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Abstract 

In Parkinson’s disease (PD), neurotoxic microglia, Th1 cells, and Th17 cells are overactivated. Overactivation of these 
immune cells exacerbates the disease process and leads to the pathological development of pro-inflammatory 
cytokines, chemokines, and contact-killing compounds, causing the loss of dopaminergic neurons. So far, we have 
mainly focused on the role of the specific class of immune cells in PD while neglecting the impact of interactions 
among immune cells on the disease. Therefore, this review demonstrates the reciprocal interplays between micro-
glia and T cells and the associated subpopulations through cytokine and chemokine production that impair and/
or protect the pathological process of PD. Furthermore, potential targets and models of PD neuroinflammation are 
highlighted to provide the new ideas/directions for future research.
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Introduction
Parkinson’s disease (PD) is the second most prevalent 
neurodegenerative disease after Alzheimer’s disease and 
is characterized by the loss of dopaminergic neurons 
in the substantia nigra, which leads to the reduction of 
dopamine influx in the nigrostriatal pathway and the 

appearance of Lewy bodies in the nerves and axons [1, 
2]. PD patients may exhibit a range of motor symptoms 
(e.g., resting tremor, bradykinesia, shuffling gait, dysto-
nia) and non-motor symptoms (e.g., cognitive impair-
ment, anxiety, autonomic dysfunction, sleep disorders) 
[2, 3]. Epidemiological studies of PD have shown that the 
characteristics of PD are independently associated with 
age and gender, and age is one of the essential factors in 
its development [4]. A report of an epidemiological study 
published in 2018 on a North American population of 
patients with PD showed that the prevalence ranged from 
less than 1% of patients between 45 and 54 years old [5, 
6]. In comparison, the number of patients aged 85 years 
was 4%, and the number of male patients was twice as 
high as that of female patients [4–8]. The number of PD 
patients is expected to increase by more than 50% by 
2030 due to the aging of the population and increasing 
life expectancy. Therefore, it is urgent to determine how 
to effectively treat PD [9].
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Recent studies suggest that PD is associated with a 
variety of factors, including family genetics [10], disor-
ders of the gut microbiota [11], pathogenic infections 
[12], air pollution [13, 14], head trauma [15], making 
the understanding of the exact pathogenesis of PD more 
challenging. The pathogenesis of PD has been explored 
from various perspectives, including epidemiology, neu-
ropathology, proteomics, genomics, and immunology, 
and possible mechanisms that cause PD were proposed, 
such as mitochondrial dysfunction [16–18], oxidative 
stress [17–20], protein aggregation [21, 22], and abnor-
mal autophagy [23, 24]. Among them, immunological 
studies suggest that PD results from an imbalance in the 
immune system homeostasis in pathological processes 
in PD patients and related animal models [25–27]. Com-
pared to controls, immune cells infiltrate the brain paren-
chyma and peripheral tissues, causing a release of large 
amounts of inflammatory and regulatory factors [26, 27]. 
Furthermore, the activation of pre-existing immune cells 
in the brain also promotes the damage of dopaminer-
gic neurons and exacerbates the progression of the dis-
ease [8, 28]. These findings further reveal the possible 
mechanisms of PD pathogenesis from an immunological 
perspective.

Currently, most studies focus on the role of a single cell 
(microglia, T cells and their subtypes) in the pathological 
process of PD, which helps researchers to clearly articu-
late the specific roles of these cells in the pathological 
process and associated mechanisms of PD. However, var-
ious immune cells with mutual regulatory influences are 
required to prevent the onset of the disease. As a result, 
studying the reciprocal cooperative regulation of micro-
glia and T cells in PD is necessary. Current reports show 
minocycline reduces the inflammatory response and 
decreases microglia proliferation and IL-1β production 
[29–31]. However, the effect of minocycline on T cells 
has a different phenomenon between species [32, 33]. 
Treatment with minocycline in rodents had no impact on 
T cells and IFN-γ production [32]. Still, human-derived 
T cells treated with minocycline reduced the prolifera-
tion of cells and the ability to release pro-inflammatory 
cytokines [31, 33]. In addition, minocycline treatment 
reduced inflammation by decreasing the expression 
of adhesion molecules and reducing the interaction 
between T cells and microglia [33]. Notably, increased 
IL-10 production was only found in microglia and T-cell 
co-cultures after higher concentrations of minocycline 
treatment [33]. However, one of the possible reasons for 
the failure of minocycline to effectively treat amyotrophic 
lateral sclerosis in the clinic is that its concentration 
did not reach the concentration used in in  vitro cellu-
lar assays [34]. It suggests that the interactions between 
immune cells are essential in treating various diseases. 

In particular, the phenomenon of interactions between 
microglia and T cells in PD was previously demonstrated 
and played a vital role in the pathological changes of the 
disease [35, 36].

Therefore, this review demonstrates the impact of the 
reciprocal effects between T cells and microglia in PD 
on the pathological process of PD through cytokine and 
chemokine production. Also, potential targets and mod-
els in PD neuroinflammation are highlighted to provide 
new ideas/directions for future research.

