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Abstract 

Background: Cerebral infection with the protozoan Toxoplasma gondii (T. gondii) is responsible for inflammation of 
the central nervous system (CNS) contributing to subtle neuronal alterations. Albeit essential for brain parasite control, 
continuous microglia activation and recruitment of peripheral immune cells entail distinct neuronal impairment upon 
infection-induced neuroinflammation. PACAP is an endogenous neuropeptide known to inhibit inflammation and 
promote neuronal survival. Since PACAP is actively transported into the CNS, we aimed to assess the impact of PACAP 
on the T. gondii-induced neuroinflammation and subsequent effects on neuronal homeostasis.

Methods: Exogenous PACAP was administered intraperitoneally in the chronic stage of T. gondii infection, and brains 
were isolated for histopathological analysis and determination of pathogen levels. Immune cells from the brain, 
blood, and spleen were analyzed by flow cytometry, and the further production of inflammatory mediators was 
investigated by intracellular protein staining as well as expression levels by RT-qPCR. Neuronal and synaptic altera-
tions were assessed on the transcriptional and protein level, focusing on neurotrophins, neurotrophin-receptors and 
signature synaptic markers.

Results: Here, we reveal that PACAP administration reduced the inflammatory foci and the number of apoptotic cells 
in the brain parenchyma and restrained the activation of microglia and recruitment of monocytes. The neuropeptide 
reduced the expression of inflammatory mediators such as IFN-γ, IL-6, iNOS, and IL-1β. Moreover, PACAP diminished 
IFN-γ production by recruited  CD4+ T cells in the CNS. Importantly, PACAP promoted neuronal health via increased 
expression of the neurotrophin BDNF and reduction of  p75NTR, a receptor related to neuronal cell death. In addition, 
PACAP administration was associated with increased expression of transporters involved in glutamatergic and GABAe-
rgic signaling that are particularly affected during cerebral toxoplasmosis.

Conclusions: Together, our findings unravel the beneficial effects of exogenous PACAP treatment upon infection-
induced neuroinflammation, highlighting the potential implication of neuropeptides to promote neuronal survival 
and minimize synaptic prejudice.
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Background
Neurological disorders are mainly associated with the 
development of neuroinflammation in response to auto-
immune recognition, neurodegenerative accumulation 
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of toxic metabolites, or due to infectious diseases [1, 2]. 
Most frequent infections of the central nervous system 
(CNS) are caused by viral, bacterial and fungal patho-
gens, although neurotropic protozoan parasites such as 
Toxoplasma gondii (T. gondii) can cause cerebral toxo-
plasmosis, a persistent subclinical to severe neuroinflam-
matory disease [3, 4]. It is estimated that one-third of the 
world’s human population is infected with T. gondii and 
the seroprevalence is even higher in other mammals [5–
7]. Once invading neuronal tissue, the parasites evoke an 
efficient pro-inflammatory immune response with release 
of tumor necrosis factor (TNF), interleukin (IL)-6, IL-1β, 
and nitric oxide (NO) by activated resident microglia and 
astrocytes [8, 9]. The local immune response is intensi-
fied by the recruitment of peripheral lymphoid and 
myeloid cells to the brain, which are crucial for parasite 
control mainly via interferon-gamma (IFN-γ) production 
[10–13]. The persistent infection in the brain establishes 
an ongoing neuroinflammation for the host lifetime, and 
is able to modify neuronal function and synapse com-
position [9, 14–16]. Indeed, neurological and behavior 
alterations upon T. gondii infection have been highlighted 
in rodent and human studies [17–20], and associated to 
altered cognitive function [21] and several neuropsychi-
atric conditions including depression, suicidal behavior, 
and schizophrenia [22–24]. As no current therapy is able 
to completely eliminate the parasites from the CNS, new 
therapeutic strategies are necessary to reduce infection-
induced neuroinflammation, preventing neuronal death 
and minimizing synaptic prejudice [25].

