 
reported by others [30, 32]. Overall, genes in this module 

Fig. 3  (See legend on previous page.)
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were not differentially expressed between WT and App 
KI animals, despite the small number of IFN pathway 
DEGs we identified previously in the DCN (Fig.  3E). 
Thus, Mg.G3 provides a distinct regional signature differ-
entiating DCN from EC that is independent of genotype. 
Finally, Mg.G4 (56 genes) is enriched for cell cycle genes 
specifically expressed in a small subpopulation of micro-
glia, corresponding to the cycling/proliferating microglia 
subtype identified in previous publications (Additional 
file 1: Fig. S6 [30, 53]).

We found the differences in IFN-related gene expres-
sion between regions intriguing and considered that 
they may serve as an important molecular basis for the 
regional differences in Aβ pathology. To validate the 
enrichment of microglia expressing interferon response 
genes in the DCN, we performed in  situ hybridisa-
tions probing for Oasl2 and Ifi204 transcripts in WT 
and App KI microglia in 7-month-old mice. Using Hexb 
as a marker of microglia, we quantified the expression 
of Oasl2 and Ifi204, finding significant increases in the 
DCN compared to EC in both WT and App KI mice 
(Oasl2: p = 0.0037; Ifi204: p = 0.0085; Fig.  3J–M) but 
no significant differences between genotypes in either 
region. Overall, the density of Hexb-positive microglia 
was similar in EC and DCN in WT mice but significantly 
elevated in App KI mice in the EC, reflecting inflamma-
tion associated with Aβ pathology (Additional file 1: Figs. 
S7A-B). In addition, we observed large Hexb-positive 
microglial aggregates (> 100 µm2) in App KI tissues which 
are likely associated with plaques (Additional file 1: Fig. 
S7A). Importantly, we confirmed that the white matter 
surrounding the DCN has a lower density and proportion 
of Oasl2/Ifi204/Hexb-positive microglia compared to the 
DCN (Additional file 1: Fig. S7C-E), and that enrichment 
of Oasl2/Ifi204-positive microglia is specific to the DCN.

Overall, our snRNAseq results show that the DCN 
is enriched for a subtype of microglia expressing inter-
feron response genes and has fewer of the AD-associ-
ated microglia subtype strongly enriched in the EC in 
7-month-old App KI mice and previously described 
by others in AD mouse models. Our analysis of co-
expressed gene modules successfully identified not only 
disease-related signatures, but also regional differences in 
glial transcriptional identities.

Multiple glial populations in the DCN, but not EC, are 
enriched for gene expression associated with innate 
immunity and cytokine production
We next investigated whether other major glial cell types 
exhibit distinct regional transcriptomic signatures similar 
to the cytokine-enriched state found in DCN microglia. 
We reasoned that microglial reactivity may contribute 
to, or be otherwise associated with, alterations in gene 

expression in multiple cell types in the DCN, which may 
collectively affect vulnerability to plaque pathology.

We first investigated whether cytokine signalling is 
broadly enhanced in the DCN by analysing pseudo-bulk 
expression of genes associated with cytokine activity 
(GO:0005125). Strikingly, a large majority of cytokines 
detected by snRNAseq have higher expression in the 
DCN than the EC. Not only did we find strong expression 
of cytokines in DCN microglia (Il6, Tnfsf13b), but we also 
found distinct subsets of cytokines enriched in astro-
cytes (Wnt8b, Csf2, Flt3l), oligodendrocytes (Il12a, Il17b, 
Cxcl17), OPCs (Cd70) and vascular cells (Nodal), as well 
as cytokines enriched in multiple cell types in the DCN 
(Il27, Il10, Il4; Fig. 4A, B). Importantly, we also detected 
a subset of cytokine mRNAs associated with the disease 
phenotype that are primarily enriched in microglia in the 
EC of App KI mice (Fig. 4A).

We hypothesised that the enrichment of unique sub-
sets of cytokines within different cell populations in the 
DCN is maintained by binding of secreted cytokines to 
receptors from multiple glial types. To test this idea, we 
compared ligand–receptor interactions in WT DCN and 
EC using a previously published database [54]. In agree-
ment with our hypothesis, ligand–receptor interactions 
associated with immune and inflammatory processes 
were strongly enriched in the DCN between all glial 
types, with the greatest numbers of interactions between 
astrocyte subtypes (AST1-AST2), and astrocytes and 
microglia (AST2-MG and AST1-MG; Fig.  4C). Closer 
examination reveals a diverse and complex intercellular 
immune signalling network, with enrichment of both 
ligands and receptors found across all glial types, as evi-
denced by the top interactions between AST1 and micro-
glia (Fig. 4D, E). We also observed many ligands with the 
potential to interact with receptors on multiple cell types, 
such as Tnfsf13b, a ligand that is enriched in DCN micro-
glia and has receptors expressed in astrocytes (Itga7, 
Ppara), OPCs (Tnfrsf13c, Itgb1, Ppara), endothelial cells 
(Itgb1), and microglia (Tnfrsf13b, Tnfrsf17, Itgb1; Fig. 4D, 
E).

To further characterise the differences between the 
DCN and EC transcriptomes in App KI and WT mice, 
we performed subcluster analyses for all major types of 
glia in our dataset: astrocytes, oligodendrocytes, OPCs 
(combined with COPs), and vascular cells, in addition to 
microglia described above. For each type of glia, we iden-
tified modules of co-expressed genes associated with cell 
subpopulations (Additional file 1: Fig. S8) and combined 
these data with the previously generated DEGs between 
regions and genotypes (see Fig.  2). We then analysed 
enriched GO biological processes in each module and 
summarised the information in a table and a heatmap for 
the top significant terms per module (Fig. 5A, B). From 
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there, we identified subsets of genes within modules 
involved in specific processes of interest and investigated 
their expression patterns in more detail.

Similar to the enrichment of cytokine activity genes, 
we identified immune-related processes enriched across 
multiple cell types. For example, module Ast.G1 genes 
were more strongly expressed in WT DCN than EC 
(Fig. 5B–D), with top enriched genes involved in defence 

response to virus, cytokine production and response to 
IFNβ (DCN-enriched; Fig.  5A). Among the immune-
related genes in Ast.G1 are Trim30a, Trim25, Stat1, 
Stat5b, Prkcq, Ror1, Otulin and Ddx58 (Fig. 5E), as well 
as a set of interferon response genes (e.g. Oasl2, Ifit1, 
Bst2, Usp18, Iigp1) that were particularly enriched in a 
small subpopulation of DCN astrocytes (Fig. 5F). Besides 
astrocytes, we also identified two modules in vascular 

Fig. 4  Multiple cell types in the DCN contribute to a cytokine-enriched microenvironment. A Heatmap showing pseudo-bulk average expression 
of ‘cytokine activity’ genes (GO:0005125) for each major cell type in each condition. B UMAPs of expression of representative DCN-enriched 
cell-type-specific cytokines. Colour scale indicates log-normalised expression. C Enrichment of ligand–receptor interactions associated with GO 
biological processes ‘immune system process’ (GO:0002376) and ‘inflammatory response’ (GO:0006954) in WT EC compared to DCN. Nodes represent 
glial cell types and edges represent ligand–receptor pairs with greater combined expression in each region. Edge thickness indicates number 
of pairs and edge colour indicates ligand cell type. D Top 50 ligand–receptor interactions associated with immune and inflammatory pathways 
between AST1 ligands and microglia receptors. Node colour and border indicate differential expression in WT DCN vs EC. E As in D for AST1 
receptors and microglia ligands
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cells—Vasc.G2 and Vasc.G4—enriched for genes associ-
ated with the innate immune system, virus defence and 
NFKB activity (Figs. 5A-B and Additional file 1: Fig. S9). 
Importantly, both modules have higher mean expression 
in WT DCN compared to EC, as well as being enriched 
for DEGs upregulated in App KI in vascular cells in both 
regions (Fig.  5B and Additional file  1: Fig. S9). In addi-
tion to the cytokine signatures in the aforementioned 
glial subtypes, we also identified enrichment of smaller 
subsets of genes linked to the negative regulation of 
inflammation and/or of cytokine production in modules 

that had higher expression in DCN OPCs (OPC.G1), 
oligodendrocytes (Olig.G3) and vascular cells (Vasc.G5; 
Fig. 5B and Additional file 1: Fig. S9).

