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Abstract 

Multiple sclerosis (MS) is a chronic and often disabling autoimmune disease of the central nervous system (CNS). 
Cerebrospinal fluid (CSF) surrounds and protects the CNS. Analysis of CSF can aid the diagnosis of CNS diseases, help 
to identify the prognosis, and underlying mechanisms of diseases. Several recent studies have leveraged single-cell 
RNA-sequencing (scRNA-seq) to identify MS-associated changes in CSF cells that are considerably more altered than 
blood cells in MS. However, not all alterations were replicated across all studies. We therefore integrated multiple 
available scRNA-seq datasets of CSF cells from MS patients with early relapsing–remitting (RRMS) disease. We provide 
a searchable and interactive resource of this integrated analysis (https://​CSFin​MS.​bxgen​omics.​com) facilitating diverse 
visualization and analysis methods without requiring computational skills. In the present joint analysis, we replicated 
the known expansion of B lineage and the recently described expansion of natural killer (NK) cells and some cyto‑
toxic T cells and decrease of monocytes in the CSF in MS. The previous observation of the abundance of Th1-like 
Th17 effector memory cells in the CSF was not replicated. Expanded CSF B lineage cells resembled class-switched 
plasmablasts/-cells (e.g., SDC1/CD138, MZB1) as expected. Our integrative analysis thus validates increased cell type 
diversity and B cell maturation in the CSF in MS and improves accessibility of available data.
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Introduction
Multiple sclerosis (MS) is a chronic and often disabling 
autoimmune disease of the central nervous system (CNS) 
[1]. It is characterized by immune cell infiltration of the 
CNS resulting in local inflammation and leading to pro-
gressive loss of myelin and subsequently axons [2]. Both 

T and B cells contribute to MS pathogenesis [3], but the 
exact mechanisms of lymphocyte influx, loss of immune 
control and lymphocyte interaction with cells of the 
CNS remain unresolved [4, 5]. A common approach to 
studying the pathogenesis of MS has been to investigate 
peripheral blood mononuclear cells (PBMCs). However, 
the applicability of this method to study and monitor 
therapeutic effects of drugs targeting CNS inflammatory 
processes is limited because blood and its cells are distal 
to the CNS itself and changes in their cellular composi-
tion may not reflect pathogenic events and cellular inter-
actions within the CNS.
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Cerebrospinal fluid (CSF) has aided the diagnosis and 
differentiation of CNS disorders for decades but its true 
potential in MS remains insufficiently exploited [6]. 
Healthy CSF represents an ultrafiltrate of the serum and 
contains locally released solutes and uniquely composed 
leukocytes [7]. In clinical practice, this biospecimen is 
routinely examined for cell number and protein content. 
In the diagnosis of MS, it gained additional importance 
with the 2017 revision of the McDonald criteria which 
consider CSF-specific IgG oligoclonal bands as evidence 
of dissemination in time [8]. This illustrates the value of 
deep CSF-analysis for diagnosing MS and the need for 
an understanding of local immunological interactions. 
Unbiased discovery of cell types residing within the 
CSF including low-frequency cell populations as well as 
their gene expression profiles has been facilitated by the 
transformative single-cell RNA-sequencing (scRNA-Seq) 
technologies [9]. This technique may answer: (i) which 
cellular and molecular factors contribute to the differen-
tial activation of immune cells in MS, and (ii) is this pro-
cess a peripheral or a central one [10].

Recently, a set of scRNA-seq-based studies of CSF leu-
kocytes from patients with relapsing–remitting (RR)MS 
identified a location-specific composition and transcrip-
tome of CSF leukocytes thus emphasizing the unique 
immune microenvironment of the CSF. One study identi-
fied signs of local interaction between T and B cells in the 
CSF and an increased transcriptional diversity in the CSF 
compared to the blood [11]. Accordingly, a T cell popu-
lation expanding in the CSF expressed a transcriptional 
signature related to cytotoxic and effector function [12]. 
The different profile of CSF-  compared with blood cells 
was supported in another study [13]. Whereas B cells 
were hardly detectable in the CSF of healthy controls, 
they clonally expanded and somatically hypermutated in 
MS patients and upregulated proinflammatory pathways 
including nuclear factor kappa B and cholesterol biosyn-
thesis pathways. Studies also identified that monocytes 
in CSF transcriptionally partially resemble parenchymal 
microglia; a phenotype that is likely instructed by the 
CSF microenvironment and not ontogenetically defined 
[11, 14].

Despite the undeniable potential of scRNA-seq to 
decipher disease-specific alterations of human CSF, size-
able cohorts of patients are difficult to recruit due to the 
invasiveness of lumbar punctures, cost, and because CSF 
sampling is not practiced routinely in all MS-treatment 
centers. Accordingly, existing RRMS scRNA-seq datasets 
struggle with low patient numbers. In this joint analy-
sis, we addressed this limitation by integrating multiple 
published and partially unpublished datasets. We also 
provide a public browsable interface, https://​CSFin​MS.​
bxgen​omics.​com powered by cellxgene VIP [15, 16] with 

enhanced functionalities for ‘personalized’ visualization 
and exploration. This constitutes the first freely acces-
sible comprehensive data visualization tool for inte-
grated CSF scRNA-seq data from treatment naïve RRMS 
patients and healthy individuals. In this joint analysis, we 
replicated the known expansion of the B lineage and the 
recently described expansion of natural killer (NK) cells 
and some cytotoxic T cells, and decrease of monocytes in 
the CSF. This supports recent approaches to decipher the 
underlying pathophysiological mechanisms in MS.

Results
Integrated analysis across studies improves statistical 
power by extending sample size
The aim of this study was to substantiate previous 
scRNA-seq results from CSF cells by integrating existing 
datasets from RRMS patients and controls across studies. 
We first obtained and analytically integrated two data-
sets including 4 RRMS vs 4 control patients (dataset 1) 
[11], and 11 RRMS vs 2 control patients (dataset 3) [13]. 
In addition, we incorporated 5 treatment-naïve RRMS vs 
5 control patients (dataset 2, partially published in [17]) 
thus achieving a total of 20 RRMS and 11 control patients 
(Fig. 1A).