Role of microglia and related mechanisms in PD
Microglia are macrophages residing in the central nerv-
ous system (CNS). As critical immune cells in the brain, 
they perform an irreplaceable role in brain health. Under 
normal physiological conditions, microglia are in a rela-
tively resting state, monitoring the brain microenviron-
ment and protecting the brain homeostasis by secreting 
neurotrophic factors to the corresponding neurons [28, 
37, 38]. First, microglia can remove invading pathogens, 
abnormal metabolic cells, and protein fragments from 
the brain through phagocytosis, thus actively remov-
ing potential threats to brain homeostasis [28, 39]. Con-
comitantly, altered microglia further remove potentially 
threatening substances by producing cytokines and, 
chemokines, and through other ways.

It is believed that microglia have different cellular phe-
notypic profiles, which may be influenced by the local 
microenvironment and other factors [40, 41]. Microglia 
have a complex "sensome" for sensing changes in the 
brain environment [40]. Alterations in the microglia’s 
epigenome, transcriptome, proteome, and metabolome 
can affect their morphology, ultrastructure, or cellu-
lar function [40, 42]. The state of microglia is associated 
with their unique functions, and the clearance of poten-
tially threatening substances from the brain by microglia 
involves the interrelation of different states of microglia 
[40].

In the PD environment, microglia may be neuropro-
tective and neurotoxic, and the balance between these 
changes depends on time and environmental changes 
[43–45]. When microglia recognize a potentially threat-
ening substance, their cellular state changes, and they kill 
the threatening substance by releasing pro-inflammatory 
cytokines and chemokines. In contrast, the excessive 
release of inflammatory factors causes neurotoxicity, 
described as "neurotoxic microglia". Moreover, microglia 
regulate the function of neurotoxic microglia by releas-
ing anti-inflammatory cytokines and chemokines, thus 
restoring the homeostasis of the brain microenviron-
ment, described as "neuroprotective microglia" [46, 47] 
(Fig.  1). However, the hyperactivation of microglia in 
PD may be caused by multiple factors. In  vitro, cellular 
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experiments revealed that aberrant α-synuclein in PD 
mediates the transition of microglia to a neurotoxic state 
through TLR2, TLR4-NK-κB, and LC3-related phago-
cytosis, thus exhibiting increased phagocytosis and 
production of pro-inflammatory cytokines [48–52]. In 
addition, impaired autophagy of microglia in PD resulted 
in increased intracellular NLRP3 (NOD-like receptor 
family, pyrin domain containing 3) activity, which also 
facilitated the transition to a neurotoxic state in micro-
glia [53]. Co-culture of neurotoxic microglia with dopa-
minergic neurons promoted the death of dopaminergic 
neurons [54]. In contrast, culture of neurotoxic microglia 
with neuroprotective microglia and then co-culturing 
the fraction with dopaminergic neurons reversed the 
phenomenon of dopaminergic neuron death caused by 
neurotoxic microglia [54]. This may be due to the pro-
inflammatory cytokines (IL-1β, TNF-α, chemokines) 
released by overactivated neurotoxic microglia that alter 
the brain homeostasis, making it more favorable for 
microglia conversion to neurotoxic, thus causing neuro-
toxic microglia proliferation and release of inflammatory 
cytokines. In addition, TNF-α released from neurotoxic 
microglia can directly induce apoptosis by binding to 
the tumor necrosis factor receptor-1 (TNFR1) of dopa-
minergic neurons, a process that may be related to the 
inhibition of c-Rel with anti-apoptotic function by tumor 
necrosis factor-alpha (TNF-α) in dopaminergic neurons 

[55]. C-Rel, one of the five DNA-binding proteins that 
make up the nuclear factor-kappa B (NF-κB) complex, 
and its competition with Rel A can downregulate the 
transcription of apoptotic genes such as Bim and Noxa 
while initiating the transcription of the anti-apoptotic 
gene Bcl-2 in cells to maintain neuronal survival [56–59]. 
In addition to causing direct neuronal damage, neuro-
toxic microglia can amplify inflammatory phenomena in 
the PD brain by altering astrocyte status [52, 60]. In the 
physiological state, astrocytes protect neuronal survival 
by secreting neurotrophic factors required by neurons. In 
contrast, neurotoxic microglia in PD cause further neu-
ronal damage by releasing pro-inflammatory cytokines 
that convert astrocyte phenotype to the neurotoxic A1 
type [52, 60].