Apart from DCN-enriched modules, we noted that 
several gene modules with higher expression in the 
EC were primarily enriched for genes linked to synap-
tic signalling, regulation of synapse assembly and ion 
transport (EC-enriched; Ast.G3, Ast.G6, OPC.G3, Olig.
G2; Fig.  5A, B). In astrocytes, both Ast.G3 and Ast.G6 
modules are enriched in the EC of WT mice and include 
genes involved in receptor-mediated signal transduction 

Fig. 5  Co-expressed gene modules in multiple glial cell types linked to cytokine-enriched state. A Heatmap of top enriched biological processes 
within modules of co-expressed genes in each major type of glia (log10 p-value; p < 0.01). Clusters of related GO terms are labelled, with processes 
associated with EC-enriched (red) or DCN-enriched (blue) modules further highlighted. Yellow boxes represent non-significant expression. B 
Dot plot summarising modules of co-expressed genes contributing to transcriptional diversity in each major non-neuronal cell type. Dot size 
indicates number of DEGs in each module and dot colour indicates average LFC for three DE tests: WT.EC vs. DCN, EC.APP vs. WT, DCN.APP vs. 
WT. Boxes indicate DCN-enriched (blue) or EC-enriched (red) modules. C Astrocyte subcluster UMAP indicating cells from each condition. D 
Astrocyte subcluster UMAP showing expression of module Ast.1 as a percentage of maximum expression. E Dot plot showing expression of top 
DEGs associated with innate immune responses, cytokine production and NFKB signalling in Ast.1 across conditions. Dot size indicates percentage 
of cells in each condition expressing each gene and dot colour indicates mean log2 expression. F UMAPs showing expression of IFN response genes 
in astrocyte subpopulations as a percentage of maximum expression
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and regulation of neuron differentiation and migration, 
as well as cell adhesion molecules and growth factors 
(Fig. 5A, B).

Overall, our snRNAseq data show differential expres-
sion of multiple pathways between DCN and EC glia that 
are relevant to disease processes. Most strikingly, the 
DCN is basally enriched for genes involved in cytokine 
production, interferon and NFKB signalling pathways, 
MHC class I antigen processing and inflammatory 
responses across different glial subtypes. As inflamma-
tory pathways have been strongly linked to AD pathol-
ogy, we speculate that the immune microenvironment of 
the DCN may contribute to the enhanced resistance to 
AD pathology.

Tissue extracts from the DCN are enriched in cytokines
Changes in the transcriptome do not always correlate 
at the protein level [55]. To confirm that upregulated 
expression of cytokine mRNAs corresponds to elevated 
protein levels in the DCN, we performed a ProcartaPlex 
immunoassay on brain lysates. We selected a broad range 
of cytokine and chemokine targets from snRNAseq anal-
ysis that were enriched in the DCN compared to EC in a 
variety of cell types, as well as a subset enriched in App 
KI cortical microglia. We isolated brain tissue from WT 
and App KI mice (7-month-old males; N = 5 for each gen-
otype), with EC and DCN isolated from one hemisphere, 
and cerebral cortex and cerebellum from the opposing 
hemisphere of the same subjects.

Overall, our array showed strong enrichment of mul-
tiple cytokines in WT DCN compared to EC: BAFF 
(TNFSF13B), IL10, IL2, IL27, IL33, IL6, CSF1, CCL3 and 
TNFα (Fig.  6A and Additional file  1: Fig. S10A). Most 
strikingly, we found more than sixfold higher expres-
sion of CSF1 and approximately threefold enrichment 
of BAFF, IL10, IL6 and TNFα in the DCN relative to EC 
(Fig. 6A and Additional file 1: Fig. S10A). There was also 
significantly lower expression of IFNγ in WT DCN com-
pared to EC, although concentrations for all three inter-
ferons α, β and γ in our samples are low, with IFNα and 
IFNβ below the limits of quantification (data not shown). 
Surprisingly, extracts from the whole cerebellum are not 
similarly enriched for cytokine expression compared 
to cortex, with only CSF1 and IL2 showing significant 
but mild enrichment, while IL4 and CCL3 are depleted 
(Fig. 6B and Additional file 1: Fig. S10B). A direct com-
parison of cytokine concentrations between DCN and 
cerebellum indicates that the enrichment in DCN also 
holds true relative to the cerebellum (Fig. 6C and Addi-
tional file  1: Fig. S10). Even though CSF1 is reportedly 
a key upstream regulator of cerebellar microglial gene 
expression and function [56], our array data suggest that 

CSF1 ligand enrichment is much higher in the DCN 
compared to the whole cerebellum as well as the EC.

Comparing cytokine profiles between genotypes in 
each region, we found strong enrichment of specific 
cytokines in the EC and cortex of App KI mice com-
pared to WT (CSF1, BAFF, IL33, CCL3, CCL4), with 
overall greater expression changes in the EC than in the 
cortex (Fig. 6C and Additional file 1: Fig. S10). The larg-
est changes in expression were observed for CCL3 and 
CCL4, both of which are chemokines that are heavily 
expressed in inflamed tissues and upregulated in AD [57]. 
CCL3 was also the only significantly upregulated analyte 
in the DCN and cerebellum of App KI mice, with a much 
smaller induction than in the EC/cortex (Fig. 6C). Over-
all, changes in App KI-responsive cytokine levels in the 
EC/cortex are much higher than in the DCN/cerebellum, 
in line with the differences in AD-associated pathology in 
these regions.

In summary, the cytokine immunoassay data align with 
our transcriptome analysis and confirm that the DCN is 
enriched for inflammatory cytokines relative to the cor-
tex and the cerebellum. More importantly, the basally 
enriched cytokine profile in the DCN is distinct from 
that in the EC and cortex induced by App KI pathology 
both in identity and response magnitude, suggesting a 
mechanistic distinction between cytokine expression in 
pathological states and in the cerebellar niche.

DCN protein homogenates induce inflammatory gene 
expression in cultured microglia
We hypothesised that enriched cytokines in the DCN 
microenvironment contribute to the inflammatory gene 
expression profiles of DCN microglia and thus might 
induce a similar response in cultured microglia. To test 
this hypothesis, we treated BV2 microglia cell lines with 
DCN or EC protein homogenates, or LPS as a posi-
tive control for inflammatory response gene induction 
(Fig.  6D). We then analysed RNA expression 4 h post-
stimulation, the peak timepoint of LPS-induced inflam-
matory gene expression [58]. To enrich for extracellular 
secreted proteins and to prevent effects of extraction 
buffer components on cell cultures, tissues were gently 
homogenised in DPBS on ice in the absence of detergent 
and protease inhibitors.

Using RNAseq (N = 3), we first identified DEGs in 
BV2 microglia in each condition compared to con-
trols. DCN homogenates significantly altered expres-
sion levels of 237 genes. Of these DEGs, 80% were also 
regulated in response to LPS treatment (Fig.  6E). In 
comparison, we found significantly fewer DEGs with 
EC homogenates, of which all but six were shared 
with DCN and 41 were found in all three conditions. 
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Strikingly, no DEGs were exclusively shared by EC and 
LPS conditions (Fig. 6E). STRING analysis of the DEGs 
altered in the DCN and LPS conditions, but not with 
EC homogenates, shows strong enrichment of ‘immune 
response’ (FDR = 9.91 × 10–32), ‘inflammatory response’ 
(FDR = 1.03 × 10–18), and ‘response to cytokine’ 
(FDR = 8.75 × 10–26; Additional file 1: Fig. S11). Inflam-
matory genes strongly upregulated in response to DCN 
but not EC homogenates include Il1b, Il6, Nos2, Cd69 
and Traf1 (Fig.  6F). In general, DEGs that responded 
more strongly to DCN homogenates were altered in the 
same direction as LPS-treated samples, albeit at a lower 

magnitude—which is to be expected as LPS triggers a 
strong immune response in BV2 cells (Fig. 6G) [58].