Inclusion criteria were largely comparable between 
studies which enrolled both CIS and RRMS patients in 
relapse and diagnosed according to the 2017 McDonald 
criteria (Methods). None of the patients had received 
immunomodulatory treatment. The diagnosis was 
either confirmed by follow-up within 4  weeks [11] or 
definitively diagnosed at study entry [13]. The study by 
Schafflick et  al. [11] explicitly excluded concomitant 
autoimmune diseases. Control patients notably differed 
between studies and encompassed 9 patients with idi-
opathic intracranial hypertension (IIH; dataset 1 + 2) and 
2 healthy controls (dataset 3) (Additional file 5: Tab. S1). 
We collected available clinical meta-data from all studies 
and found no significant differences in the distribution of 
age and sex across the cohorts (Additional file 5: Tab. S1, 
Additional file 1: Fig. S1A). Specifically, the median age of 
the MS patients in cohort one was 38 years, in the second 
cohort was 44 years and in the third cohort was 44 years 
(p = 0.66). The median age of the IIH patients in cohort 
one was 28.5 years, in cohort two 35 years and the median 
age of the healthy controls in cohort three was 30 years 
(p = 0.82). We then analytically integrated all available 
single cell data resulting in 80,187 RRMS-derived single-
cell transcriptomes (subsequently denoted as ‘cells’ for 
simplicity) and 25,764 control cells (Additional file 1: Fig. 
S1B; Additional file 5: Tab. S1). Data were processed with 
the Cell Ranger / Seurat v4.0 bioinformatics pipeline [18]. 
The scRNA-seq chemistry for the first and second cohort 
was 10 × 3’ and for the third cohort was mixed between 
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10 × 3′ and 10 × 5′ (Additional file  5: Tab. S1). We first 
tested for gross systematic technical bias between the 
datasets. The median cell number per sample in cohort 
one was 2817 (IQR25–75 = 1338–3739), in the second 
cohort was 3,555 (IQR25–75 = 1553–5096) and in the third 
cohort was 3269 (IQR25–75 = 2364–4844) (Additional 
file 1: Fig. S1C). Mean genes detected per cell in cohort 
one was 1005, in the second cohort was 853 and in the 
third cohort was 1077 (Additional file  5: Tab. S1, Addi-
tional file 1: Fig. S1C). Batch effects were removed using 
SCTranformation (Additional file 2: Fig S2).

We then performed a principal component analy-
sis (PCA) using all genes detected in all cells across all 
samples (‘pseudo-bulk’). We found that the separation 

between samples did not systematically differ across dif-
ferent cohorts although there were two individual outli-
ers (Additional file  3: Fig. S3). These two outliers from 
dataset 2 were not characterized by apparent differences 
in clinical terms and were therefore included in further 
analyses. This argues against major systematic technical 
bias across cohorts and scRNA-seq chemistries.

Accessible bioinformatic tool allows querying cellular 
and transcriptional patterns in the CSF in MS
Following this basic technical and clinical validation, we 
generated a freely accessible visualization and analysis 
tool to facilitate investigating CSF cells in MS vs control 
without prior bioinformatic expertise (http://​CSFin​MS.​
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Fig. 1  Integrated analysis facilitates characterizing the CSF immunome in treatment-naïve multiple sclerosis. A Schematic representation of 
sample cohorts, data processing, and bioinformatic analysis. Dataset 1 incorporates the data of Schafflick et al. [11], dataset 2 consists of a new 
muenster cohort [17] and dataset 3 incorporates the data of Ramesh et al. [13] B Uniform Manifold Approximation and Projection (UMAP) plot of 
level 1 clustering with automatic annotation based on canonical marker genes [18] (Additional file 6: Tab. S2) in the merged data set. C Dot plot 
depicting selected signature genes of level 1 clustering in merged control (Ctrl) and MS. Dot color encodes the mean expression, dot size visualizes 
the fraction of cells expressing the respective gene. Vertical bars on the top show the number of cells in the respective group. D Stacked bar plot 
showing the proportion of the level 1 cell types in Ctrl and in MS. E Split UMAP plots comparing level 1 clustering in Ctrl (left) and MS (right). F 
Volcano plot depicting differences of cluster abundance in MS compared to Ctrl. Clusters highlighted in blue are higher expressed in MS, yellow 
ones are more expressed in the Ctrl group. Fold change (log2) is plotted against t-test p value (-log10). The horizontal line visualizes the significance 
threshold of p = 0.05. Cluster key: Mono, monocyte cluster; DC, dendritic cell cluster; Bc, B cell cluster; CD4 Tc, CD4+ T cell cluster; CD8 Tc, CD8+ T cell 
cluster; other Tc, other T cell cluster. Un_assigned and other, cells lacking definitive assignment
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bxgen​omics.​com/). Specifically, this tool provides two 
levels of cell type annotation based on Multimodal Refer-
ence Mapping (Seurat v4) inferred from a CITE-seq ref-
erence dataset (162,000 blood cells, 228 antibodies) [18]: 
(i) Level 1 annotation of 9 general cell types and (ii) Level 
2 annotation with 31 individual subclusters and thus 
more detailed annotation of cell subsets. On each level, 
marker genes and genes differentially expressed between 
RRMS vs controls can be interactively queried and visu-
alized (Methods).

The combined dataset including 105,951 CSF single-
cell transcriptomes was projected onto a latent space and 
visualized using Uniform Manifold Approximation and 
Projection (UMAP) plots defined by the reference dataset 
[18]. Using the first annotation level (Fig. 1B, Additional 
file 6: Tab. S2), we identified nine main clusters (named 
level 1 clusters) annotated as B cells (Bc; n = 2125), 
CD4 T cells (CD4 Tc; n = 55,814), CD8 T cells (CD8 Tc; 
n = 18,488), dendritic cells (DC; n = 3440), monocytes 
(Mono, n = 9082), natural killer cells (NK; n = 2059) and 
other T cells (n = 1909). Cells lacking definitive assign-
ment (other n = 1074, unassigned n = 11,960) were not 
further considered in the analysis. Annotation was con-
gruent with the expression of canonical cell type marker 
genes (Fig.  1C) in these level 1 clusters (Bc: CD79A, 
MS4A1; CD4 Tc: IL7R; CD8 Tc: CCL5, CD8B; DC: HLA-
DBP1, CD74, CD1C; Mono: HLA-DBP1, CD74, CD14; 
NK: GNLY) supporting the adequacy of our annotation. 
In accordance with previous studies of the CSF [10, 12, 
14], all detected cells in this combined CSF dataset were 
of hematopoietic origin and T cells were the most abun-
dant cell type with a preponderance of CD4 T cells out-
numbering myeloid and B lineage cells (Fig. 1D).