There are three possible reasons for the emergence of 
the phenomenon of microglia hyperactivation: (1) Micro-
glia mitochondrial dysfunction. Normal mitochondria 
via tunneling nanotubes transfer into microglia with 
abnormal mitochondrial function, the oxidative stress 
levels and the release of pro-inflammatory cytokines 
in microglia were downregulated, and the dysfunction 
of microglia was restored, which in turn alleviated the 
loss of dopaminergic neurons in PD [61]. (2) The ratio 
of neurotoxic microglia to neuroprotective microglia 
is imbalanced. Inhibiting the expression of Jmjd3 in the 
mouse midbrain impaired the conversion of microglia to 

Fig. 1  Role of microglia on neurons in Parkinson’s disease (PD). The role of microglia in PD may be neuroprotective and neurotoxic, and their 
cellular state is altered depending on the external environment. In PD, neurotoxic microglia are hyperactivated and increase inflammation in the 
microenvironment by releasing pro-inflammatory cytokines that are toxic to neuronal cells and lead to their death. Conversely, anti-inflammatory 
cytokines released by neuroprotective microglia reduce the number and function of neurotoxic microglia. In addition, neuroprotective microglia 
interact with neurons to protect neuronal survival, thereby alleviating neuronal death caused by the storm of inflammatory factors in PD
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neuroprotective microglia and increased dopaminergic 
neuronal damage caused by the overactivation of neuro-
toxic microglia [62]. Furthermore, the transfer of in vitro 
induced differentiation of neuroprotective microglia to 
mice at different time points of the disease effectively 
reduced the inflammatory state in the CNS, thereby pro-
tecting neurons [63]. (3) Peripheral immune cell infiltra-
tion. Overactivation of neurotoxic microglia causes an 
increase in the level of pro-inflammatory factors, and 
microglia remove potentially threatening substances 
while altering the permeability of the blood–brain barrier 
(BBB), causing infiltration of peripheral immune cells, 
which also contributes to the overactivation of neuro-
toxic microglia [64, 65].

Neuroprotective microglia are a group of immune cells 
with the ability to regulate the inflammatory state by 
releasing corresponding protein molecules (arginase-1, 
chitinase  3-like  3, cluster of differentiation [CD] 206) 
and cytokines (insulin-like growth factor-1, transform-
ing  growth  factor-beta [TGF-β], interleukin [IL] -10) as 
well as phagocytosis to remove cellular debris from the 
internal environment, promote tissue repair, and regulate 
neuronal damage caused by the overactivation of neuro-
toxic microglia in the brain (Fig. 1). It is instrumental in 
maintaining the brain microenvironment homeostasis 
[66–68]. However, in PD, persistent stimulation of micro-
glia by endogenous factors leads to a reduced conver-
sion of microglia to a neuroprotective state and, thus, to 
a reduced ability to regulate inflammation, which in turn 
leads to hyperinflammatory phenomena [69]. The reason 
for this phenomenon may be the continuous prolifera-
tion of neurotoxic microglia in PD and the correspond-
ing release of inflammatory cytokines that maintains the 
brain microenvironment inflamed. At this time, the rele-
vant factors that promote the conversion of neuroprotec-
tive microglia are not secreted sufficiently, thus reducing 
the conversion of microglia to neuroprotective microglia. 
In addition, due to the increased oxidative stress in the 
brain environment of PD patients and animals, Rel A is 
continuously activated in microglia that respond to oxi-
dative stress, resulting in the continuous activation of the 
NF-κB pathway that facilitates the conversion of micro-
glia to neurotoxic microglia [57, 58, 70]. However, path-
ways such as NF-κB/C-Rel, which induce microglial to 
neuroprotective microglia conversion, are inhibited [67].

The role of T cells and related mechanisms in PD
T cells are one of the most important adaptive immune 
cells in the body, showing powerful functions in cleaning 
up abnormal cells, invading foreign pathogens, and play-
ing an irreplaceable role in maintaining health. Abnor-
malities in T-cell activation and function are closely 
associated with the development of many diseases, for 

example, tumors, infections, and cardiovascular diseases. 
In recent years, T cells have also been found to play an 
essential role in neurodegenerative diseases. Post-mor-
tem examinations of PD patients and some animal mod-
els revealed significant T-cell infiltration in the PD brain, 
altered surface characteristics of T cells in the peripheral 
circulation, and a marked reduction in cell numbers. This 
indicates that T cells actively respond to and participate 
in the onset and progression of PD. The infiltrated T cells 
in PD brains were classified according to their cell sur-
face markers, and they were distinguished into two major 
types, CD4+ T cells and CD8+ T cells. Further studies 
focus on the two types of T cells function in PD. It reveals 
that both types of T cells infiltrate the substantia nigra 
of the PD brain, with CD8+ T cells being the main type, 
which was activated by recognizing target cells express-
ing major histocompatibility complex (MHC)-I mol-
ecules and releasing lymphotoxins such as perforin and 
granzyme to directly kill the target cells [71, 72] (Fig. 2).