To validate some of the RNAseq data, we performed 
qPCR of selected inflammatory markers (Il6, Il1b, Tnf, 
Csf1, H2-K1, Ifi204 and Tlr1) for BV2 cultures stimulated 
with paired EC and DCN homogenates (N = 8). We found 
significantly higher expression induced by DCN homoge-
nates for Tnf (p < 0.001) and Csf1 (p = 0.01; Additional 
file  1: Fig. S12), while Il1b, Il6, H2-K1 and Tlr1 all had 
higher mean expression in the DCN condition with p-val-
ues between 0.05 and 0.1. Overall, even though there is 
variation at the individual gene level, there is a significant 
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Fig. 6  DCN is basally enriched for cytokine proteins and homogenates induce an inflammatory response in a cultured microglia cell line. A, B 
Differences in cytokine protein expression between regions in WT mice measured by multiplex array (N = 5). A DCN vs. EC. B Cerebellum (CBM) 
vs. cortex (CTX). C Heatmap of expression z-scores from multiplex cytokine array for each protein across regions and genotypes for WT and App KI 
mice. Two-way ANOVAs were performed to test for main effects of region and genotype and interaction effects, followed by Tukey HSD post hoc 
tests (p < 0.05). D Schematic of experiment stimulating cultured BV2 microglia with homogenates of EC or DCN, LPS (positive control) or DPBS 
(negative control), followed by RNA extraction after 4 h. E Venn diagram of the number of differentially expressed genes (DEGs) in each stimulation 
condition compared to control (LFC >  ± 1, FDR < 0.1). F Log2-fold changes in gene expression in EC and DCN conditions compared to control, 
with DEGs in each condition indicated by colour. Top DCN-specific DEGs are labelled. G Heatmap showing differential expression in DCN vs. EC 
(p < 0.01, 115 genes) across all samples



Page 14 of 27Gaunt et al. Journal of Neuroinflammation          (2023) 20:269 

main effect of input tissue, with expression of the eight 
inflammatory mRNAs tested being significantly higher 
for DCN than EC homogenates (p = 0.0162; Additional 
file  1: Fig. S12). We believe that the mild detergent-free 
extraction protocol and absence of protease inhibitors 
resulted in low protein concentration from the homoge-
nates which blunted the inflammatory response in BV2 
cells while increasing inter-sample variation. Neverthe-
less, the broader observations from the BV2 experiments 
align with our RNAseq data and immunoassays showing 
cytokine enrichment in the DCN and that DCN homoge-
nates can induce an enhanced inflammatory response in 
BV2 microglia compared to EC homogenates.

CSF1R inhibition alters inflammatory cytokine levels 
while further reducing DCN plaque abundance
We have identified a subpopulation of microglia express-
ing IFN response genes as part of a cytokine-enriched 
microenvironment in the DCN. Given that microglia 
secrete a variety of cytokines and are known media-
tors of neuroinflammation, it is unclear to what extent 
the DCN-microglia population is responsible for estab-
lishing the unique niche, and whether that contributes 
to the low plaque pathology observed in the region. To 
address this question, we performed a microglia deple-
tion study to determine the impact not only on plaque 
deposition, but also on cytokine expression in the EC and 
DCN. While multiple microglia depletion studies have 
been conducted in AD mouse models to investigate the 
impact on cortical plaque pathology/abundance, none 
have been reported for the cerebellum or DCN as far as 
we are aware. One straightforward assumption would 
be that a loss of microglia would also reduce the expres-
sion of microglia-expressed cytokines in the DCN. This 
could potentially change the expression profiles and 
functions of other cell types and destabilise the  micro-
environment, which may then modulate plaque deposi-
tion. However, we are aware that loss of the DCN IFN 
microglia may also directly alter plaque deposition or 

clearance. Nevertheless, as a first approach to modu-
late the DCN immune environment, we used the CSF1R 
inhibitor PLX5622, a small molecule inhibitor that can be 
delivered non-invasively and has been repeatedly demon-
strated to robustly deplete microglia [59].

Using a published protocol [60], we initiated feeding 
with 4-month-old mice and harvested the EC and DCN 
from WT and App KI mice after 2 months of treatment 
with PLX5622 or control diet (N = 5 for each group). We 
then repeated the multiplex immunoassay with a subset 
of the cytokines we found to be differentially expressed 
between regions or genotypes above (Fig. 6A–C). As well 
as largely confirming our previous findings of enrich-
ment for select cytokines in DCN and in App KI cortex, 
the array showed substantial alterations following treat-
ment (Fig.  7A and Additional file  1: Fig. S13). Contrary 
to our expectations that loss of microglia would dampen 
expression of cytokines, we observed mixed results upon 
CSF1R inhibition by PLX5622. In particular, CSF1 levels 
which we previously showed to be highly enriched in the 
DCN, are further enhanced after PLX5622 administra-
tion in both regions for both genotypes (Fig. 7A, B). Fur-
thermore, we found that in the DCN, levels of IL6 and 
IL27 were also significantly increased, while BAFF and 
CCL3 were reduced. Intriguingly, changes in the DCN 
do not correlate with the EC as levels of IL6 and IL27 
were unaltered in the EC, whereas IL33, CCL3 and CCL4 
levels were elevated (Fig.  7A, B). Of the cytokines we 
assessed, only TNF was not affected by PLX5622 admin-
istration in either region. Overall, our study reveals that 
PLX5622 treatment not only alters cytokine expression 
profiles in the brain, but potentially does so in a region-
specific manner.

Next, we assessed the efficiency of PLX5622-mediated 
microglia depletion in App KI mice by immunohisto-
chemistry. We found that the area covered by IBA1-pos-
itive microglia in the EC was depleted by 82% on average 
(p = 0.00380), while coverage in the DCN was depleted by 
70% (p = 6.97 × 10–4; Fig. 7C and F). In PLX5622-treated 

Fig. 7  Microglia depletion by CSF1R inhibition reduces Aβ plaque abundance in the DCN and alters cytokine expression. A, B Multiplex array 
of cytokine protein expression in the EC and DCN. EC and DCN sections from App KI mice were fed chow containing PLX5622 or an inert dye 
(Control) for 60 days beginning at age 4 months. A Bar chart of log2 mean differences in cytokine expression between PLX5622 and control 
conditions for WT and AppNL−G−F mice in the EC and DCN. Error bars indicate 95% confidence intervals and stats were calculated using three-way 
ANOVAs followed by Tukey’s HSD post hoc tests. Significant differences are indicated for main effect of treatment (¤), effect of treatment in each 
region (†) and effect of treatment in each region for each genotype (*). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. B Heatmap showing 
expression z-scores for each protein across all conditions. C Immunohistochemistry on brain sections was performed for soluble Aβ (α-6E10: 
cyan), microglia (α-IBA1: magenta), as well as fibrillar Aβ (FSB: yellow). Images were taken at 20X magnification. Scale bar 200 µm. D, E Examples 
of individual plaques from subfigure (C) in the EC (D) and DCN (E). Scale bar at 10 m. F Quantification of IBA1+ microglia coverage in the EC 
and DCN of App KI mice fed with PLX5622 and control chow, showing significant depletion in both regions (N = 9 subjects, n = 3 sections/subject). 
G, H Quantification of number, total area and average size of FSB+ plaques in EC (G) and DCN (H), for two different plaque size thresholds (> 10 µm2 
and > 100 µm2; N = 9 subjects, n = 3 sections/subject)

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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WT mice, microglial depletion also occurred with high 
efficiency (EC: CTRL vs. PLX 83%, p = 0.0003; DCN: 
CTRL vs. PLX 92%, p = 0.0264; Additional file  1: Fig. 
S14). Overall, the quantification of IBA1-positive micro-
glia confirms significant depletion in the EC and DCN 
after PLX5622 treatment.

Finally, we examined whether plaque deposition is dif-
ferentially impacted in the EC and DCN in App KI mice 
after PLX5622 treatment. For this, we used FSB and 
α-6E10 to detect fibrillar and diffuse plaques, respec-
tively. In the EC, we found no significant differences in 
FSB-positive plaque count, total area or average size 
between treatment groups (Fig.  7G). In the DCN how-
ever, we found that FSB-positive plaques were further 
reduced following PLX5622 administration from an aver-
age count of ~ 9.5/mm2 in control subjects, to ~ 4/mm2 
in treated subjects for plaques at a threshold of > 10 µm2 
(p = 1.75 × 10–4), and from 2.5/mm2 to 1.3/mm2 at a 
threshold of > 100 µm2 (p = 0.0425; Fig. 7C–E and H). In 
addition to plaque counts, the total area was also reduced 
(> 10 µm2: p = 1.31 × 10–3; > 100 µm2: p = 0.0127) and aver-
age plaque size was lower for plaques with a size thresh-
old of > 100  µm2 (p = 0.0352; Fig.  7H). Surprisingly, no 
significant differences were observed for diffuse plaques 
with α-6E10 staining in either region (Additional file  1: 
Fig. S15).

Overall, our PLX5622 treatment in mice success-
fully depleted the majority of microglia in EC and DCN, 
but with unexpected changes in cytokine profiles. We 
conclude from our detailed plaque measurements 
that PLX5622 treatment had minimal effects on amy-
loid pathology in the EC, but robustly depleted fibrillar 
plaques in the DCN. Finally, our experiments underscore 
the complex relationship between microglia and cytokine 
expression which must be taken into account when 
assessing plaque pathology.