Next, we aimed to identify gross MS-associated 
changes and therefore tested for differential level 1 clus-
ter abundance between RRMS patients and controls 
(Additional file 7: Tab. S3). Already in a simple qualitative 
comparison, the frequency of B cells was higher in MS vs 
control samples (Fig. 1D) as described previously [11, 13]. 
The proportion of B cells in the integrated data set was 
3% in RRMS patients vs 0% in healthy controls (Fig. 1E). 
Quantification also identified a general myeloid-to-lym-
phoid shift with proportions of B cells, T cells and NK 
cells significantly expanded at the expense of the Mono 
cluster (Fig. 1E, F). These proportional alterations in MS-
derived CSF cells had also been described previously [11, 
13].

Integrating datasets allows characterizing rare CSF cell 
populations through higher resolution clustering
We next asked whether higher resolution cluster-
ing  —  facilitated by increased cell numbers after inte-
gration  —  would reveal previously unrecognized 

MS-associated changes. We therefore clustered and 
annotated all 105,951 CSF single-cell transcriptomes 
using deeper level 2 clustering (Fig. 2A) and annotation 
from a reference dataset [18]. This considerably increased 
cellular granularity to 31 clusters (Fig.  2A, Additional 
file 8: Tab. S4). For example, we identified 4 level 2 sub-
sets of cells ascribed to the B cell lineage: B memory (Bc 
MEM), B intermediate (Bc Int), B naïve cells (Bc Naïve), 
and antibody secreting cells; referred to as plasmacells/-
blasts (plasma) for simplicity. Myeloid lineage cells sepa-
rated into 5 subclusters (CD14 Mono, CD16 Mono, cDC2 
(myeloid/conventional DC1), ASDC (AXL+ SIGLEC6+ 
DCs), cDC1) based on the expression of subset marker 
genes (Fig.  2A, Additional file  8: Tab. S4). CD4 T cells 
separated into 6 subclusters (CD4 Naive, Treg, CD4 
TCM (central memory), CD4 TEM (effector memory), 
CD4 CTL (T cells with cytotoxic activity), CD4 Prolif 
(proliferating)) and CD8 T cells into 4 individual clusters 
(CD8 Naive, CD8 TCM, CD8 TEM, CD8 Prolif ). There 
was a small subcluster of double-negative T cells (dnT) 
in the CD8-cluster. Several smaller clusters separated 
from the larger clusters (HSPC, MAIT, platelet). Notably, 
smaller clusters of such identity had not previously been 
detected in CSF datasets [11, 13]. We thus replicated cell 
types known from previous CSF scRNA-seq studies, but 
also demonstrated the potential of joint analyses to iden-
tify rare CSF cell populations.

Joint analysis of single CSF cell transcriptomes helps 
confirming and refuting previous findings in CSF in MS
We next quantified disease-associated compositional 
and transcriptional changes at level 2 clustering (Fig. 2B, 
Additional file 9: Tab. S5). Again, the increase of B line-
age clusters annotated as memory and / or class-switched 
was the most pronounced alteration among MS-derived 
cells (Fig.  2B) but the low number of these clusters in 
control patients obviated calculating differential gene 
expression. The plasma cluster and other B cell clus-
ters were almost exclusively detected in the CSF of MS 
patients (Fig. 2C) (plasma: n = 443 in MS vs n = 0 in con-
trol). These changes had been described previously [11, 
19] and were thus replicated at higher resolution in the 
present integrated dataset.

B lineage cells are nearly absent from non-diseased CSF 
[10]. In our joint analysis including 11 control patients, 
we annotated 12 total cells as B cells in the combined 
control dataset compared to 1346 B cells among MS CSF 
cells. Aiming to better understand B cells in the CSF in 
MS, we next plotted B cell-associated gene sets across 
the respective clusters. In accordance with our annota-
tion, naïve B cells expressed IGHM and IGHD while the 
plasma cluster expressed JCHAIN, CXCR3, PRDM1, 
CD38, and class-switched immunoglobulin chain genes 
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(e.g., IGHG), and lacked MS4A1 (Fig. 2D). Antigen pres-
entation-associated genes (e.g., HLA-DRB1, HLA-DOB) 
and MS4A1/CD20 were expressed across all non-plasma 
B cell clusters and upregulation of CD24 and downregu-
lation of IGHM characterized memory B cells (Fig. 2D). 
Notably IGHA gene expressing plasma cells recently 
described in MS [20] were also detected. When perform-
ing a detailed transcriptional characterization of B cells 

clusters, we observed a phenotype indicative of antibody 
secreting cells (Fig.  2D). Our integrated transcriptional 
characterization thus identifies B cells across a develop-
mental continuum specifically in the CSF in MS.

We next focused on compositional changes described 
previously, but not replicated in our integrated data-
set; this was true for γδ T cells (gdT cells). The merged 
dataset showed a non-significant increase in gdT cells 
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in the CSF of MS patients (751 cells in MS vs 317 cells 
in control patients (Fig. 2B)) while a reduction had been 
described previously [13]. Differences in cell annotation 
may account for some of the differences. GNLY, CCL5 
and CST7 were all downregulated in the gdT cells of the 
integrated MS data (Fig. 2E) indicating a potential reduc-
tion in cytotoxic potential. Upregulation of HLA-C in this 
cluster in MS was in line with previous results [13], while 
genes IL12RB1, HIF1A, and IRF3 were only downregu-
lated and STAT5A, STAT1, and CD5 were only upregu-
lated in the integrated data (Fig.  2F). Our joint analysis 
thus enables a deeper transcriptional characterization 
with increased confidence and replicates some, but not 
all previously described changes.

Deep characterization of rare cell types facilitated 
by integrated CSF scRNA‑seq data analysis
We next aimed to better characterize the cell types with 
profound differential abundance in MS vs control com-
parisons with specific focus on MS-related changes not 
previously reported in single cell studies.