Meanwhile, other studies targeting T cells in PD have 
found that CD4+ T cells play an equally important role 
in the onset and progression of the disease [73, 74]. 
Increased motor dysfunction in PD patients was associ-
ated with a rise in the number of effector memory CD4+ 
T cells [75]. In addition, the study reveals the effect of 
CD4+ T cells and CD8+ T cells on the pathological devel-
opment and progression of PD by knocking the mice sep-
arately [76], and found that CD4+ T cells exacerbated PD 
pathological progression by possibly increasing the secre-
tion of pro-inflammatory factors and promoting dopa-
minergic neuronal toxicity by activating the apoptotic 
signal Fas- Fas Ligand (FasL) [77]. However, the concept 
that all CD4+ T cells are considered to cause dopamin-
ergic neurons damage is inaccurate. Further division of 
CD4+ T cells by function can be categorized into pro-
inflammatory Th1 and Th17 cells and anti-inflammatory 
Th2 and Treg cells (Fig.  2). Among them, Treg cells are 
protective factors in the progression of the disease. 
Increasing the frequency of Treg cells through adoption, 
induction, and other methods can significantly improve 
the level of inflammation in the PD brain and alleviate 
the pathological process of PD [78]. In the study by Wil-
liams et  al. [73], when mice were injected with adeno-
associated virus 2 (AAV2)-synaptophysin (SYN) 4 weeks 
after the detection of T cell activation and corresponsive 
factors expression, it was found that the expression of 
transcription factors T-bet and Foxp3, cytokines inter-
feron gamma (IFN-γ), and IL-10 in each of Th1 and Treg 
cells showed a significant increase, which indicated that 
both Th1 and Treg cell activation levels in the early stage 
of PD development showed an increase. This suggests 
that Treg cells may regulate the inflammatory response in 
the early stage of the disease, but the regulatory role of 
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Treg cells on inflammation in the PD brain is gradually 
reduced/suppressed with the development of the disease, 
which eventually leads to a change in the ratio of pro-
inflammatory cells to anti-inflammatory cells, resulting 
in an imbalance in the immune balance of the body and 
exacerbating the development of PD. This phenomenon 
may be related to the suppression of gamma-delta T (γδ 
T) cells. The frequency of γδ T cells in peripheral blood 
of PD patients is significantly reduced, and γδ T activated 
by IL-23 can directly inhibit the differentiation and func-
tion of Treg cells through the induction of heat-sensitive 
mediators or humoral factors with paracrine activity [79–
81] (Fig. 2).

The cause of T-cell immune dysregulation in PD may 
also be related to dopamine release from dopaminergic 
neurons. Dopamine receptors (DR) are expressed not 
only in neurons but also in immune cells, thus possess-
ing the ability to regulate immune functions, for instance, 
cell differentiation, cytokine release, and cytotoxicity 

[82–85]. Dopamine contributes to the differentiation 
of CD4+ T cells towards Th1 and Th17 by interacting 
with dopamine D3 receptor (DRD3) on their surface, 
increasing the number of pro-inflammatory T cells. At 
the same time, the combination of dopamine and dopa-
mine D1 receptor (DRD1) inhibits the function of Treg 
cells, then causing dysregulation of immune regulation 
of the infiltrating brain T cell population [86]. In addi-
tion, abnormal alpha-synuclein in PD also affects the 
number and function of T cells, thereby triggering severe 
neurodegeneration [87]. Nitrated alpha-synuclein (N-α-
synuclein) can disrupt immune tolerance and activate T 
cells in the periphery by diverting lymphoid tissue [88]. 
It was noted that using N-α-synuclein as an immunogen-
induced effector T cell exacerbated microglia activation, 
thereby amplifying neuroinflammation and neurodegen-
eration [87–89]. Further investigation revealed that N-α-
synuclein-stimulated T cells tend to differentiate more 
toward Th1 and Th17 phenotypes with pro-inflammatory 
cytokine release while suppressing Treg cell function 
[89].

In the pathological process of PD, T cells can be 
affected by abnormal α-synuclein, DA neurons, and thus 
immune response, and also interact with other immune 
cells in the internal environment to further influence the 
disease progression. Overall, T cells play an irreplaceable 
role in the pathological development and course of PD.

Interactions between microglia and T cells 
and the related subtypes in PD
Microglia and T cells are linked in terms of activation and 
function. All of them interact with each other through 
the secretion of cytokines and chemokines, which have 
significant effects on the pathological state of PD. Next, 
we discuss the interactions between microglia and T cells 
and their related subtypes separately on neuronal damage 
and protection, and further investigate the interactions 
between microglia and T cells and their related subtypes 
in PD.

The risk of neuronal damage from interactions 
between microglia and T cell‑related subtypes 
in PD
Under the normal physiological state, immune cell acti-
vation maintains a stable dynamic balance. The immune 
cells and their related subtypes regulate each other to 
enable the clearance of abnormal substances to main-
tain the microenvironment homeostasis. However, there 
is the phenomenon of cytokine storm caused by exces-
sive activation of immune cells in the PD brain, which 
indicates that the regulation of homeostasis between 
immune cells in a normal physiological state is faulty. The 
BBB is a vital tissue for maintaining the balance of the 