Discussion
Microglia states in WT and AD mice across brain regions
In this report, we leveraged the disparity in amyloid 
pathology between EC and DCN to identify molecular 
signatures and signalling pathways that may contribute to 
these differences. We profiled shared and distinct path-
ways impacted by Aβ pathology in glia and also identi-
fied a subpopulation of microglia that is enriched in the 
DCN but independent of disease-associated states. These 
DCN-enriched microglia express genes closely linked 
to innate immune and type I interferon responses, simi-
lar to the cerebellar microglial population previously 
profiled via microarrays by Grabert and colleagues [61]. 
Notably, the transcriptional signature of DCN-enriched 
microglia also closely resembles microglial states iden-
tified in the cerebral cortex and previously reported in 

AD phenotypes as interferon-response or -responsive 
microglia [30, 32, 62, 63]. The proportion of these inter-
feron-responsive microglia relative to homeostatic or 
AD-associated microglia in the cortex is small [30], and 
while they share overlapping patterns of gene expres-
sion with the DCN-enriched microglia, whether they are 
functionally equivalent remains to be determined. How-
ever, accumulating evidence indicates that overall, fore-
brain and cerebellar microglia are both morphologically 
and functionally distinct [56, 61, 64, 65]. In the cerebel-
lum, elevated levels of CSF1 and CSF1-CSF1R interaction 
drives microglial identity and function [56], with cerebel-
lar but not cortical microglia existing in a basally more 
“reactive” state and playing crucial roles in neuronal 
attrition and clearance [64]. Our profile of the DCN tran-
scriptome, cytokine immunoassay and BV2 induction 
experiments all support the premise that the microglia 
in DCN exist in a unique cytokine-enriched state under 
wild-type conditions (Additional files 2 and 3).

Different glial populations contribute to cytokine‑enriched 
niche in the DCN
A broader analysis of the single-nuclei transcriptome 
indicates that the cytokine-enriched state in the DCN is 
not limited to microglia but extends to other cell types 
in the region. It is striking that glia, neurons and vascular 
cells all show broad elevation of cytokine expression in 
the DCN relative to the EC, even in the absence of plaque 
pathology. Importantly, not all cytokines have elevated 
expression in the DCN with some showing similar levels 
to EC, while others are depressed. This selective regula-
tion is also not exclusive to either pro- or anti-inflamma-
tory cytokines, as examples of both groups can be found 
up- or down-regulated across multiple cell types. It is 
important to note that our transcriptome and immuno-
assay data also show disease-specific changes in cytokine 
expression in the EC, and to a much lesser extent in the 
DCN. Curiously, the cytokine immunoassays of whole 
cerebellum relative to cortex show only a mild enrich-
ment in a smaller subset of the cytokines. One possibil-
ity—as the majority of studies have examined cerebellar 
properties as a whole—is that the DCN could serve as a 
primary source of cytokine enrichment in the cerebellum 
[56, 61, 64].

Intriguingly, the PI3K–AKT/Rho GTPase pathway, 
which is enriched in App KI DCN astrocytes and oligo-
dendrocytes, can be activated by cytokines [66–68] and 
is known to modulate different aspects of brain inflam-
mation by regulating glial cell reactive states and cross-
talk between populations [69–71]. Given that a sizeable 
proportion of DEGs in the DCN is found in oligodendro-
cyte subtypes and a subset of these are linked to PI3K–
AKT/Rho GTPase activity, future studies will be aimed 
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at exploring if the signalling pathway is preferentially 
activated in these cells, and whether that is directly tied 
to cytokine activity in the DCN and reduction of plaque 
pathology.

CSF1R inhibition reduces plaque abundance in the DCN
Given our observations, we wanted to further explore the 
contribution of microglia to establishing the cytokine-
enriched microenvironment and low plaque abundance 
in the DCN. Since a sizeable subset of cytokines are 
detected in DCN microglia, we hypothesised that these 
cytokines may play a role in regulating the expression 
and secretion of other cytokines in neighbouring cell 
types. In theory, if DCN microglia function as a master 
regulator for coordinated cytokine expression across 
cell types, then prolonged microglia depletion should 
dampen the overall cytokine-enriched state in the DCN 
and alter parameters of plaque formation and/or growth. 
We therefore chose to administer PLX5622 to deplete 
microglia as it has been proven effective in eliminating 
the vast majority of microglia despite reports indicating 
varying effects of the drug on amyloid pathology depend-
ing on the age of onset and length of drug treatment, 
inter-batch efficacy of the drug, brain region examined, 
AD rodent model used in the study and plaque detection 
methodology [59, 60, 72–74].

Contrary to our expectations, PLX5622 treatment 
in App KI not only failed to dampen cytokine expres-
sion in the DCN, it enhanced expression of a subset of 
cytokine targets we tested in the immunoassays. The 
increase in cytokine levels is most striking in DCN, but 
also present to a smaller extent in the EC. Notably, not all 
cytokines we tested are impacted by PLX5622 treatment. 
One interpretation of this result is that loss of cytokine 
expression in the microglia is compensated by increased 
expression in other cell types, with the compensation 
strongest in DCN due to the robust pre-existing pattern 
of expression across multiple cell types. Indeed, our data 
provide an explanation for observations by Vichaya and 
colleagues (2020) where microglial depletion by genetic 
and pharmacological means failed to attenuate, but 
instead exacerbated, LPS-induced sickness in rodents 
[75]. Another possibility is that long-term treatment with 
PLX5622 has been shown to give rise to a subpopulation 
of IBA1+/TMEM119− treatment-resistant microglia [76]. 
Presumably, the remaining microglia could be induced 
to express and secrete more cytokines to compensate for 
the loss. However, it is unlikely that a small fraction of 
microglia remaining in the DCN after depletion could be 
induced to express higher levels of cytokines compared 
to the entire microglial population at basal state.

In contrast with our original hypothesis where we 
anticipated an increase in plaque pathology upon lower-
ing the cytokine-enriched state in the DCN, we instead 
observed a significant reduction in both number and size 
of fibrillar plaques in the DCN of PLX5622-treated ani-
mals. This aligns with several studies which show that 
modulating the inflammatory response in the brain dif-
ferentially impacts the deposition of dense core and dif-
fuse amyloid plaques [77, 78]. Ironically, the increase in 
cytokine expression after drug treatment remains entirely 
consistent with our hypothesis that a cytokine-enriched 
environment is playing a role in reducing plaque depo-
sition in the DCN. What is less clear are the candidates 
that drive this change. Many of the cytokines targeted in 
the immunoassay such as IL10, IL33 and IL6 have altered 
expression in post-mortem tissues and animal mod-
els, with some capable of influencing AD pathology [77, 
79–83]. It is important to reiterate that while individual 
cytokine expression has been shown to modulate amy-
loid plaque pathology, it remains possible that the com-
bined action of multiple cytokines—each with varying 
effects on inflammation and cell states—will influence 
plaque deposition in a complex microenvironment such 
as the DCN.

Perhaps rather fortuitously, one of the unintended 
consequences of PLX5622 treatment is the decoupling 
of microglial presence in the DCN from the expres-
sion of cytokines and phagocytosis of plaques. This 
eliminates the idea that microglial presence alone is 
responsible for establishing the cytokine-enriched state 
in the DCN. It is also unlikely that enhanced microglia-
mediated phagocytosis is the main mechanism for the 
reduced fibrillar plaque pathology in the DCN. How-
ever, our result does not rule out the possibility that 
microglial involvement is required at the initial stages of 
plaque pathogenesis [59, 84]. Due to the late appearance 
of amyloid plaques in the DCN, our PLX5622 treatment 
to eliminate microglia at four months of age may result 
in the failure of plaque compaction that disrupts the 
emergence of new plaques [59].

Instead, our data open up the possibility that a 
cytokine-mediated reduction in plaque pathology could 
be achieved indirectly via mechanisms that accelerate 
clearance of Aβ in the DCN. This could be accomplished 
through the glymphatic or vascular systems where it 
is well-known that cytokines can alter blood brain bar-
rier integrity, vascular permeability and blood flow, and 
lymphatic drainage [85–88]. At least one report has 
also shown that synthetic Aβ injected in App KI mice is 
cleared more rapidly in the cerebellum than in the cor-
tex [89]. Alternatively, the DCN microenvironment may 
recruit other myeloid populations or heighten phagocytic 
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activity of other cell types [90–92]. At present, it is also 
unclear if the DCN microenvironment is playing a role 
in suppressing tau pathologies. While tau tangles in the 
cerebellum have only been reported in rare cases [93, 94], 
experiments where cytokine levels are manipulated in 
animals that express mutant tau in the DCN will prove to 
be insightful. Overall, while experiments with PLX5622 
in App KI mice have generated new insights into the 
relationship between microglia, cytokine expression and 
amyloid pathology, future microglia depletion experi-
ments must also consider changes in cytokine expression 
from other cell types in response to the depletion mecha-
nism when assessing the impact on AD pathology.