Specifically, an expansion of cell clusters annotated as 
innate lymphoid cells (ILC) and double-negative (dnT; 
i.e., CD4−CD8−) T cells was newly identified (Fig.  2B). 
The ILC cluster was more abundant in MS patients than 
in controls (Ctrl n = 13 vs MS n = 82 cells) and expressed 
MTRNR2L12 and MT-ND4L (Figs.  2B, 3A). ILCs differ 
from NK cells in their transcriptional regulation by IL7R, 
ID2, TOX, ETS1, and GATA3, whereas NK cells depend 
on the transcription factors TBX21 and EOMES [21] 
(Fig. 3A). BCL11B, ETS1, GATA3, IL17R, NFIL3, and ID3 
were upregulated in ILCs of MS patients, whereas TOX, 
RUNX3, ID2, and AHR were downregulated (Fig.  3B) 
potentially indicating loss of regulatory mechanisms.

Differential abundance of Tregs had previously been 
only marginally significant [11]. The merged dataset 
showed that the Treg cluster was more abundant in MS 
patients (cell count Ctrl n = 288 vs MS n = 2086) (Fig. 3C) 
and was characterized by FOXP3, CD4, TNFRSF18, 
and CTLA4 [22] (Fig.  3D). Expression of IKZF2, IRF4, 
CCR4, CCR6, and CXCR3 was indicative of induced 
Tregs (iTreg) [23], and further confirmed by the absence 
of the natural Treg (nTreg) markers PECAM1, CD101, 
and NRP1. nTregs are unstable and transit into a Th17-
like phenotype under inflammatory conditions and the 
presence of IL-6 [24]. In contrast, iTregs retain at least 
temporarily their immunoregulatory capacity despite an 
autoreactive environment [25]. In our integrative data-
set, Treg cells did not express genes of anti-inflammatory 
cytokines (e.g., TGFB3, IL10, IL12A, EBI3) or the tran-
scription factor for the Th1-lineage T-bet (TBX21), but 
exposed the transcription factor for Th17 lineage STAT3 
(Fig.  3D), indicating a Th17-like rather than Th1-like 

phenotype [26–28]. Despite the higher abundance of 
Treg cells in the CSF of MS patients, none of the genes 
were significantly differentially expressed (Fig. 3E). Con-
sidering the potential of iTreg to suppress ongoing auto-
immune response [29], Treg expansion may reflect local 
regulatory mechanisms in the CSF in MS. These mech-
anisms are likely exhausted by persistent autoreactive 
mechanisms and thus depicts a potential therapeutic 
approach.

Next, we characterized the clusters annotated as 
mucosal associated invariant T cells (MAIT) and dnT 
(Fig.  3F). MAIT expressed KLRB1, IL7R, SLC4A10, and 
DPP4 and dnT lacked expression of CD4 and CD8. We 
detected 373 dnT cells which were preferentially MS-
derived (Ctrl n = 52 vs MS n = 321 dnT cells) (Fig.  3G). 
Despite the higher frequency of dnT cells in MS, no gene 
was upregulated while 42 genes were downregulated 
(e.g., SET, MAPKAPK5-AS1, NCOA3, AKAP13, ASXL1, 
TRPS1, GLRX5) (Fig.  3H). The MAIT cluster consisted 
of 251 cells, again with preferential detection in the MS 
CSF (Ctrl n = 56 vs MS n = 195 MAIT cells) (Fig. 3D). No 
genes were significantly differentially expressed (Fig. 3I). 
Overall, this set of differentially abundant clusters can 
be summarized as cells with both innate and cytotoxic 
phenotypes but also regulatory function expanding in 
the CSF in MS across studies. An expansion of cytotoxic 
phenotype CD4 T cells (albeit not ILC, MAIT, dnTc) had 
been described previously [11] and this may reflect simi-
lar changes annotated differently.

Integrated analysis reveals inflammatory phenotype 
of CD16+ monocytes
Overall, clusters annotated as monocytic cells (level 1) 
showed the greatest number of differentially expressed 
genes in MS vs control comparison (Fig. 4A) across sev-
eral studies [11, 13] indicating preferential phenotypic 
alterations in myeloid lineage cells in the CSF in MS. In 
the level 2 clustering, this was especially pronounced in 
CD16+ monocytes, which upregulated 156 genes in MS 
and were relatively more abundant in MS (Fig. 4A). We 
therefore next aimed to capitalize on the potential of our 
integrated dataset to better understand how MS affects 
CSF cell types of such phenotype.

We first characterized the total Mono cluster (level 
1) classified by genes like CSF1R, LYZ, MAFB, MSR1, 
and CD300E (Fig.  4B) [30]. Genes associated with lipid 
metabolism like ALOX15B and LPL or involved in immu-
noregulation like FKBP5 and CD163 were among the 
73 upregulated genes in the overall Mono cluster of MS 
patients (Fig.  4C). Genes like IGLC2, MZB1, JCHAIN, 
and CD79A, which are known B cell markers, were 
upregulated in the Mono cluster which could represent 
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remnant mis-annotated B cells in the Mono cluster 
(Fig. 4C).

Next, we analyzed the subclusters of the CD14 and 
CD16 monocytes (level 2). In the past, monocytes and 
their activation markers were mainly studied in PBMC 
[31–33]. CD16+ and CD14+ monocytes — especially in 
the CSF of MS patients — are not yet well characterized.

In our joint analysis of RRMS and IIH/control CSF 
of three independent datasets, the number of CD14+ 
monocytes was higher than the number of CD16+ mono-
cytes in both control and MS (Fig.  4D). While CD14+ 
monocytes are known to decrease in the blood of MS 
patients [34], the total number of CD14+ monocytes was 
increased in the CSF of MS patients compared to controls 
supporting the independence of blood and CSF compart-
ments. The CD14+ monocytes in the MS samples were 
characterized by an upregulation of genes associated 
with phagocytosis and lipid metabolism like LPL, APOE, 
and AXL [35], an observation reminiscent of the pheno-
types displayed by microglia at the rims of the chronic 
active lesions [36, 37] (Fig.  4E). Furthermore, we found 
a downregulation of trafficking-associated transcripts 
in the CD14 Mono cluster (IL1B, CCL4, CCL3, CCL2) 
(Fig. 4E). We interpret this downregulation as supportive 
of the classification of CD14+ monocytes as rather “CSF-
derived” as opposed to “periphery-derived” as described 
by Schafflick et al. [11].