The neuropeptide PACAP (Pituitary Adenylate 
Cyclase-Activating Polypeptide) has been described to 
strongly modify inflammation and clinical symptomatol-
ogy in different rodent models of inflammatory diseases 
[26, 27]. The neuropeptide also acts as a neurotrans-
mitter, neuromodulator, and neurotrophic factor [28, 
29]. The full-length biologically active form of PACAP 
(PACAP1-38) is a 38-amino-acid neuropeptide com-
monly described as being widely expressed in the CNS 
of mammals [28, 30]. According to recent annotations in 
the Human Protein Atlas program database, single-cell 
RNA analyses have shown expression of PACAP (codi-
fied by Adcyap1 gene) mostly by granulocytes and excita-
tory neurons, and in lesser manner (10 fold) by specific 
epithelial cells and fibroblasts, T cells, microglia, and 
plasma cells [31, 32]. PACAP employs its biological activ-
ity through binding to three widely distributed G protein-
coupled receptors (GPCRs) named PAC1R, VPAC1R 
and VPAC2R [33], which triggers a series of intracellular 
signaling pathways, mainly involving production of cyclic 
adenosine monophosphate (cAMP) [34, 35]. PACAP 
receptors have different affinities for PACAP, with 
PAC1R possessing the highest affinity [36]. In addition, 

the receptors are differently expressed among immune 
cells, for example PAC1R and VPAC1R are constitutively 
expressed by monocytes, peritoneal macrophages and 
microglia, while T cells do not express PAC1R. VPAC2R 
is rarely detected under steady-state, but its expression is 
induced upon inflammation [37–39]. Despite neuropro-
tective potential in several neurological disorders such as 
Parkinson’s [40, 41], Alzheimer’s [42], and Huntington’s 
disease [43], as well as traumatic brain injury [44], clinical 
studies targeting PACAP signaling have been conducted 
addressing nociception upon nephrotic syndrome, clus-
ter headache, migraine, and major depression [45, 46]. 
In fact, immuno-modulatory properties of PACAP were 
found to be ambiguous, transiting from inhibition to 
stimulation depending on the experimental conditions 
and cell types [47], and therefore they request further 
investigation.

Our previous studies applying the acute infection-
induced inflammation model have demonstrated that 
the resolution of intestinal inflammation and enhanced 
phagocytic capacity of mononuclear cells was achieved 
by exogenous administration of PACAP [39, 48, 49]. As 
PACAP has shown beneficial effects in neurological and 
inflammatory diseases and given its active transport into 
the brain across the blood–brain barrier (BBB) [50], we 
set out to investigate the effects of exogenous PACAP 
administration during cerebral toxoplasmosis, a T. gon-
dii-induced neuroinflammation model. Our results point 
toward amelioration of brain inflammation, with reduced 
recruitment of myeloid cells and marked reduction of 
microglia activation and cytokine production, without 
triggering uncontrolled parasite burden. In addition, our 
results provide evidence that PACAP promotes neuronal 
health via BDNF/p75NTR axis modulation, favoring a less 
dysfunctional neuronal network of glutamatergic and 
GABAergic signaling, which is specifically affected dur-
ing T. gondii-induced neuroinflammation.

Methods
Mice and T. gondii infection‑induced neuroinflammation 
model
Experiments were conducted with female C57BL/6J mice 
(8–14 weeks old, purchased from Janvier, Cedex, France). 
All animals were group-housed in a 12-h day/night cycle 
at 22 °C with free access to food and water under specific 
pathogen-free conditions and according to institutional 
guidelines approved by the Animal Studies Committee of 
Saxony-Anhalt. In order to investigate T. gondii-induced 
neuroinflammation, mice were infected by intraperito-
neal (i.p.) injection of cysts of the type II ME49 strain, 
previously harvested from brains of female NMRI mice 
infected i.p. with T. gondii cysts 6–12 months before, as 
described elsewhere [51]. Briefly, brains isolated from 
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NMRI mice were mechanically homogenized in 1  ml 
sterile phosphate-buffered saline (PBS), and the number 
of cysts was determined in ≥ 80  µl homogenate using a 
bright field microscope. The homogenate was diluted in 
sterile PBS, and animals were infected i.p with two cysts. 
In our model, cerebral toxoplasmosis is established after 
3  weeks post-infection, as described elsewhere [11, 15, 
16, 52].