In this study, only male mice were used, and we can-
not rule out sex-specific differences in AD pathology 
that exist between the different brain regions given that 
females often show higher levels of AD pathology [95]. 
Nevertheless, the absence of plaques in the DCN and, 
to a lesser extent, in the cerebellum has been reported 
in post-mortem brains for both men and women [5, 96]. 
Certainly, from a behavioural standpoint, the lack of 
pathology in the cerebellum correlates well with no sig-
nificant loss of locomotor skills during early stages of the 
disease, unlike neurodegenerative disorders where cer-
ebellar degeneration is detected [97]. Of note, the DCN 
in mice has been found to regulate other behavioural out-
puts including those that control satiety [22] and addi-
tional work should be done to examine whether these 
outputs are affected by AD pathology.

It is important to note that even though amyloid 
plaques are sparser in DCN than EC, several lines of evi-
dence indicate that the expression of full-length APP in 
both brain regions is comparable. First, our transcrip-
tome data indicate that overall App expression across all 
cell types is not significantly reduced in DCN (Additional 
file 1: Fig. S16). Furthermore, a recent study showed that 
full-length APP protein expression in App KI cerebellum 
is comparable to WT animals [89]. Taken together, we 
do not think that altered APP expression in EC-DCN is 
a contributing factor to the differences in pathology. In 
addition, we also examined a selection of genes directly 
involved in APP processing and generation of Aβ [98–
101]. In our dataset, the expression of these genes in 
the DCN is comparable to or slightly higher than in EC. 
However, there are many genes associated with the pro-
cessing and trafficking of APP and we cannot entirely rule 
out that a subset of these genes with altered expression 
may end up contributing toward differences in plaque 
phenotypes [102].

Overall, our snRNAseq profiles of glia in the EC and 
DCN reveal the presence of a cytokine-enriched micro-
environment unique to the DCN that is likely established 
through the collective expression of a variety of cytokines 

across multiple cell types. We show that the DCN milieu 
can induce an inflammatory transcriptional response and 
by manipulating this niche, we can alter deposition and 
growth of amyloid plaques in the DCN.

Methods and materials
Animals
Adult male C57BL/6J WT and APPNL-G-F/NL-G-F (App 
KI) mice were used in this study. All animals were 
housed with free access to food and water in the Animal 
Research Facilities in the Lee Kong Chian School of Med-
icine, Nanyang Technological University, Singapore. All 
procedures were approved by the Nanyang Technological 
University Institutional Animal Care and Use Committee 
(IACUC18095).

Histology
Animals were anaesthetised with isoflurane before tran-
scardial perfusion with cold 1X phosphate buffered saline 
solution (PBS) followed by 4% paraformaldehyde (PFA). 
Brains were extracted and post-fixed in PFA, then pre-
served in 30% sucrose for 2–3 days. The brains were then 
frozen in OCT medium (Sakura Finetek, 4583) on dry 
ice and stored at -80 ºC until sectioning. For the analysis 
of Aβ plaques from 3–12  months, brains were cryosec-
tioned at 30  µm and mounted on Fisherbrand™ Super-
frost™ Plus microscope slides then stored at –80 ºC. 
For PLX5622 feeding experiments, 30-µm sections were 
stored free-floating in cryoprotectant solution [30% eth-
ylene glycol, 30% glycerol in 0.02 M phosphate buffer] at 
−  20  °C. For in  situ hybridisation, tissues were cryosec-
tioned at 12  µm and mounted on Fisherbrand™ Super-
frost™ Plus microscope slides then stored at − 80 °C.

Immunohistochemistry
For analysis of Aβ plaques and IBA1, tissues were washed 
with 0.1% PBST [0.1% Triton-X in PBS] three times for 
5  min each. Tissues were then blocked with 3% horse 
serum in PBST for 2 h at room temperature before over-
night incubation with primary antibodies at 4 °C. On the 
following day, sections were washed thrice, then incu-
bated with secondary antibodies for 1 h at room temper-
ature. Sections were washed, then incubated with DAPI 
for 5  min or FSB for 30  min, followed by a final wash 
before being mounted.

For comparison of 6E10 + plaques between regions 
from 3–12  months, single plane images were captured 
with a Zeiss AxioScan.Z1 slide scanner at 20X magni-
fication and analysed using Fiji (NIH). First, region of 
interests (ROI)s were drawn, and the area was meas-
ured. To perform background correction, minimum and 
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maximum intensity values were set manually for each 
section. Then the triangle algorithm was used for con-
version to binary images, followed by detection of parti-
cles larger than 10 µm2 and 100 µm2. Full statistical test 
results are presented in Additional File 2.

Antibodies and dyes

Primary antibodies Source Dilution

Aβ (6E10; mouse) BioLegend, 803001 1:1000

IBA1 (rabbit) FUJIFILM Wako, 019–19741 1:1000

Secondary antibodies Source Dilution

Donkey anti-mouse IgG (H + L), 
Alexa Fluor™ 647

Thermo Fisher Scientific, 
A-31571

1:1000

Donkey anti-rabbit IgG (H + L), 
Alexa Fluor™ 555

Thermo Fisher Scientific, 
A-31572

1:1000

Dyes Source Dilution

Hoechst 33342 Thermo Fisher Scientific, 
H3570

1:1000

DAPI Invitrogen™ D3571 300 nM

FSB staining solution Sigma-Aldrich, 07602 1:5000

Dyes Source Dilution

Hoechst 33342 Thermo Fisher Scientific, 
H3570

1:1000

DAPI Invitrogen™ D3571 300 nM

FSB staining solution Sigma-Aldrich, 07602 1:5000

Hybridisation chain reaction (HCR) RNA fluorescent in situ 
hybridisation
Tissues were pre-treated as follows: fixed with ice cold 
4% PFA for 10 min, washed with 1X PBS three times for 
3 min each, digested with Proteinase K [1 µg/mL protein-
ase K, 5 mM EDTA, 50 mM Tris pH7.5 in MilliQ-H2O] 
for 10  min, fixed with 4% PFA for 5  min, washed with 
1X PBS three times for 3 min each, acetylated for 10 min 
[acetylation solution: triethanolamine (Sigma, 108-24-
7) and acetic anhydride (Sigma, 411000) in MilliQ-H2O] 
and finally, washed with 1X PBS three times for 5  min 
each. Pre-hybridisation with hybridisation buffer (HB; 
Molecular Instruments, Inc.) for 60 min is carried out in 
humidified chamber at 37  °C. Following that, 2 pmol of 
HCR probes (Molecular Instruments, Inc.) in HB were 
added onto the slides with coverslips on for overnight 
incubation in humidified chamber at 37 °C. After 16 h of 
incubation, slides were washed with 5xSSCT [5 × SSC, 
0.1% Tween 20 in MilliQ-H2O] three times for 15  min 
each and wash buffer (WB; Molecular Instruments, Inc.) 
for 30  min at 37  °C. Further two washes with 5xSSCT 
and amplification buffer (AB; Molecular Instruments, 
Inc.) were carried out at room temperature for 15  min 

each. The following amplification steps were performed 
according to manufacturer’s protocol. Briefly, 6  pmol 
of hairpin in AB was added onto the slides and incu-
bated overnight in the dark at RT. On the next day, three 
washes with 5xSSCT for 15  min followed by Hoechst 
staining was carried out. Sections were washed twice 
with 5 × SSCT for 5  min each before being for imag-
ing. All HCR-FISH images were captured using Zeiss 
LSM810 Confocal Microscope System. Images were cap-
tured using 20X objective with five z-stacks of 1 µm and 
processed with Fiji (NIH). The z-stack images were pro-
jected using maximum intensity method before the ROI 
(i.e. EC or DCN) was cropped using the ‘freehand selec-
tion’ tool. Quantification of Hexb density was performed 
as follows: threshold was first applied to the Hexb chan-
nel using the in-built ‘Triangle’ algorithm and particles 
larger than 10 µm2 were selected. Density of microglia 
was calculated as the total area of Hexb particles divided 
by the area of ROI. For quantification of IFN response 
gene (IRG) signals within the same ROI, a 5% intensity 
threshold was used and pixels larger than 1 µm2 within 
the Hexb cells were selected. Percentage of IRG+/Hexb+ 
cells relative the total Hexb+ population was calculated. 
All data were analysed with GraphPad Prism 7. Full sta-
tistical test results are presented in Additional File 2.