Fig. 2  The role of peripherally infiltrating T cells on neurons in PD. 
Since the damage of the BBB in PD allows T cells in the peripheral 
circulation to infiltrate the brain, Tc cells infiltrating the brain can 
recognize MHC-I molecules expressed on the surface of neurons 
and release granzyme and perforin, to directly cause neuronal 
death. In addition, Tc cells can also cause neuronal death by 
releasing IFN-γ. The Th cells infiltrating the brain can be divided 
into pro-inflammatory Th1 and Th17 and anti-inflammatory Th2 
and Treg. Pro-inflammatory Th cells can cause neuronal death by 
releasing inflammatory cytokines and exacerbating cytokine storms. 
In contrast, anti-inflammatory Th cells can protect neurons by 
reducing the release of inflammatory cytokines through the release 
of anti-inflammatory cytokines, thereby regulating the activity and 
function of pro-inflammatory Th cells. However, it is worth noting that 
γδ T inhibits the activity and function of Treg cells and thus reduces 
their ability to regulate the inflammation
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brain microenvironment. It effectively prevents periph-
eral immune cells, foreign invasive viruses, and neuro-
toxic substances in the blood from entering the brain and 
expels metabolic waste from the CNS out of the brain. 
However, the BBB has been shown to be severely dam-
aged in PD brains, giving the opportunity for peripheral 
immune cells to infiltrate the brain parenchyma.

Following the alteration of the BBB permeability, 
immune cells in the peripheral circulation have the 
opportunity to infiltrate the brain parenchyma. Inflam-
matory factors as TNF-α and IL-1β released by microglia 
enhance the expression of cell adhesion molecules (inter-
cellular adhesion molecule 1) and vascular cell adhesion 
molecules (vascular cell adhesion molecule 1) on vascu-
lar endothelial cells, further promoting the infiltration 
of peripheral immune cells into the brain parenchyma 
[38, 90, 91]. T cells infiltrating the brain parenchyma are 
induced by activated microglia to form pro-inflammatory 
types of T cell inflammation and through the release of 
inflammatory factors, exacerbating the extent of the BBB 
damage in PD and increasing the number of T cells infil-
trating the brain [92]. These interactions lead to damage 
the BBB. In addition, the expression of MHC-II-like mol-
ecules on the surface of microglia activate T cells, and 
the infiltrating T cells simultaneously induce microglia 
to express MHC-II-like molecules, thus further deepen-
ing the interaction between these two cells [93, 94]. This 
has clarified the damaging behavior of the interactions on 
this BBB.

Neurotoxic microglia, as one of the primary forces for 
clearing abnormal substances from the brain, actively 
kill pathogenic substances by releasing various cytokines 
and chemokines, and recruit other immune cells to join 
the process. Among the cytokines, neurotoxic microglia 
promote and regulate the differentiation and function 
of Th17 cells by releasing inflammatory cytokines, while 
suppressing the differentiation of Treg cells, and TGF-β 
is an essential factor in the differentiation of naïve T to 
Th17 and Treg [95] (Fig. 3). When conditions of TGF-β 
factors are present in the environment, IL-6 and IL-1β 
released from neurotoxic microglia induce differentiation 
of naïve T cells infiltrating into the brain parenchyma to 
pro-inflammatory Th17 cells [96–99]. This is basically 
because IL-6 determines the fate of naïve T differentia-
tion to Th17 cells by activating the transcription factor 
STAT3, while IL-1β inhibits the differentiation of naïve T 
cells to Treg cells. In addition, IL-1β increases the activ-
ity of Th17 and the release of the inflammatory cytokine 
IL-17 and decreases the secretion of the anti-inflamma-
tory factor IL-10 [100] (Fig. 3).

Cytokines released from microglia can also act on 
dopaminergic neurons, causing their surface MHC-I-like 
molecule expression to be recognized and killed by CD8+ 

T cells infiltrating into the brain parenchyma, thereby 
accelerating the rate of dopaminergic neuron loss in PD 
(Fig. 2).

Chemokines play a significant role in the communi-
cation between neurons and immune cells, and they 
have chemotactic activity on immune cells and affect 
immune cell proliferation, cytokine secretion, and 
phagocytosis [101, 102]. In PD, the chemokines (C-X-C 
motif ) ligand (CXCL) 9, CXCL10, CXCL11, CCL5, and 
CXCL16 released by neurotoxic microglia can increase 
their activation and functional expression by binding to 
C-X-C  motif receptor (CXCR) 3, C–C motif receptor 
(CCR) 5, and CXCR6 chemokine receptors on the sur-
face of T cells [103, 104] (Fig. 3). It was noted that inhi-
bition of CXCR3 and CCR5 activation on T cells could 
reduce the number of CD3+ T cell infiltration in the 

Fig. 3  Microglia and T-cell interactions further amplify the 
inflammatory response to PD. The interaction of PD microglia and T 
cells amplifies the inflammatory response. In the presence of TGF-β 
in the microenvironment, IL-6 and IL-1β released from neurotoxic 
microglia act on naïve T cells had to induce their differentiation to 
Th17 cells and inhibit their differentiation to Treg cells, respectively. 
The chemokines CXCL9, CXCL10, CXCL11, CCL5, and CXCL16 released 
by neurotoxic microglia can bind to CD8+ T cells and CXCR3, 
CCR5 and CXCR6 on the surface of Th1 cells to further increase 
cell activation and release of inflammatory cytokines. Notably, 
inflammatory cytokines released from T cells can promote microglial 
activation and function. At the same time, microglia respond to 
inflammatory cytokines and increase their cellular activation by 
releasing cytokines and chemokines. Overall, the interaction between 
neurotoxic microglia and pro-inflammatory types of T cells in PD 
further amplifies the inflammation of the microenvironment and 
exacerbates neuronal damage
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substantia nigra [105, 106]. Besides, inhibition of CXCR3 
activation reduced the production of IFN-γ activated T 
cells while protecting against lethal CD8+ T cell-medi-
ated tissue damage [107, 108]. In contrast, inhibition 
of CCR5 activation polarized activated T cells toward 
Th2 cells and secreted anti-inflammatory factors such 
as IL-4 and IL-10, while decreasing IL-17 release from 
Th17 cells and alleviating neuronal loss. By comparison, 
CXCL16 released from microglia through CXCR6 recep-
tors can drive Th1 and T-cytotoxic (Tc)1 cell migration 
and directly activate the NF-κB pathway in Th1 cells, 
increasing the expression of pro-inflammatory genes 
and enhancing T cell-mediated inflammatory responses 
[109–111].