PACAP treatment and organ collection
For all experiments, PACAP1-38 (the full-length 
38-amino acid peptide, simply referred here as PACAP) 
was synthesized using solid phase strategy combined 
with the Fmoc chemistry methodology at the Department 
of Medical Chemistry, University of Szeged (Hungary) as 
previously described [53]. To investigate the effect dur-
ing T. gondii-induced neuroinflammation, 100  µg of 
PACAP in phosphate-buffered saline (PBS; 5  mg per kg 
body weight, 22 nM per mouse) or PBS (for non-treated 
controls) were administered i.p. on alternating days for 
one week, from the third to fourth week post-infection 
(4 administrations in total). One day after the last treat-
ment, animals were killed, blood samples obtained by 
puncture of the vena cava inferior and diluted in ice-cold 
PBS for flow cytometric analysis. Next, animals were 
transcardially perfused with 60  ml sterile ice-cold PBS, 
and brain, lung, and spleen were collected and stored in 
sterile ice-cold PBS for flow cytometric analysis, or stored 
in RNAlater® (Sigma, Germany) for nucleic acid isola-
tion and subsequent qPCR or RT-qPCR analysis. Samples 
stored in RNAlater® were kept at 4 °C overnight and then 
stored at −80 °C.

Cell isolation
Isolation of immune cells from brain was performed as 
previously described [52, 54]. Briefly, brain hemispheres 
were mechanically homogenized in dissection buffer 
(HBSS, Gibco™, Germany), supplemented with 50  mM 
glucose (Roth, Germany) and 13  mM HEPES (pH 7.3, 
Sigma), using a glass potter, and then filtered through a 
70-μm cell strainer (Falcon®, Corning, Germany). The 
cell suspension was washed (400  g, 10  min, 4  °C) with 
PBS and fractionated on a discontinuous 30%–70% iso-
tonic Percoll® gradient (GE Healthcare, Germany) (800 g, 
30 min without brake, 4 °C). After the removal of myelin 
debris, cells in the interphase comprising mononuclear 
cells were isolated and washed with FACS buffer (PBS 
w/o  Ca2+/Mg2+, 2% v/v fetal bovine serum (FBS), 10 mM 
HEPES, 0.1% sodium azide), centrifuged (400 g, 10 min, 
4  °C) and immediately used for flow cytometric analy-
sis. To isolate immune cells from spleens, organs were 
homogenized and sieved through a 40-μm cell strainer 
(Falcon®, Corning). Isolated cells from spleen and blood 

samples were treated with erythrocyte lysis buffer (eBio-
science, Germany), and washed twice with FACS buffer 
(400 g, 10 min, 4 °C) before staining and flow cytometric 
analysis.

Flow cytometric analysis
For surface staining, single-cell suspensions were first 
incubated with ZOMBIE NIR™ fixable dye (BioLegend, 
San Diego, CA) for live/dead discrimination. To prevent 
unspecific binding of antibodies, anti-mouse CD16/32 
antibody (clone 93, BioLegend) was applied to cells 
before staining with fluorochrome-conjugated antibodies 
against cell surface markers in FACS buffer. CD11b (clone 
M1/70), Ly6C (clone HK1.4), CD4 (clone GK1.5) and 
CD8a (clone 53–6.7) were all purchased from eBiosci-
ence. CD45 (30-F11), Ly6G (1A8), CD3 (17A2), MHCII 
I-A/I-E (clone M5/114.15.2) were purchased from Bio-
Legend. Cells were incubated for 30 min at 4 °C, washed 
(400  g, 10  min, 4  °C) and subsequently analyzed. Fluo-
rescence Minus One (FMO) controls were used to deter-
mine the positive signals for each conjugated antibody.

Flow cytometric analysis of intracellular cytokines 
was performed as described elsewhere [52]. Briefly, iso-
lated immune cells from the brain were re-stimulated 
with Toxoplasma Lysate Antigen (TLA) at 20  µg/ml for 
2  h [55]. Then, Brefeldin  A (10  µg/ml, GolgiPlug, BD 
Biosciences) and Monensin (10  µg/ml GolgiStop, BD 
Biosciences) were added and the cells were further incu-
bated for additional 4  h. After one washing step with 
FACS buffer (400  g, 10  min, 4  °C), cells were incubated 
with ZOMBIE NIR™ and anti-mouse CD16/32 anti-
body prior to surface staining described above. After-
wards, cells were fixed in 4% paraformaldehyde (PFA) 
for 15  min and subsequently permeabilized with Per-
meabilization Buffer (BioLegend). Intracellular proteins 
were stained with fluorochrome-conjugated antibodies 
against IFN-γ (XMG1.2; eBiosciences), iNOS (clone 6, 
BD Biosciences), IL-1β (clone NJTEN, eBiosciences), and 
TNF (clone MP6-XT22, BioLegend) in Permeabilization 
Buffer. Matching isotype controls were used to assess the 
level of unspecific binding. Data were acquired using the 
Attune™ NxT flow cytometer (Thermo Fisher; Germany) 
and analyzed using FlowJo™ (v10, LLC, BD Life Sci-
ences, USA). A minimum of 2 ×  105 cells per sample was 
acquired and analyzed.