Microdissection of DCN and EC and nuclei isolation
Mice were anaesthetised with isoflurane before being 
decapitated. Brains were dissected on ice and rested in 
pre-bubbled slurry cutting solution [250  mM sucrose, 
26  mM NaHCO3, 10  mM [D +] glucose, 3  mM myo-
inositol, 2.5 mM KCl, 2 mM sodium pyruvate, 1.25 mM 
NaH2PO4·2H2O, 0.5 mM ascorbic acid, 1 mM kynurenic 
acid, 0.1  mM CaCl2 and 4  mM MgCl2] for 1  min. A 
downward cut across the midbrain was made to separate 
the cerebellum from the forebrain. The cerebellum was 
first sectioned at 300 µm in cold cutting solution using a 
vibratome [Leica VT-1200]. Approximately 4–5 sections 
were used for microdissection of the DCN (Additional 
file  1: Fig. S1) in chilled pre-bubbled artificial cerebro-
spinal fluid [ACSF: 10 mM [D +] glucose, 126 mM NaCl, 
24  mM NaHCO3, 1  mM NaH2PO4·2H2O, 2.5  mM KCl, 
0.4  mM ascorbic acid, 2  mM CaCl2 and 2  mM MgCl2]. 
For diagram of dissection, refer to Additional file 1: Fig. 
S1. EC dissections were performed on wetted filter paper 
on ice and dissected tissues were kept in chilled ACSF 
with continuous carbogenation for up to 10  min until 
homogenisation. For homogenisation, tissues were trans-
ferred to chilled homogenisation buffer [0.25 M sucrose, 
25 mM KCl, 5 mM MgCl2, 20 mM Tricine, pH 7.8] in a 
Dounce homogeniser and homogenised with 10 strokes 
of the pestle. To lyse the samples, NP-40 was added to 
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obtain a final concentration of 0.3% and samples were 
dounced with 5 strokes. Lysates (2 ml) were filtered using 
40 µm FlowMi tip strainers and gently mixed with 4.6 ml 
1.8  M sucrose cushion buffer [1.8  M sucrose, 10  mM 
Tris–HCl, 1.5  mM MgCl2, pH 6.9] then layered over a 
3-ml sucrose cushion. Samples were spun in an ultra-
centrifuge at 30,000xg for 45 min at 4  °C. The superna-
tant was removed, and pellets were resuspended in 90 µl 
nuclei resuspension buffer [10  mM Tris–HCl, 0.25  M 
sucrose, 25 mM KCl, 1.5 mM MgCl2, 1.5 mM CaCl2, pH 
6.9] before quantification.

Single nuclei RNAseq and data analysis
The cDNA libraries were generated according to manu-
facturer’s protocol (10 × Genomics, Inc.). In brief, approx-
imately 10,000 nuclei per sample were processed using 
the Chromium Single Cell 3’ v3 Gene Expression kit 
[103]. The libraries were sequenced on the NovaSeq6000 
platform (NovogeneAIT Genomics).

Pre‑processing and dimensionality reduction
SnRNAseq data were first aligned to the mm10 pre-
mRNA reference genome using CellRanger v3.1.0 with an 
expected cells value of 10,000. Downstream processing 
was performed using Seurat v4.1 [104]. First, all samples 
were processed individually. Barcodes with > 5% mito-
chondrial RNA were removed. UMIs were normalised 
by library size, multiplied by a scale factor of 10,000 and 
log transformed. Highly variable genes (N = 5000) were 
identified using the variance-stabilising transformation 
method. A shared nearest neighbour graph was con-
structed, and clustering was performed using the Louvain 
algorithm, followed by uniform manifold approximation 
and projection (UMAP) mapping into two-dimensional 
space. We used 45 principal components (PCs) for DCN 
and 60 PCs for EC with clustering resolution 0.7. Clus-
ters of droplets with very low counts and numbers of 
features as well as a relatively high percentage of mito-
chondrial RNA, representing low-quality cells and/or 
ambient RNA, were removed. DoubletFinder v2.0.3 [105] 
was used to label droplets that may contain multiplets 
(parameters: 45 PCs, sct = false, GT = false, pN = 0.25).

SCTransform v2 [106] was applied to each sample, fol-
lowed by SCT integration using 50 PCs and 3000 fea-
tures. Dimensionality reduction was performed on the 
integrated dataset as described above at low (res. = 0.3, 
PCs = 30), medium (res. = 0.7, PCs = 50) and high 
(res. = 1.0, PCs = 70) resolutions and cluster labels were 
determined by marker gene expression [24]. Each major 
cell type (astrocytes, neurons, microglia, oligodendro-
cytes, OPCs and vascular cells) was then analysed using 
Monocle3 to classify cell subtypes. During these steps, 
further filtering was performed using marker genes and 

DoubletFinder to identify clusters of multiplets and low-
quality cells. Final cell-type classifications were adjusted 
according to results of subcluster analyses. The final 
clusters were astrocyte 1, astrocyte 2, Bergmann glia, 
ependymal cells, excitatory neurons, Cajal Retzius cells, 
interneurons, microglia, peripheral immune cells,  oligo-
dendrocyte  1, oligodendrocyte  2, committed oligoden-
drocyte precursor cells, oligodendrocyte precursor cells, 
vascular endothelial cells, pericytes and leptomeningeal 
cells. Astrocyte subclusters broadly correspond to fibrous 
(higher expression of Gfap, Kcnj3, Ablim2, Slc38a1, Rfx4 
and Dach1 in both regions; AST1) and protoplasmic 
(higher expression of Gria2, Slc7a10, Slc6a11, Mgat4c 
and Kcnd2 in both regions; AST2) subtypes.

Differential expression analyses
Differential expression analyses were performed using 
Seurat to apply the Wilcoxon rank sum test with Bon-
ferroni correction on RNA counts for glia and vascular 
cell clusters with over 900 cells, comparing APP and WT 
genotypes in the EC and DCN, and EC and DCN regions 
in WT mice. DEG thresholds are adjusted p-value < 0.05, 
LFC >  ± 0.25, and expression in > 10% of cell population 
in either condition. All lists were combined, and a Venn 
diagram was plotted using the R package VennDiagram 
[107]. Filters to minimise contamination from ambient 
RNA were applied to each cell type as described below.

Genes that may be affected by contamination from the 
ambient pool were identified using the dropletUtils pack-
age [108, 109]. Ambient expression profiles were esti-
mated for each sample from raw counts, with barcodes 
that had fewer than 500 UMIs classified as empty drop-
lets. These profiles were used to calculate an upper bound 
for the proportion of expression counts contributed by 
the ambient pool for each gene in each cell population, 
using mitochondrial genes and lncRNAs associated with 
ribosomal RNA contamination (Gm42418, Gm26917) 
[110] as negative control genes. For each cell type, only 
genes for which the upper bound of ambient contamina-
tion was < 10% in at least one condition were included as 
DEGs to minimise false positives resulting from expres-
sion in other cell types. Furthermore, genes for which 
the upper bound of ambient contamination was > 10% in 
all conditions and > 50% in any condition were excluded 
from all downstream analyses for that cell type. The latter 
thresholds were chosen to exclude genes for which the 
majority of reads likely originated from the ambient pool, 
while retaining genes expressed in multiple cell types or 
highly expressed in abundant cell types (e.g. oligodendro-
cyte-enriched genes in oligodendrocyte subpopulations) 
as the upper bound of ambient contamination for such 
genes was often between 10 and 50%, as determined by 
examination of expression across cell types both in our 
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dataset and in cell-type-specific mouse brain transcrip-
tome databases [24, 111]. Differential expression test 
results are presented in Additional File 3.

A correlation matrix was plotted using the corrplot 
package [112]. Filtered gene lists for all glial cell types 
were combined and Pearson’s r was calculated for APP 
vs WT LFCs between all pairs of cell populations in each 
region. The proportion of shared DEGs was calculated 
relative to the total number of unique DEGs for each pair 
of cell populations. DCN-specific DEGs were then identi-
fied within each cell type and gene lists were combined 
for further analysis. Pathway analyses were conducted 
using the R package clusterProfiler [113] with the KEGG, 
WikiPathways and ReactomeDB databases [114–116], 
applying Benjamini–Hochberg correction for multi-
ple comparisons (parameters: gene set size 10–1000, 
adjusted p-value < 0.05, q < 0.2). The protein–protein 
interaction network for DEGs was generated using 
STRING v11.5. Cytoscape v3.9.1 [117] was used to cal-
culate node degree and plot the network with the Prefuse 
Force-directed layout.

Pseudo-bulk expression was calculated for major cell 
types (astrocytes, microglia, neurons, oligodendrocytes, 
OPCs and vascular cells) using Seurat RNA average 
expression scaled to 10,000 counts. Heatmaps display 
per-gene z-scores and hierarchical clustering was per-
formed using Pearson’s correlation as the distance metric 
with the Ward D2 algorithm.

Analysis of ligand–receptor interactions was per-
formed on the results of DE tests comparing WT DCN 
and EC using CCinx, in which edge weights are calcu-
lated as the sum of scaled LFCs [54]. Interactions were 
filtered to unique ligand–receptor pairs containing one 
or both genes annotated to the GO biological processes 
inflammatory response (GO:0006954) or immune sys-
tem process (GO:0002376), including regulatory genes. A 
table was generated summarising the number of interac-
tions with greater edge weights in each region between 
each pair of cell types and then plotted in Cytoscape.