Although CD8+ T cells can directly kill and release 
IFN-γ inflammatory factors to cause neurons death, 
CD4+ T cells are considered the major players in accel-
erating the PD processes. In particular, Th1 and Th17 
cells promote the conversion of microglia to neurotoxic 
microglia and increase cellular functions (Fig.  3). Th1 
cells increase the activity of the NF-κB pathway in micro-
glia by releasing IFN-γ and TNF-α, respectively, increas-
ing the expression of toll-like receptor 4 (TLR4) and 
myeloid differentiation primary response 88 (MyD88) in 
microglia and inhibiting the function of the c-Rel mol-
ecule. Simultaneously IFN-γ could further enhance the 
release of neurotoxic microglia chemokines [112–115]. 
On the other hand, Th17 enhanced the expression of 
adhesion molecules on microglia and the response to 
lipopolysaccharide (LPS) stimulation through the release 
of IL-17 [92, 116]. The effect of these two T cell subtypes 
on microglia increased the number of neurotoxic micro-
glia and the release of pro-inflammatory cytokines (TNF-
α, IL-1β, IL-6). It exacerbates oxidative stress and further 
disrupts the brain microenvironment homeostasis, thus 
accelerating neuronal loss [117] (Fig.  3). In addition to 
causing dopaminergic neurons damage by inducing the 
release of inflammatory factors from microglia, Th1 cells 
can also enhance the phagocytic capacity of microglia 
by upregulating the expression of transcripts of mac-
rophage c-mer tyrosine kinase (MerTK), a receptor asso-
ciated with phagocytosis, in microglia through the release 
of effector molecules, thus exacerbating the damage to 
dopaminergic neurons [115]. Enhanced phagocytosis of 
dopaminergic neurons by microglia during inflammation 
contributes to the pathological process of PD, which may 
be one of the reasons for the loss of dopaminergic neu-
rons in PD [118–120].

Collectively, this evidence suggests that interactions 
between microglia and T cells in PD act synergistically 
to cause neuronal injury. The interactions between cells 
alter the brain homeostasis toward a pro-inflammatory 
state, promoting the number of neurotoxic microglia, 

Th1, and Th17, and increasing the release of correspond-
ing inflammatory cytokines. At the same time, the 
interaction between microglia and T cells increases the 
phagocytic capacity of microglia. It allows CD8+ T cells 
to recognize dopaminergic neurons, thus accelerating the 
rate and extent of dopamine neuron damage, which in 
turn exacerbates the pathological state of PD.

Protection of neurons by interactions 
between microglia and T cell‑related subtypes 
in PD
Concerning PD treatment, inducing microglia to convert 
to a neuroprotective state and increasing their function 
can effectively slow neuronal death in PD [62, 69, 121, 
122]. At the same time, Th2 and Treg cells in the CD4+ 
T cell subpopulation could also slow down the loss of 
dopaminergic neurons by increasing their number and 
functional expression. Further investigation revealed 
that significant microglia–T cell interactions in PD have 
an essential role in the remission and treatment of PD. 
Modulating neuronal damage resulting from imbalances 
in regulating environmental homeostasis in the brain by 
targeting the interaction between microglia and T cells 
could be a new starting point for treating PD.

First, how do neuroprotective microglia affect 
T-related subtypes of cells? Among cytokines, inflam-
mation-suppressing cytokines such as IL-4, IL-10, 
IL-13, and TGF-β released from neuroprotective micro-
glia in the normal physiological state can inhibit the 
production of pro-inflammatory cytokines such as IL-6 
and TNF-α [123–125]. Meanwhile, IL-4 and TGF-β 
released from microglia are important cytokines that 
induce the differentiation of naïve T cells to Th2 and 
Treg cells, respectively, and have a significant impact on 
the developmental and functional regulation between 
T cells and their subpopulations (Fig.  4). Among the 
chemokines, neuroprotective microglia can induce T 
cell differentiation of Th2 and Treg cells and enhance 
cell function by releasing chemokines CCL1, CCL17, 
CCL22, and CCL24 that bind to T cell surface CCR4 
and CCR8, thereby regulating the inflammatory state 
in the brain to protect neurons from death [103, 104] 
(Fig.  4). Moreover, CCL18 released from neuroprotec-
tive microglia, can block the recruitment of T cells in 
tumors, reduce the suppressive effect of Treg cells, and 
regulate the immune response by inhibiting the CCL18-
PITPNM3 signaling pathway in tumor-related research 
[102, 126–129]. The role of CCL18 chemokine in PD is 
not clear. Considering the co-immunomodulatory role 
that Treg cells exhibit in PD and neoplastic disease, 
whether increasing the secretion of neuroprotective 
microglia CCL18 in PD can increase the number and 



Page 8 of 14Xu et al. Journal of Neuroinflammation           (2023) 20:33 

function of Treg cells at the site of inflammation and 
thus regulate the inflammatory state needs to be veri-
fied by subsequent studies.