DNA and RNA isolation
For DNA and RNA isolation, brains, lungs, and spleens 
were removed from RNAlater® and homogenized in Tri-
Fast™ (Peqlab, VWR, LLC, Germany) or lysis buffer using 
BashingBeads Lysis tubes (Zymo Research Europe, Ger-
many) and BeadBug 6 homogenizer (Biozym, Germany). 
DNA and RNA were isolated from the homogenate by 
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isopropanol precipitation using Total RNA Kit peq-
GOLD® (Peqlab, VWR) or isolated using AllPrep DNA/
RNA Mini Kit (Qiagen, Germany) according to the man-
ufacturer’s instructions. Concentration and purity of 
DNA and RNA was determined using NanoDrop 2000 
spectrophotometer (Thermo Fisher) and samples stored 
at −80 °C until further use.

qPCR
Parasite burden was assessed in triplicates using 30  ng 
of isolated DNA, FastStart Essential DNA Green Master 
(Roche, Germany) and LightCycler® 96 System (Roche) 
as described elsewhere [39]. Thermal-cycling parameters 
were set as follows: initial activation (95  °C, 10 min), 45 
amplification cycles consisting of denaturation (95  °C, 
15  s), annealing (60  °C, 15  s), and elongation (72  °C, 
15 s). The DNA target was the published sequence of the 
highly conserved 35-fold-repetitive B1 gene of T. gondii 

(TgB1) [56, 57], and murine argininosuccinate lyase (Asl) 
was used for normalization [58]. Primers listed in Table1 
were synthetized by Tib MolBiol (Germany) and used at 
300 nM final concentration.

RT‑qPCR
Transcription levels of inflammatory mediators, host-
defense factors, neurotrophins, neurotrophin receptors, 
and synaptic proteins were assessed in triplicates using 
30  ng isolated RNA, TaqMan® RNA-to-CT™ 1-Step 
Kit (Applied Biosystems, Germany), and LightCycler® 
96 (Roche, Germany) as described elsewhere [39]. 
TaqMan® Gene Expression Assays (Thermo Fisher) uti-
lized are listed in Table 2. Hprt was chosen as reference 
gene and relative mRNA levels were determined by the 
ratio gene of interest/reference gene and subsequently 
normalized to mean values of control group. To deter-
mine parasite life-stage conversion, the expression of 

Table 1 Oligonucleotide primers used for qPCR and RT-qPCR based on SYBR Green

*T. gondii

Protein Gene Sequence (5′–3′)