Subcluster analyses
Subcluster analyses for each major cell type were per-
formed using Monocle3 [50, 51, 118]. First, 50 PCs were 
calculated, and cell transcriptomes were aligned using 
sample as the alignment group and total RNA counts 
plus percentage of mitochondrial reads as the residual 
model formula. UMAP co-ordinates were then cal-
culated, and unsupervised clustering was performed 
by constructing a k-nearest neighbours (kNN) graph 
followed by Leiden community detection (k = 10 for 
vascular cells; k = 20 for all other cell types). The num-
bers of cell subclusters identified were astrocytes = 6, 
microglia = 2, oligodendrocytes = 5, OPCs = 2, vascular 

cells = 4. Spatial autocorrelation analysis was then per-
formed using the Moran’s I test to identify genes that 
are differentially expressed across cell subpopulations in 
UMAP space. Genes with q < 0.05 that passed the filter 
for ambient contamination described above were then 
clustered into co-expressed modules (k = 5 for glia types 
with > 2 clusters; k = 10 for microglia and OPCs; maxi-
mum 4 components). The following modules with ≥ 50 
genes were identified: astrocytes = 7, microglia = 4, oligo-
dendrocytes = 3, OPCs = 4, vascular cells = 5. Gene mod-
ules are presented in Additional file 3. For each module, 
the degree of differential expression between conditions 
was determined using the results of DE tests conducted 
above: the number of DEGs (pooling unique DEGs across 
subtypes where applicable) and pseudo-bulk average 
expression for each contrast of interest.

GO analyses were performed to identify enriched bio-
logical processes (BP) in each module compared to a 
background list of expressed genes in that cell type using 
Fisher’s test implemented by the topGO package with 
minimum 5 annotated genes per term [119, 120]. To 
generate bar plots of top enriched terms, the weight01 
algorithm was used to reduce redundancy between 
terms.  Significant GO terms for each module are pre-
sented in Additional file 3. To compare top enriched pro-
cesses across all modules, the results of unweighted GO 
tests were combined, and the resulting matrix was fil-
tered to the top five enriched terms in each module with 
p < 0.01 and between 10 and 1000 annotated genes. Jac-
card similarity coefficient was used to quantify gene set 
overlap and used as the distance metric for hierarchical 
clustering of GO terms using the Ward D2 algorithm. 
A heatmap was plotted displaying log10 p-value where 
p < 0.01, with the colour scale truncated at p = 1 × 10–10). 
Clusters of similar terms were labelled and highlighted 
manually.

Cytokine immunoassays
EC was dissected as described above, while the cerebel-
lum was coronally sliced into 1 mm sections using a brain 
matrix prior to dissection of the DCN in cold PBS using 
a scalpel. For the immunoassay that included cortex and 
cerebellum samples, EC and DCN were dissected from 
one hemisphere, while cerebellum and cortex (midbrain 
and hippocampus removed) were obtained from the 
other. For the remaining experiments, both hemispheres 
were combined. Tissues were snap frozen in liquid nitro-
gen and stored at -80 ºC until extraction.

Chilled cell lysis buffer [20  mM Tris–HCl, pH 7.4; 
150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Tri-
ton-X and cOmplete protease inhibitor] was added to 
tissues thawed on ice (500  µl/100  mg tissue) and. sam-
ples were homogenised with a micro-pestle (Bel-Art) 
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followed by rigorous pipetting. Samples were centrifuged 
at 16,000 xg for 10 min at 4 °C and the supernatant was 
stored at −  80  °C. Protein concentrations were deter-
mined by BCA (Pierce).

A customised ProcartaPlex 17-plex immunoassay 
(BAFF, IFNα, IFNβ, IFNγ, IL-1α, IL-1β, IL-10, IL-2, 
IL-27, IL-33, IL-33R (ST2), IL-4, IL-6, M-CSF, MIP-1α 
(CCL3), MIP-1β (CCL4), TNFα) was performed on a 
Bio-Plex 200 (Bio-Rad) platform with Bio-Plex Manager 
6.1 software (Bio-Rad) according to the manufacturer’s 
protocol with the following modifications: universal 
assay buffer was omitted, and cell lysis buffer was used 
in place of the reading buffer. From similar starting 
concentrations, EC and DCN samples were diluted 2X 
in buffer to obtain sufficient input for analysis and ana-
lysed separately from cortex and cerebellum samples 
to avoid potential biases in quantification. An 8-plex 
ProcartaPlex immunoassay (BAFF, IL-27, IL-33, IL-6, 
M-CSF, CCL3, CCL4 and TNFα) was performed on EC 
and DCN WT and App KI samples following PLX5622 
treatment according to the manufacturer’s protocol. 
Technical duplicates were used for both runs.

Analyte concentrations (pg/ml) were calculated from 
median fluorescence intensities (MFIs) and adjusted for 
dilution using Milliplex Analyst software (VigeneTech), 
then normalised by input protein concentrations (pg/
mg). Two-way (region * genotype) or three-way (region 
* genotype * treatment) ANOVAs were conducted on 
log2-transformed concentrations for each protein with 
Tukey’s HSD post hoc tests.  Full statistical test results 
are presented in Additional File 2. Heatmaps display 
z-scores of log2-transformed values with Ward D2 
clustering.

RNA analyses of BV2 cells treated with EC or DCN 
homogenates
EC and DCN tissues were extracted as described for 
immunoassays, except that 100 µl cold DPBS was used 
in place of cell lysis buffer. BV2 microglial cell lines 
were maintained in DMEM (Nacalai Tesque) contain-
ing 10% FBS (Gibco) and 1% Pen-Strep (Gibco). One 
day before treatment, 5 × 104 cells were seeded per 
well in a 24-well plate. Cells were treated with either 
50 μg EC or DCN protein homogenates prepared from 
N = 8 WT male mice aged 12–13  months, an equiva-
lent volume of DPBS as negative control, or 10  ng/ml 
of lipopolysaccharide (Sigma-Aldrich) as a positive 
control for induction of inflammatory gene expression. 
Cells were then incubated for 4 h at 37 °C and washed 
with ice-cold DPBS, before total RNA was harvested 
using Arcturus PicoPure RNA Isolation Kit (Applied 
Biosystems).

For RT-PCR, 1–2 μg of RNA was converted to cDNA 
using the RevertAid First Strand cDNA Synthesis Kit 
(Thermo Fisher) with oligo (dT)18 primers. qPCR was 
carried out using PowerUp SYBR Green Master Mix 
(Applied Biosystems) on QuantStudio 6 Flex Real-Time 
PCR System (Applied Biosystems) for all targets. To 
calculate the ΔCt value, the mean Ct value of technical 
triplicates for each target gene was normalised against 
the mean Ct value for the reference gene, Hprt1. The 
ΔCt value was then normalised against the DPBS con-
trol to obtain the ΔΔCt value, and the log2-fold changes 
of ΔΔCT values were presented.

Primers used for qPCR validation

Gene Forward primer 
(5ʹ-3ʹ)

Reverse primer (5ʹ-3ʹ)