CD16+ monocytes in CSF were more abundant in MS 
than in the controls (Fig.  4D). GPR34, STAB1, P2RY12, 
and LYVE1 previously described in so-called border-
associated macrophages (BAMs) [38], were significantly 
upregulated in CD16+ monocytes in MS. Furthermore, 
the CD16 Mono cluster upregulated mitochondrial (e.g., 
ATP5MD) and cell cycle-associated transcripts (EIF1, 
EEF1D, EEF2, SAP18, BTF3, HCLS1) indicative of prolif-
eration (Fig. 4F).

Comparing CD14+ and CD16+ monocytes in detail, 
both CD14+ and CD16+ monocytes expressed activation 
markers (CD86, CD40) and anti-inflammatory cytokines 
(IL10) which were upregulated in the CSF of MS patients 
(Fig.  4G). Additionally, CD16+ and CD14+ monocytes 
showed a CNS-associated macrophage phenotype (Mrc1, 
Lyve1, CD163, Siglec1) [39–41], with CD16+ monocytes 
appearing to be more differentiated and specialized than 
CD14+ monocytes (Fig. 4H). CCR2, a chemokine recep-
tor critical for crossing the blood–brain barrier [42], was 
significantly upregulated in the CD16+ monocytes but 
not in the CD14+ monocytes in MS (Fig. 4G), and may 
thus locally drive inflammation in MS. Similar to previ-
ous findings in the periphery of MS patients [31–33], our 
study identified CD16+ monocytes as active inducers of 
inflammation and considered them as one of the first 
cells crossing the blood–brain barrier during MS [31].

After the in-depth characterization of the individual 
clusters on level 1 and level 2, we were interested in fur-
ther speculating on the identity of the 11,960 cells that 
we had defined as unassigned cells in the level 1 clus-
tering. Based on the marker genes from level 2 cluster-
ing (Figs. 2E, 3A,D,F, 4B), the unassigned level 1 cluster 
showed mainly characteristics of gdT cells (CCL5, CST7, 
GZMA, CD74), ILC (MTRNR2L12, MT-CD4L, ID2, 
ETS1, BCL11B, IGKC), MAIT (KLRB1, NKG7), and dnT 
(GZMK) cells and less of naive CD4, Tre,g and Mono 
(Additional file  4: Fig. S4). This underscores that lower 
resolution scRNA-seq are unlikely to capture these 
smaller cell populations and highlights the importance of 
our joint analysis.

Overall, an integrated data analysis facilitates deeply 
characterizing disease-associated transcriptional changes 
in both rare and abundant cell types for a better under-
standing of mechanisms of MS.

Discussion
In the present study by integrating multiple single cell 
datasets from the CSF in multiple sclerosis (MS), we (i) 
improve accessibility, and (ii) increase statistical power 
thereby facilitating novel findings.

Our public and browsable interface (https://​CSFin​MS.​
bxgen​omics.​com) constitutes the first freely accessible 
comprehensive data visualization tool for understand-
ing CSF cells in MS without the need for computational 
skills. Users can answer biological questions, such as 
gene expression differences in disease, gene expression 
patterns among cell types, and pathway enrichment anal-
ysis of genes of interest from the above to identify the 
underlying mechanisms of diseases. A step-by-step guide 
is provided as an online documentation (interactivere-
port.github.io/cellxgene_VIP/tutorial/docs/index.html). 
The majority of figures in the manuscript are created by 
using the tool without assistance.

The integrated analysis replicated many features 
described previously, such as the expansion of B cells 
in the CSF of MS patients. Pronounced B cell accumu-
lation in the CSF distinguishes MS from other inflam-
matory CNS diseases and differential diagnoses [19, 43, 
44]. The dataset can be used to study treatment targets. 
Anti-CD20 antibodies are effective in MS [45] and CD20 
is expressed in the ‘mid’ B cell lineage and absent from 
B cell progenitors and plasmablasts/-cells [46]. B lineage 
cells accumulating in the CSF in MS are preferentially 
late-stage plasmablasts/-cells. Accordingly, the expres-
sion of MS4A1 (encoding CD20) was lower in the CSF 
of MS patients indicating that the antigen-experienced 
clones found in the CSF are not the primary target of B 
cell-depleting therapies [46].

https://CSFinMS.bxgenomics.com
https://CSFinMS.bxgenomics.com
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The integrated analysis restricted the previously 
reported lower abundance of all monocytes in the CSF in 
MS [11, 13, 17] to a cluster annotated as classical CD14+ 
monocytes. Non-classical monocytes (CD14+CD16+) 
have been associated with various autoimmune diseases 
and contribute to blood–brain barrier (BBB) breakdown 
[47]. Schafflick et al. [11] classified CD16+ monocytes as 
mostly blood-derived “Mono1” and CD14+ monocytes 
as mostly CSF-derived “Mono2”. Deeper gene analysis of 
the latter showed similarities with homeostatic microglia 
[48] — a phenotype likely instructed by the CSF micro-
environment and not indicating ontogenetically shared 
origins [49].

Considering these two examples of the integrative data 
set’s advantages, the aim of this study is sufficient met: it 
supports the previous findings and substantiates them 
with a higher statistical power. Nevertheless, it will be 
exceptionally interesting to extend our single cell study 
design to MS patients in remission to compare CSF single 
cell profile between relapse and remission. In summary, 
our study supplies a public and browsable tool to analyze 
CSF samples of MS patients and provides an essential ref-
erence point for future studies.

Material and methods
Study design
The current database includes a cohort of 4 MS patients 
and 4 control patients (dataset 1) from our published 
study [11], a new cohort consisting of 3 MS patients 
and 5 control patients published in [17] plus 2 newly 
recruited MS patients (dataset 2), and a cohort of 11 
MS patients and 2 control patients (dataset 3) [13]. For 
a more detailed description of clinical and experimen-
tal procedures, we refer to the respective sections of the 
original articles and to Additional file 5: Tab. S1 [11, 13, 
17].