ASL Asl Fw TCT TCG TTA GCT GGC AAC TCA CCT 

Rv ATG ACC CAG CAG CTA AGC AGA TCA 

BAG1* Bag1 Fw GAC GTG GAG TTC GAC AGC AAA 

Rv ATG GCT CCG TTG TCG ACT TCT 

GAPDH Gapdh Fw TTG TCA AGC TCA TTT CCT GGT ATG 

Rv TGG TCC AGG GTT TCT TAC TCCTT 

SAG1* Sag1 Fw ATC GCC TGA GAA GCA TCA CTG 

Rv CGA AAA TGG AAA CGT GAC TGG 

B1* B1 Fw GCA TTG CCC GTC CAA ACT 

Rv AGA CTG TAC GGA ATG GAG ACGAA 

GAD65 Gad2 Fw GGA ATC TTT TCT CCT GGT GGC 

Rv CAC TCA CCA GGA AAG GAA CAAA 

GAD67 Gad1 Fw CTG AAC CGA GCC TGT TCC TG

Rv TCA TAC GTT GTA GGG CGC AG

GAT-1 Slc6a1 Fw GTT GGA CTG GAA AGG TGG TCT 

Rv AGC TTT CGG AAG TTG GGT GT

GAT-2 Slc6a13 Fw GCC TCG GGA ACA ACC AGT AAT 

Rv GAC AGG GAT GCC ACA GGT AAA 

GAT-3 Slc6a11 Fw CGG CTG GGT ATA TGG AAG CA

Rv GCC CCA AGC AGG ATA TGT GT

VGAT Slc32a1 Fw CAC TGC GAC GAT CTC GAC TT

Rv CAC GAA CAT GCC CTG AAT GG

PAC1R Adcyap1r1 Fw GGC TGT GCT GAG GCT CTA CTTTG 

Rv AGG ATG ATG ATG ATG CCG ATGA 

VPAC1R Vipr1 Fw GAT GTG GGA CAA CCT CAC CTG 

Rv TAG CCG TGA ATG GGG GAA AAC 

VPAC2R Vipr2 Fw GCG GTG TCT GGG ACA ACA TC

Rv CTG TGA CAT TTT CCC CAA CGT 
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stage-specific genes for tachyzoites (Sag1) and brady-
zoites (Bag1) [59] was evaluated using Power SYBR® 
Green RNA-to-CT™ 1-Step Kit (Thermo Fisher). Sam-
ples were analyzed in triplicates (50  ng of isolated 
mRNA per reaction) using LightCycler® 96 (Roche) 
and the following parameters: reverse transcription 
(48  °C, 30  min), inactivation (95  °C, 10  min) followed 
by 55 cycles of denaturation (95  °C, 15  s), annealing/
extension (60  °C, 1  min), and melting curve analysis. 
The primers used for Sag1 (SAG1), Bag1 (BAG1) and 
murine Gapdh are listed in Table  1, and were synthe-
tized by Tib MolBiol and used at 100 nM final concen-
tration. Expression of Gapdh was chosen as reference 
gene and relative mRNA levels were determined by the 
ratio gene of interest/reference gene and subsequently 
normalized to mean values of control group. Simi-
larly, transcriptional levels of glutamate decarboxylase 
enzymes, GABA transporters, and PACAP receptors 
were determined as described above, using Power 
SYBR® Green RNA-to-CT™ 1-Step Kit (Thermo Fisher) 
with 30  ng mRNA per reaction and primers listed in 
Table 1 used at 200 nM final concentration.

Histopathology and immunohistochemistry
For histopathological analysis, brains were fixed with 
4% paraformaldehyde (PFA) at 4  °C immediately after 
removal, and embedded in paraffin. Sagittal sections were 
prepared at 5  µm. To evaluate the general pathological 
changes and the number of inflammatory foci sections 

were stained using hematoxylin and eosin (H&E). Brain 
sections were further analyzed by in  situ immunohisto-
chemistry for quantification of F4/80+ macrophages and 
apoptotic cells. Primary antibodies against F4/80 (1:50, 
clone BM8, eBioscience) and cleaved Caspase-3 (1:200, 
Cell Signaling, USA) were used. A minimum of 2–4 sag-
ittal sections were analyzed per animal. Axiovert 200 
bright field microscope equipped with an AxioCam ERc 
3 digital camera and ZEN software (ZEISS, Germany) 
were used. The number of positively stained cells was 
assessed in 10 randomly chosen images (40× objective) 
within brain cortical regions. The total number of inflam-
matory foci was assessed using a 10× objective across the 
brain sections. Slides were analyzed in an independent 
and blinded manner.

Western blot analysis
Proteins were isolated from whole brain homogenates 
previously prepared with TriFast™ (Peqlab, VWR, LLC, 
Germany) using an optimized method described else-
where [60]. Protein concentrations were determined 
using Bradford reagent (Bio-Rad Protein Assay, Bio-Rad, 
Germany) and read at λ = 595  nm using SpectraMax 
M5e (Molecular Devices LLC). Total of 15 µg of protein 
from each sample were separated by SDS-PAGE 10%, and 
transferred to nitrocellulose membrane (Amersham™ 
Protran™, GE Healthcare, Germany). Membranes were 
blocked for 2 h in ROTI®Block solution diluted in Tris-
Buffered Saline (TBS) containing 0.1% (v/v) Tween-20 
(Roth, Germany) (TBS-T), and subsequently incubated 
overnight at 4  °C with primary antibodies in the same 
blocking solution. Accordingly, GAD65 (Synaptic Sys-
tem, SYSY, Germany, #198,104, 1:1000), GAD67 (SYSY, 
#198,211, 1:500), TrkB (CST, #4603, 1:1000), beta-III-
Tubulin (Sigma, #T8660, 1:1000) and beta-actin (CST, 
#13E5, 1:1000) were used. In the following day, mem-
branes were washed three times (10 min each) in TBS-T 
and then incubated for 1 h room temperature with sec-
ondary HRP-conjugated antibodies diluted in TBS-T at 
1:10,000. Anti-guinea pig (Invitrogen, #A18769), anti-
rabbit (Jackson ImmunoResearch, #111–035-144) and 
anti-mouse (Jackson ImmunoResearch, #115–035-068) 
were used. Membranes were revealed using SuperSig-
nal™ West kit (Thermo Fisher, #34,078 and #34,095) and 
densitometric analysis of the blots were performed using 
ImageJ/Fiji.