Hprt1 TGT​TGT​TGG​ATA​TGC​
CCT​TG

GGC​CAC​AGG​ACT​AGA​
ACA​CC

Tnf-α CAG​GCG​GTG​CCT​ATG​
TCT​C

CGA​TCA​CCC​CGA​AGT​
TCA​GTAG​

Il-6 TAG​TCC​TTC​CTA​CCC​
CAA​TTTCC​

TTG​GTC​CTT​AGC​CAC​
TCC​TTC​

Il-1b GCC​CAT​CCT​CTG​TGA​
CTC​AT

AGG​CCA​CAG​GTA​TTT​
TGT​CG

Csf1 CAT​CCA​GGC​AGA​GAC​
TGA​CA

CTT​GCT​GAT​CCT​CCT​
TCC​AG

Ifi204 CAG​GGA​AAA​TGG​AAG​
TGG​TG

CAG​AGA​GGT​TCT​CCC​
GAC​TG

Tlr1 GTC​AAA​GCT​TGG​AAA​
GAA​TCT​GAA​G

AAT​GAA​GGA​ATT​CCA​
CGT​TGT​TTC​

H2-K1 GAG​CCC​CGG​TAC​ATG​
GAA​

CAG​GTA​GGC​CCT​GAG​
TCT​

For bulk RNAseq, polyA-enriched libraries were pre-
pared and sequenced on an Illumina NovaSeq 6000 
platform by NovogeneAIT to obtain 20  M 150-bp 
paired-end reads per sample. All samples had RNA 
integrity number (RIN) > 9. Pre-processing of RNAseq 
data were performed on the Gekko high-performance 
computing cluster at Nanyang Technological University. 
Illumina adapters were trimmed and reads with quality 
score < 15 or length < 30  bp were removed using Trim-
momatic v0.39 [121]. Alignment and quantification of 
paired‐end reads to the Genome Reference Consortium 
mouse genome primary assembly GRCm39 (annotation 
vM28) were performed using STAR v2.7.1a [122] and 
HTseq. v0.11.2 [123]. Downstream analyses were con-
ducted in R 4.2.1 [124]. First, the dataset was filtered to 
genes with minimum 1 log2 count per million (CPM) in 
at least 3 samples (11,404 genes). Differential expres-
sion analyses were conducted on TMM-normalised 
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counts using the quasi-likelihood method with robust 
dispersion estimation in edgeR [125–127] compar-
ing DCN, EC and LPS conditions to DPBS control, and 
DCN and EC conditions. Thresholds for differentially 
expressed genes were false discovery rate (FDR) < 10% 
and LFC >  ± 1.  Full  differential expression test results 
are presented in Additional File 3. A heatmap was plot-
ted showing z-scores for expression in each sample 
(log2 CPM + 1). Hierarchical clustering of genes was 
performed using Pearson’s correlation with the Ward 
D2 algorithm. GO analyses were conducted for each 
ontology (MF, CC, BP) using Fisher’s exact test with the 
weight01 algorithm in topGO [119, 120].

Microglia depletion
Chow containing 1200  ppm PLX5622 CSF1R inhibitor 
(MedChemExpress) was prepared using Open Standard 
diet (D11112201; Research Diets Inc., USA). Male mice 
were group-housed in an SPF environment and fed for 
60  days with PLX5622 or control diet beginning at age 
4  months. Chow was stored in a vacuum-sealed bag at 
4 °C and replaced every 3 days. Histology and immuno-
fluorescence staining were performed as described above 
using IBA1 and 6E10 antibodies and FSB dye. Images 
were captured at 20X magnification using Zeiss LSM 810 
Confocal Microscope System with the same parameters 
for all sections. Images were analysed using Fiji (NIH). 
First, the outline of ROIs was drawn, excluding areas of 
high background or tissue deformation. A Gaussian blur 
filter was applied, followed by rolling ball background 
correction. Minimum and maximum thresholds were set 
for each region and channel for conversion to a binary 
image, followed by identification and measurement of 
particles greater than 10  µm (all channels) and 100  µm 
(FSB and 6E10). Data were compiled and analysed in R. 
Mean parameter values were calculated from replicate 
sections (n = 3) for each subject (N = 9) and used for plots 
and Student’s t-tests.  Full statistical test results are pre-
sented in Additional File 2. Brightness and contrast were 
enhanced for presented images.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12974-​023-​02913-8.

Additional file 1:  Figure S1. Schematic of EC and DCN dissection. 
Figure S2. Workflow for snRNAseq. Figure S3. SnRNAseq breakdown 
of number of cells per cell type and condition. Figure S4. Proportion of 
cells of each type isolated for each condition. Figure S5. Pseudo-bulk 
heatmaps showing average expression of genes differentially expressed 
between APP and WT genotypes in the EC or DCN for each cell type. 
Heatmaps show expression in each condition in all major cell-types with 
z-scores calculated for each gene (row). Conditions and cell-types are 
indicated by colour-coded bar above each heatmap. DEGs in the EC and 

DCN respectively are indicated by colour-coded bars to the left of each 
heatmap. Hierarchical clustering was applied to genes in each heatmap. 
(A) Astrocyte (B) Neurons (C) Microglia (D) Oligodendrocytes (E) OPCs (F) 
Vascular cells. Figure S6. (A) UMAP of module Mg.G4 as a percentage 
of the maximum expression of genes found in the module. (B) Expres-
sion UMAPs for selected top marker genes from module Mg.G4 showing 
percentage of maximum expression. (C) Gene Ontology analysis of 
biological processes enriched in module Mg.G4 compared to all genes 
detected in microglia. Figure S7. (A) Expression pattern of Hexb (left 
panels) in the cortex and the cerebellum. On the right is an illustration of 
Hexb aggregates sized between 10 to 100 µm2 marked by grey dots while 
aggregates sized larger than 100 µm2 marked in red. Dashed lines in the 
cortical region indicates the EC region. Dashed lines in the cerebellum 
demarcates the DCN region while the grey shaded area denotes the white 
matter (WM) region. Scale bar indicates 1000 µm. (B) Quantification of the 
number of Hexb population in the EC, DCN and WM of WT and APP tissue 
(N=3 subjects, n=6-7 sections/subject). Graph indicates mean ± SEM. (C) 
RNA in situ hybridisation of Oasl2 and Ifi204 (green) in the DCN and WM of 
APP tissue. Closed circle denotes colocalisation with Hexb (red) while bro-
ken circle denotes absence of Oasl2 or Ifi204 in Hexb-positive cells. Scale 
bar represents 10 µm. (D-E) Quantification of Oasl2-expressing microglia 
(D) and Ifi204-expressing microglia (E) in the DCN and WM (N=3 subjects, 
n=3 sections/subject). Graphs indicate mean ± SEM. Student’s t-tests 
were performed on within region (*) and within-genotype differences in 
DCN or WM as compared to EC (†). Two-way ANOVAs were performed on 
within-subject means to test for main effects of region and genotype and 
interaction effects, followed by Tukey’s HSD post hoc tests (¤). * p<0.05, ** 
p<0.01, *** p<0.001, **** p<0.0001. Figure S8. (A-D) UMAPs showing (i) cell 
subclusters, (ii) distribution of cells across conditions and (iii) aggregated 
expression of genes in each module, and (iv) box plots of log2 gene 
expression value distributions for each gene module for (A) Astrocytes, 
(B) Oligodendrocytes, (C) OPCs and (D) Vascular cells. Figure S9. Dot 
plots showing expression of select DEGs associated with innate immune 
responses, cytokine production and NFKB signalling in modules Vasc.2, 
Vasc.4, and Olig.3 across conditions. Dot size indicates the percentage of 
cells in each condition expressing each gene and dot colour indicates 
mean log2 expression. Darker dots represent higher expression levels. 
Figure S10. Cytokine protein expression measured by multiplex array in 
WT and App KI tissues. Bar plots show mean and SEM for each condition 
with dots for individual sample measurements. Region and genotype are 
indicated by bar colour and shade. Significant post hoc t-test results are 
indicated as follows: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. (A) EC & 
DCN. (B) Cortex (CTX) and cerebellum (CBM). Figure S11. STRING analysis 
of DEGs that overlap in DCN and LPS conditions compared to controls 
in BV2-treated cells. Genes associated with GO label “immune response”, 
“response to cytokines” and “inflammatory response” are represented as 
colour coded circles. (Gene interactions shown under medium confidence 
with no disconnected nodes.). Figure S12. Log2 fold change in expression 
of marker genes associated with inflammation in BV2 microglia cultures 
stimulated with DCN homogenates compared to EC homogenates from 
the same subject, measured by qPCR (N=8). P-values from paired t-tests 
are written above each bar. Figure S13. Cytokine protein expression 
measured by multiplex array following microglia depletion by CSF1R 
inhibition. WT and App KI mice were fed with PLX5622 or control chow for 
2 months, followed by isolation of the EC and DCN. Bar plots show mean 
and SEM for each condition with dots for individual sample measure-
ments. Region and genotype are indicated by bar colour, while treatment 
is indicated by diagonal stripes. Protein concentrations are normalised 
by total protein in each sample. Figure S14. Quantification of IBA1+ 
microglia coverage in the EC and DCN of WT mice fed with PLX5622 and 
control chow, showing robust depletion in both regions (N=4 subjects, 
n=2 sections/subject). * p<0.05, *** p<0.001. Figure S15. Quantification of 
6E10-labeled amyloid plaques in the EC (A) and DCN (B) for the number, 
total area and average size of two different plaque size thresholds (>10 
µm2 and >100 µm2; N=9 subjects, n=3 sections/subject). Figure S16. 
Expression of App and select APP-processing genes in snRNAseq data. (A) 
UMAPs displaying log2 expression of App across all cells in each condition. 
(B) Violin plots of App expression in each major cell type and condition. 
(C) Heatmap of pseudo-bulk average gene expression of App and select 
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APP-processing genes in each major cell type in each condition. Colour 
scale indicates z-scores for each gene across conditions.

Additional file 2: Statistical tables for Figures 1, 3, 6, 7, S7, S14 and S15.

Additional file 3: Supplementary Data for snRNAseq and RNAseq 
experiments.
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