Data acquisition
Collectively, 20 relapsing–remitting multiple sclerosis 
(RRMS) patients and 11 controls. The latter were either 
healthy controls or patients with an idiopathic intracra-
nial hypertension (IIH), a non-inflammatory condition 
characterized by an elevated intracranial pressure with 
normal CSF composition [50]. All MS patients were treat-
ment-naïve, with RRMS in active relapse leading to the 
first diagnosis. The inclusion and exclusion criteria have 
been described previously [11, 13, 17]. Briefly, RRMS 
patients were diagnosed based on the revised McDon-
ald criteria [8], and were in an active relapse and did 
not receive immunomodulatory or immunosuppressive 
disease-modifying therapy at the time of sample collec-
tion. Exclusion criteria were concurrent immunological 

comorbidities, particular immunological conditions (e.g., 
pregnancy or breastfeeding, younger than 18 years old), 
severe concomitant infectious diseases, or artificial blood 
contamination in the CSF (> 200 RBCs/µL) [11]. All par-
ticipants gave their informed consent, and the studies 
were approved by the respective ethical committees. All 
available CSF single cell RNA-sequencing (scRNA-seq) 
data from MS and control of dataset 1, 2, and 3 were 
used. The exclusion criteria for excluding individual cells 
(not patients) from analysis were: nFeature_RNA > 200 & 
nFeature_RNA < 2500 & percent.mito < 0.1.

Diagnostic puncture and cell preparation
Precise techniques and operating procedures varied 
in each study and can be found in detail in the respec-
tive publications. Briefly, CSF and blood were obtained 
within the scope of diagnostic procedures under sterile 
conditions and in accordance with local standard oper-
ating procedures. The additional CSF volume was cen-
trifuged immediately after collection at 300–400×g for 
10–15 min. The supernatant was discarded and the pel-
let was resuspended in an appropriate medium. The cell 
count was determined by a hemocytometer or manually 
in a Fuchs-Rosenthal chamber to achieve a proper cell 
concentration for scRNA-seq. The cells were stored at 
4°C until processing. If processed immediately, cells were 
resuspended in ~ 80 µL of residual supernatant [13].

Single‑cell RNA‑sequencing and library generation
Briefly, after appropriate preparation of the samples and 
generation of a high-quality single cell suspension, the 
10 × library was constructed using reagent kits and Chro-
mium Controller of 10X Genomics (Chromium Single 
Cell 3′ Library & Gel Bead Kit; 10X Genomics). The cells 
are partitioned by a special oil whereby single Gel Beads-
in-emulsion (GEMs) are generated on a Chromium Chip. 
Following, the GEMs are chemically dissolved and the 
entailed mRNA is amalgamated with a master mix con-
taining reverse transcription reagents. Thereby 10 × bar-
coded cDNA is generated and by subsequent PCR 
amplification a Chromium Single Cell 3′ Gene Expres-
sion library containing two special primers at each end, 
called Illumina paired-end constructs, is synthesized. The 
commonly shared 10 × barcode is followed by a Unique 
Molecular Identifier (UMI), which allows to define genes 
based on UMI counts. The resulting 10 × Barcoded 
libraries are compatible with standard NGS short-read 
sequencing on Illumina sequencers (for the respective 
sequencing models we refer to the respective publica-
tions). For dataset 3 from Ramesh et al. [13] sequencing 
libraries were prepared using 3′ or 5′ library preparation 
kits (10 × Genomics) (Additional file 5: Tab. S1).
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Preprocessing of sequencing data
Dataset 3 from Ramesh et al. [13] was downloaded from 
Gene Expression Omnibus (GEO) repository under Bio-
Project PRJNA549712 (GEO accession no. GSE133028). 
Dataset 1 from our published study [11] was available 
from GEO repository with the accession no. GSE138266. 
The new cohort consisting of 3 MS patients and 5 con-
trol patients published in [17] plus 2 newly recruited 
MS patients (dataset 2) is available from GEO repository 
with the accession no. GSE163005. All the raw sequenc-
ing data were processed with the Cell Ranger pipeline 
v3.0.2 (10X Genomics). Raw base call (BCL) files derived 
by the Illumina sequencers were demultiplexed using 
Cell Ranger mkfastq into FASTQ files. Subsequent read 
alignments and transcript counting were done individu-
ally for each sample using Cell Ranger count with stand-
ard parameters. Pre-built Cell Ranger Human reference, 
GRCh38 (GENCODE v32/Ensembl 98) version 2020-A 
(July, 2020) was used for gene mapping. Raw count data 
were analyzed using Seurat (v4.0) bioinformatics pipe-
line [18]. For quality control, only cells containing tran-
scripts for more than 200 genes and less than 2500 genes 
were included. Cells were omitted if they expressed > 10% 
mitochondrial genes. (nFeature_RNA > 200 & nFeature_
RNA < 2500 & percent.mito < 0.1.)

Batch effect removal
Gene counts were normalized using the SCTranform 
based normalization from Seurat (v4.0) to remove batch 
effect. To visualize the batch effect removal results, we 
first colored the UMAP plot with batch information and 
calculated the percentage of cells from each batch for each 
cell type. Then, we used regular LogNormalize method 
to normalize the count data and compared the results 
with previously SCTranformation normalized data. Log-
Normalize is a global-scaling normalization method that 
normalizes the count data for each cell by the total expres-
sion, multiplies this by a scale factor 10,000 and log-
transforms the result.  At last, we performed a principal 
component analysis (PCA) using all genes detected in all 
cells per sample (‘pseudo-bulk’) to create the PCA space. 
For each sample, we averaged the expression of each gene 
in all cells to create a pseudo-bulk gene expression matrix.

Cell type prediction
To predict the cell types in our query dataset, we trans-
ferred cell type labels from the reference dataset [18] to 
our query dataset by following Seurat v4 Multimodal Ref-
erence Mapping pipeline (https://​satij​alab.​org/​seurat/​
artic​les/​multi​modal_​refer​ence_​mappi​ng.​html), based on 
a CITE-seq reference dataset of 162,000 PBMC meas-
ured with 228 antibodies [18]. After prediction, each cell 
from our query dataset received cell type annotations at 

two levels of granularity (level 1, and level 2). Each predic-
tion was assigned a score between 0 (low confidence) and 
1 (high confidence). For the following analysis, we only 
used cell type prediction with high confidence (prediction 
score > 0.6) [51]. Then, the combined dataset was projected 
into a UMAP visualization defined by the reference dataset.