Statistical analysis
Results were statistically analyzed using GraphPad Prism 
7 (GraphPad Software Inc., USA). Data were considered 
statistically significant with p ≤ 0.05. All data are pre-
sented as arithmetic mean with standard error of the 

Table 2 Oligonucleotide primers used for RT-qPCR based on 
TaqMan®

Protein Gene Gene expression assay

BDNF Bdnf Mm04230607_s1

GABAα1 Gabra1 Mm00439046_m1

GBP-1 Gbp2b Mm00657086_m1

HPRT Hprt Mm01545399_m1

IFN-γ Ifng Mm00801778_m1

Irgm3 Igtp Mm00497611_m1

IL-1β Il1b Mm00434228_m1

IL-6 Il6 Mm00446190_m1

Irgm1 Irgm1 Mm00492596_m1

NGF Ngf Mm00443039_m1

P75NTR Ngfr Mm01309638_m1

iNOS Nos2 Mm00440485_m1

Nt-3 Ntf3 Mm01182924_m1

TrkA Ntrk1 Mm01219406_m1

TrkB Ntrk2 Mm00435422_m1

VGLUT1 Slc17a7 Mm00812886_m1

EAAT2 Slc1a2 Mm01275814_m1

TNF Tnf Mm00443258_m1
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mean (SEM), collected from at least two independent 
experiments. For histopathological data, qPCR and RT-
qPCR, data were analyzed by non-parametric Mann–
Whitney U-test. For flow cytometric and western blot 
analyses, data were analyzed by two-tailed unpaired 
t-test.

Results
PACAP alleviates brain pathology upon cerebral T. gondii 
infection
T. gondii neuroinfection is characterized by activation of 
glial cells and recruitment of immune cells to the CNS. 
Albeit promotion of pathogen clearance, the inflam-
matory responses also result in severe brain lesions and 
destruction of neuronal tissue [61]. To assess the effects 
of exogenous PACAP administration upon cerebral tox-
oplasmosis, we utilized a murine model susceptible to 
chronic progressive infection [9]. Therefore, C57BL/6  J 
animals were infected with two cysts of type II ME49 
parasite strain. After the initial acute infection, 100 µg of 
PACAP or vehicle only (for non-treated controls) were 
administered i.p. starting three weeks post-infection 
(Fig.  1A). One day after the last treatment, brain tissue 
was collected for histopathological analyses (Fig. 1B–G). 
In non-treated control- and PACAP-treated animals, 
we detected parenchymal hemorrhage and inflamma-
tory foci of cellular infiltrates. In contrast, the number 
of inflammatory foci was strongly reduced in PACAP-
treated mice (Fig. 1B–C). Additionally, PACAP treatment 
resulted in reduced numbers of F4/80+ cells (Fig. 1D, E), 
which was paralleled by lower number of brain apoptotic 
cells  (Casp3+) (Fig.  1F, G). Hence, these results point 
towards an anti-inflammatory and neuroprotective effect 
of PACAP. In order to assess whether this amelioration 
of inflammation negatively affected parasite control, we 
determined T. gondii burden in the brain of mice. Our 
results revealed an unaltered parasite burden, and no 
alteration of parasite life-stage conversion upon PACAP 
treatment (Fig. 1H). Similarly, parasite burden in periph-
eral organs was also not affected (Fig. 1I). Thus, PACAP 
treatment of chronically infected mice suggested amelio-
ration of neuroinflammation without hampering parasite 
control. Accordingly, we hypothesize that PACAP effects 
are likely due to modulation of immune cell recruitment 
to the CNS and their activation status.