Next, how do infiltrating inflammatory T-cell affect 
microglia? The T cell that infiltrates the brain also 
exerts critical regulatory effects on inflammation 
through interactions with microglia. Among them, Th2 
and Treg cells can induce the conversion of microglia 
to neuroprotective microglia and release anti-inflam-
matory cytokines and neurotrophic factors by releas-
ing anti-inflammatory cytokines while reducing the 
number of neurotoxic microglia and the expression of 
related functions (Fig.  4). It was shown that microglia 
responding to IL-4 and IL-10 induce microglial con-
version to neuroprotective microglia by increasing 

the activity of Janus kinase (JAK) signal transducer 
and activator of transcription (STAT) 6 pathway and 
decreasing the activity of JAK–STAT3 pathway in 
microglia, respectively. This decrease in neurotoxic 
microglia is due to the inhibition of STAT1 phospho-
rylation by IL-10, which in turn leads to a decrease in 
the activity of the NF-κB pathway [130–135]. Mean-
while, IL-4 and IL-13 released from Th2 cells induced 
IL-1 receptor antagonist (IL-1Ra) expression blocking 
the induction of IL-1β into microglia, further reduc-
ing the number of neurotoxic microglia and the release 
of inflammatory cytokines and chemokines [136, 137]. 
In addition, infiltrating Treg cells also inhibit the acti-
vation of microglia by nitrocellularized α-synuclein 
and regulate the state of neurotoxic microglia and the 
release of inflammatory factors by reducing the migra-
tion, phagocytosis, reactive oxygen species (ROS) pro-
duction, and NF-κB activation of neurotoxic microglia 
[87, 89, 138]. Notably, Treg can also reduce the num-
ber of neurotoxic microglia by inducing apoptosis, thus 
protecting neurons from dopaminergic neuronal dam-
age caused by excessive activation of neurotoxic micro-
glia [117].

Overall, this evidence suggests that the interaction 
between microglia and T cells increases the number and 
function of neuroprotective microglia, Th2, and Treg 
cells and effectively reduces the conversion of micro-
glia to neurotoxic microglia, decreases the activation of 
pro-inflammatory type T cells, thus decreasing the level 
of inflammatory cytokine secretion in the brain and 
regulating the dysregulation of internal environmental 
homeostasis, which in turn protects against damage to 
dopaminergic neurons in PD and slows down the patho-
logical symptoms and disease process.

A preliminary survey of the dysregulation 
of protective effects by microglia–T cell 
interactions in PD
Previously, we described the relevant pathways of neu-
ronal damage by inflammatory factor storms mediated by 
immune cells in PD. The relevant role of microglia and 
T cell and their related subtype interactions for damage 
and protection in PD has also been described. However, 
the regulatory role of microglia and T cell-related sub-
types interactions on inflammation seems to be dimin-
ished or to have failed in PD. The possible reasons are: 
(1) the negative feedback mechanism of age-related neu-
roprotective microglia regulating inflammatory state may 
be defective. The increase in pro-inflammatory levels 
of microglia with age is accompanied by a "dystrophic" 
phenomenon of denuclearization and process fragmen-
tation [139, 140]. This causes a decrease in receptor 
expression and cytokine secretion converting microglia 

Fig. 4  Microglia and T cells reciprocally regulate inflammation in PD. 
Neuroprotective microglia can induce the differentiation of naïve 
T cells to Th2 and Treg cells by secreting cytokines IL-4 and TGF-β. 
Meanwhile, chemokines CCL1, CCL17, CCL22, CCL24, and CCL18 
released from neuroprotective microglia can bind to CCR4, CCR8, 
and PITPNM3 on the surface of Th2 and Treg cells, further increasing 
cell activation, anti-inflammatory cytokine release, and migration. 
Notably, anti-inflammatory cytokines released by Th2 and Treg cells 
can increase the number of neuroprotective microglia and inhibit 
the function of neurotoxic microglia. In conclusion, the interaction 
between neuroprotective microglia and anti-inflammatory 
T cell subtypes in PD increases the number and function of 
anti-inflammatory-type cells. At the same time, cellular interactions 
reduced the number and function of pro-inflammatory-type cells, 
thereby regulating the inflammatory state in the microenvironment 
and further protecting neurons from damage
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to neuroprotective microglia, resulting in a decrease 
in the number of neuroprotective microglia and, thus, 
a significant reduction in the regulation of neurotoxic 
microglia [141]. (2) The microenvironment in the brain 
promotes the differentiation and functional expression of 
the inflammatory types of cells, further contributing to 
immune dysregulation. T cells infiltrated into the brain 
were induced by pro-inflammatory microglia, dopa-
mine secreted by neurons, the internal environment of 
the brain and other factors, and the activation state and 
function of pro-inflammatory Tc, Th1, and Th17 cells 
were further enhanced, while the function of anti-inflam-
matory Th2 and Treg was suppressed. At the same time, 
naïve T cells were also induced to polarize toward pro-
inflammatory types of Th1 and Th17, which increased 
the number of pro-inflammatory cell types, further pro-
moting inflammation in the cerebral environment and 
weakening the regulatory effect of anti-inflammatory 
cell types. In this process, the increased inflammatory 
state of the brain environment promotes the conversion 
of microglia to neurotoxic microglia. It releases inflam-
matory cytokines and neurotoxic mediators to aggravate 
neuronal damage further, resulting in a vicious cycle 
between dying neurons and acute inflammation [142, 
143].