Differential cluster abundance analysis
We used Student’s t-test to test for significance of differ-
ences in the proportion for each cell cluster between MS 
and control patients. P value and log2-fold change were 
provided in Additional file  7: Tab. S3 and Additional 
file  9: Tab. S5. We used R packages ggplot2 and ggrepel 
to generate volcano plot to visualize the p value (t-test) 
and -log2-fold change for the difference in proportion for 
each cell type between MS and control patients.

Differential gene expression analysis
For single cell-level differential expression (DE) analysis, 
we used NEBULA [52]. We used this approach to identify 
differentially expressed genes in each cluster type vs the 
remaining cell clusters (i.e., marker genes) and in MS vs 
control cells in each cell cluster (DE genes). The counts 
data were imported into R and two rounds of QC filter-
ing were applied. In the first round, filtering was applied 
to the entire count matrix. We required: (1) a library size 
between 200 and 20  M, (2) genes must be expressed in 
at least 3 cells, and (3) cells must have at least 250 genes 
expressed. Additionally, mitochondrial, and ribosomal 
genes (all gene names containing: RP, RG, MT) were fil-
tered out at this stage. During a second round of filtering, 
we required a minimum of 10% of all the cells to express 
a gene, a minimum of 3 cells per subject, and a minimum 
of 2 subjects per group. Any gene where both groups 
have a 90th percentile of expression at 0 was filtered out. 
Additionally, batch effect, age, sex and percentage of 
mitochondrial genes were considered as covariates/con-
founding factors and adjusted in the analysis.

Data visualization
We deposited the combined dataset into single-cell RNA-
seq visualization tool cellxgene VIP [15, 16] to share the 
data and allow readers to further explore and visualize 
it. The tool is available at https://​CSFin​MS.​bxgen​omics.​
com. The online tutorial, https://​bit.​ly/​3z4jR​o8 provides 
the general guidance on using the tool. In addition, the 
following will outline few use cases to answer particu-
lar biological questions. The following abbreviations are 
used throughout the cellxgene VIP tool: MS, Multiple 
Sclerosis; CSF, Cerebrospinal Fluid; DEG, differentially 
expressed genes; Lev1, level 1; Lev2, level 2; F, female; M, 
male; VIP, Visualization In Plugin.

https://satijalab.org/seurat/articles/multimodal_reference_mapping.html
https://satijalab.org/seurat/articles/multimodal_reference_mapping.html
https://CSFinMS.bxgenomics.com
https://CSFinMS.bxgenomics.com
https://bit.ly/3z4jRo8
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Abbreviations
ASDC: AXL+ SIGLEC6+ CD11c−/low dendritic cell; Bc: B cells; CITE-seq: Cel‑
lular indexing of transcriptomes and epitopes by sequencing; TCM: Central 
memory T cell; CNS: Central nervous system; CSF: Cerebrospinal fluid; CIS: 
Clinically isolated syndrome; CD: Cluster of differentiation; Ctrl: Control; cDNA: 
Copy deoxyribonucleic acid; DC: Dendritic cells; DE: Differential expression; 
DEG: Differentially expressed genes; dnT: Double-negative T cell; TEM: Effector 
memory T cell; Eryth: Erythrocytes; FDR: False discovery rate; f: Female; gdT 
cells: Gamma delta T cells; GEM: Gel beads-in-emulsion; GEO: Gene expression 
omnibus; granulo: Granulocyte; HC: Healthy control; HSPC: Hematopoietic 
stem and progenitor cell; IIH: Idiopathic intracranial hypertension; Ig: Immu‑
noglobulin; iTreg: Induced regulatory T cell; ILC: Innate lymphoid cell; Int: 
Intermediate; IQR: Interquartile range; lympho: Lymphocyte; MRI: Magnetic 
resonance imaging; m: Male; MEM: Memory; mRNA: Messenger ribonucleic 
acid; MT: Mitochondrial; Mono: Monocytes; MAIT: Mucosal associated invariant 
T cell; MS: Multiple sclerosis; cDC: Myeloid/conventional dendritic cell; NK: 
Natural killer; nTreg: Natural regulatory T cell; NEBULA: Negative binomial 
mixed model using a large-sample approximation; NGS: Next generation 
sequencing; OCB: Oligoclonal bands; PBMC: Peripheral blood mononuclear 
cell; plasma: Plasmacell; pDC: Plasmacytoid dendritic cell; PCA: Principal 
component analysis; Prolif: Proliferation; QC: Quality control; BCL: Raw base 
call; rbc: Red blood cell; Treg: Regulatory T cell; rel_gd: Relapse, lesions with 
gadolinium enhancement detected on MRI; rel_nogd: Relapse, no lesions 
with gadolinium enhancement on MRI; RRMS: Relapsing–remitting multiple 
sclerosis; RG: Ribosomal gene; RP: Ribosomal protein; scRNA-seq: Single-cell 
RNA-sequencing; TCL: T cell with cytotoxic activity; Th cell: T helper cell; UMAP: 
Uniform manifold approximation and projection; UMI: Unique molecular 
identifier; VIP: Visualization in plugin.
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Additional file 1: Figure S1. Patient/Data characteristics. (A) Age and 
gender composition of all control (Ctrl, n = 11) and MS patient (n = 20) is 
shown separately for each dataset. (B) Obtained cell count [× 104] in the 
cohort of Ctrl and MS patients in the total sequenced dataset. (C) Whisker 
plots depicting the measured cell count [× 104] per sample as well as the 
genes [× 102] per cell divided by dataset.

Additional file 2: Figure S2. Correction for batch effect by SCTranform 
normalization. (A) The UMAP shows no obvious batch effect after SCTran‑
form normalization. The stacked bar plot next to the UMAP shows the 
percentage of cells from each batch per cell type. (B) The UMAP depicts 
the batch effect after LogNormalize normalization. (B) The stacked bar 
plot next to the UMAP shows the percentage of cells from each batch 
per cluster. For example, as shown in the bar plot, Cluster 0 and 5 mainly 
contain cells from Dataset 3, while Cluster 2 mainly contains cells from 
Dataset 1 and Cluster 7 and 9 mainly contain cells from Dataset 2. Dataset 
1: Schafflick et al. [11], dataset 2: new muenster cohort and Heming et al. 
[17], dataset 3: Ramesh et al. [13].

Additional file 3: Figure S3. No batch effect identified based on pseudo-
bulk principal component analysis. Pseudo-bulk principal component 
analysis (PCA) shows no obvious batch effect across the three datasets. To 
generate pseudo-bulk gene expression matrix, we averaged the expres‑
sion of each gene in all cells from one sample. Dataset 1: Schafflick et al. 
[11], dataset 2: new muenster cohort and Heming et al. [17], dataset 3: 
Ramesh et al. [13].

Additional file 4: Figure S4. Characterization of unassigned cluster level 
1. Depicted is the expression level of marker genes for listed cell types in 
the unassigned cluster of level 1 of controls (Ctrl) and MS patients. Marker 
genes were selected based on level 2 cluster analysis; the corresponding 
Figures are linked. Dot color encodes the mean expression; dot size visual‑
izes the fraction of cells expressing the respective gene.

Additional file 5: Table S1. Subject demographics and technical informa‑
tion on scRNA-Seq. (Table 1.1) Composition of the three datasets, subject 
demographics of included multiple sclerosis (MS, n = 20) and control (IIH/
HC = Ctrl, n = 11) patients, MRI features and CSF findings are listed. For 

dataset 3, non-included samples from Ramesh et al. [13] are listed (grayed 
out) and their exclusion criteria are shown. See methods for the primary 
source of the three datasets. Column legend: IIH = idiopathic intracranial 
hypertension, MS = multiple sclerosis, CIS = clinically isolated syndrome, 
f = female, m = male, rel_gd = relapse, lesions with gadolinium enhance‑
ment detected on magnetic resonance imaging (MRI), rel_nogd = relapse, 
no lesion with gadolinium enhancement on MRI, MS-typical MRI = MS-
typical lesion pattern in characteristic locations (ovoid periventricular 
lesions/Dawson fingers, cortical or juxtacortical, infratentorial and 
spinal cord) (1) / no Ms-typical lesion pattern (0), active = active relapse, 
Gd +  = gadolinium detected (1) or not detected (0) in MRI lesion, months 
from onset = months from first symptoms until sample collection, 
cell = cell count/µL obtained via lumbar puncture, lympho = lympho‑
cytes/µL of cerebrospinal fluid (CSF), granulo = granulocytes/µL of CSF, 
rbc = red blood cell count/µL CSF, protein = obtained protein concentra‑
tion in mg/L CSF, lactate = CSF lactate in nmol/L, glucose = CSF glucose 
in mg/dL, OCB +  = any oligoclonal bands (OCB) detected in CSF (1) or 
not detectable (0). Barrier disruption = no barrier disruption (0) or present 
barrier disruption (1). CSF index = derived from the Reiber scheme [54] 
(IgG CSF/IgG serum index compared to the albumin CSF/albumin serum 
index), no barrier disruption (none), intrathecal immunoglobulin synthesis 
(Ig only), intrathecal immunoglobulin synthesis plus barrier disruption 
(barrier_and_Ig). IgG-index > 0.7 = IgG synthesis in the CSF. All parameters 
were obtained within 24 h of CSF sampling. (Table 1.2) Technical informa‑
tion on scRNA-seq results of all patients (MS, n = 20) and healthy controls 
(Ctrl, n = 11) included in the study are listed. The sequencing technique 
for generation of the 10 × libraries is listed for the different datasets 
(10 × Genomics scRNA-seq kit version). Furthermore, the total number of 
measured cells after sequencing and genome alignment (total cells per 
sample) and the average number of detected genes per cells (average 
gene per cell) used for downstream analysis is depicted.

Additional file 6: Table S2. Marker genes / differentially expressed 
genes_cell type level 1. (Table 2.1) Overview of marker genes and refer‑
ences used to annotate and specify the respective clusters. (Table 2.2–
2.10) Depicted are the differentially expressed genes in each cluster 
compared to the remaining clusters of the cell type level 1 (marker genes). 
Listed for each gene is the Log fold change (log2-fold change), the p-value 
und the adjusted p-value (false discovery rate). We used the Welch’s t-test 
(cellxgene or diffxpy) for the discovery of differentially expressed genes 
between two groups of cells. A minimum of 10 cells in each group was 
required for calculation.

Additional file 7: Table S3. DE genes / Differentially expressed genes MS 
vs control cell type level 1. Depicted are the differential expressed genes 
in MS compared to control (Ctrl) for each cluster of cell type level 1 (DE 
genes). Listed for each gene is the Log fold change (log2-fold change), 
the p-value und the adjusted p-value (false discovery rate). We used 
the Welch’s t-test (cellxgene or diffxpy) for the discovery of differentially 
expressed genes between two groups of cells. A minimum of 10 cells in 
each group was required for calculation.

Additional file 8: Table S4. Marker genes / Differential expressed genes_ 
cluster cell type level 2. (Table 4.1) Overview of marker genes and refer‑
ences used to annotate and specify the respective clusters. (Table 4.2–
4.30) Depicted are the differential expressed genes in each cluster 
compared to the remaining clusters of the cell type level 2 (marker genes). 
Listed for each gene is the Log fold change (log2-fold change), the p-value 
und the adjusted p-value (false discovery rate). We used the Welch’s t-test 
(cellxgene or diffxpy) for the discovery of differentially expressed genes 
between two groups of cells. A minimum of 10 cells in each group was 
required for calculation.

Additional file 9: Table S5. DE genes / Differential expressed genes MS 
vs Control cell type level 2. Depicted are the differential expressed genes 
in MS compared to control (Ctrl) for each cluster of cell type level 1 (DE 
genes). Listed for each gene is the Log fold change (log2-fold change), 
the p-value und the adjusted p-value (false discovery rate). We used 
the Welch’s t-test (cellxgene or diffxpy) for the discovery of differentially 
expressed genes between two groups of cells. A minimum of 10 cells in 
each group was required for calculation.

https://doi.org/10.1186/s12974-022-02667-9
https://doi.org/10.1186/s12974-022-02667-9
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