A potential new model for studying the cellular 
interactions in PD
In previous studies on the pathogenesis of PD, experi-
mental investigations were often conducted using model 
animals and cells. These models have had significant 
results, and the pathological mechanisms associated with 
PD have been further explained. However, some of the 
limitations of the above models include epigenetic dif-
ferences between species, leading to findings that do not 
accurately describe the pathological process in human 
PD patients [144]. Although data were obtained in some 
studies by taking postmortem brain tissue samples from 
human PD patients, it should be taken into account that 
this data only reflects the pathological changes in the 
brains of patients with end-stage PD [145]. The develop-
ment of PD is a slow process, and the presence of primary 
microglia and dopamine neurons that are more difficult 
to acquire and fail to proliferate has created some diffi-
culties in exploring the development of this disease in the 
brain of PD patients. Along with the rapid development 
of induced pluripotent stem cells (iPSC) technology, 
researchers have used a variety of terminally differenti-
ated cells from PD patients to induce them to become 
midbrain dopamine neurons, and microglia, by iPSC 
technology and further characterized them using gene 
sequencing, calcium imaging, and electrophysiological 
methods [146–149]. iPSC-induced cells were found to be 

highly consistent with dopamine neurons and microglia 
in the brains of human PD patients. This model allows for 
a better investigation of the pathological effects of genetic 
mutations and other factors in sporadic PD patients [144, 
150]. Currently, iPSC models have been used to study 
PD pathogenesis. In contrast, in the study on PD neuro-
inflammation, it was found that Th17 cells act on iPSC-
induced neurons by releasing IL-17 to increase their 
surface IL-17 receptor expression and NF-κB activation-
induced neuronal death [151]. In recent years, as iPSC 
technology has become more mature, the establishment 
of organoid models has also been rapidly developed, ena-
bling the derivation of in vitro 2D models to 3D models 
that better assess the spatial effects of neurons and other 
outcomes. However, the current midbrain organoid sys-
tem is mainly derived from neuroepithelial stem cells, 
resulting in a lack of microglia in this model, making its 
use in PD neuroinflammation problematic [152]. How-
ever, a recent study has successfully integrated human 
functional microglia into the midbrain organoid system 
and demonstrated the feasibility and stability of this 
approach by examining the gene expression, functional 
changes, and communication ability of microglia in this 
model [152]. The use of this microglia-embedded mid-
brain organoid model to study the interaction between 
microglia and T cells in PD on the pathological develop-
ment of PD is expected to provide a more detailed and 
accurate assessment of the impact of microglia–T cell 
interaction on the progressive pathological process of 
human PD patients.

Conclusion
This article illustrates that interactions between micro-
glia and T cells and their related subtypes exhibit a sig-
nificant role in the onset and course of PD. Overall, the 
interactions among neurotoxic microglia, Tc, Th1, and 
Th17 cells in PD raise the level of inflammation in the 
microenvironment and elevate the activation and func-
tion of pro-inflammatory cells, amplifying the effects of 
immune cells on neuronal damage, thus exacerbating 
the pathological condition of PD and accelerating the 
disease process. Meanwhile, there is a complex inter-
play between neuroprotective microglia, Th2, and Treg 
cells in regulating the activation and function of pro-
inflammatory cells, and controlling the inflammatory 
state of the internal environment, furthermore reduc-
ing neuronal damage. These cells could protect neurons 
from damage in PD by potentiating the communica-
tions between microglia and T cells and their related 
subtypes in PD to regulate the inflammatory cytokine 
storm caused by excessive activation of immune cells. 
This review also focuses on the CCL18–PITPNM3 
signaling pathway and γδ T cells, which show great 



Page 10 of 14Xu et al. Journal of Neuroinflammation           (2023) 20:33 

potential in immune regulation and may serve as poten-
tial targets for PD therapy, providing new ideas for the 
treatment of PD. Meanwhile, a potential new model for 
exploring the effect of microglia–T cell interactions on 
the development of PD pathology is provided.
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