PACAP restricted myeloid cell recruitment and reduced 
microglia and monocyte activation
In previous studies, we demonstrated that neutrophils 
and myeloid cells continuously infiltrate the CNS dur-
ing cerebral toxoplasmosis [11, 12]. As suggested by the 
histopathological analysis, we hypothesize that PACAP 

ameliorates neuroinflammation and reduces cellular 
death by restraining immune cell infiltration to the brain. 
For further investigation, we isolated immune cells from 
the brain of T. gondii-infected animals, and assessed 
the differences between PACAP-treated animals and 
infected non-treated controls regarding immune cell 
recruitment and activation. CD45 and CD11b were used 
as markers to identify lymphocytes  (CD45+  CD11blow, 
upper left gate), myeloid cells  (CD45+  CD11bhigh, upper 
right gate) and activated microglia  (CD45int  CD11bint, 
lower right gate) (Fig. 2A). Myeloid cells were further dis-
criminated by Ly6G expression, providing differentiation 
between neutrophil granulocytes  (Ly6G+  CD11b+, upper 
gate) and mononuclear cells  (Ly6G−  CD11b+, lower 
gate). Then, mononuclear cells were classified according 
to Ly6C expression, and subdivided in  CD11b+  Ly6Chi 
inflammatory monocytes (upper gate),  CD11b+  Ly6Cint 
monocytes-derived dendritic cells (DCs) (middle gate) 
and  CD11b+  Ly6Clo monocyte-derived macrophages 
(lower gate) as previously described by our group [11]. 
When compared to control, PACAP-treated mice 
showed a reduced number of recruited myeloid cell sub-
sets (Fig. 2B). Also, the recruitment of  Ly6G+ neutrophil 
granulocytes was reduced without reaching significance 
(p = 0.065) in PACAP group (Fig. 2C). Next, we hypoth-
esized that the reduction of cell recruitment to the 
brain of PACAP-treated mice might simply be a reflec-
tion of diminished peripheral immune response. Thus, 
we investigated the immune cell compartment in blood 
(Fig. 2D-–F) and spleen (Fig. 2G–I), and no changes in 
myeloid cell frequency were detected between control 
and PACAP group. Further on, we assessed whether 
PACAP would modulate the activation status of mono-
cytes subsets in terms of MHCII expression, which is 
crucial for a potent inflammatory adaptive immune 
response [62]. We detected reduced MHCII expres-
sion by  Ly6Chi inflammatory monocytes in the brain 
(Fig.  3A). In addition, we assessed the production of 
NO, a key role pro-inflammatory mediator measured 
via expression of inducible NO synthase (iNOS). Levels 
of iNOS were reduced on  Ly6Cint and  Ly6Clo monocyte 
subsets upon PACAP treatment (Fig.  3B). Moreover, 
the production of pro-inflammatory cytokines TNF 
and IL-1β was reduced in  Ly6Cint and  Ly6Clo subsets, 
respectively (Fig.  3C, D). Next to the altered activation 
of infiltrating myeloid cells, we found that the activation 
status of resident microglia was changed upon PACAP, 
indicated by reduced expression of MHCII, and intracel-
lular production of iNOS, TNF, and IL1-β (Fig.  3E–H). 
At last, we assessed the overall impact of PACAP in the 
transcriptional level of inflammatory mediators and 
chemokines in the entire brain tissue, and we detected 
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Fig. 1 (See legend on next page.)
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reduced expression of IFN-γ, IL-6, iNOS (Nos2), IL-1β, 
CCL2, CXCL9 and CXCL10 (Fig. 3I). Regarding modula-
tion of PACAP receptors levels in overall brain, all recep-
tors presented higher expression upon infection, and 
only PAC1R was reduced upon PACAP treatment (Addi-
tional file  1A). In sum, PACAP impacted the recruit-
ment of myeloid cells to brain, reduced the expression 
of inflammatory mediators and chemokines in the brain 
parenchyma.

PACAP diminished IFN‑γ production by recruited  CD4+ T 
cells in infected brains
Next, we analyzed the impact of PACAP on the lym-
phoid T cells recruited to the brain upon T. gondii infec-
tion. Upon chronic toxoplasmosis, T cell-derived IFN-γ 
production represents the major driving force to parasite 
control, and it is mainly mediated by  CD4+ and  CD8+ T 
cells [63–65]. Although no difference in parasite bur-
den was previously detected in PACAP-treated brains, 

Fig. 2 Analysis of microglia and myeloid immune cell subsets upon PACAP treatment. Immune cells were isolated from brain, blood and 
spleen, and analyzed by flow cytometry. Only single, live immune cells were considered for analysis. A Representative gating strategy applied for 
discrimination of  CD45hiCD11b−lymphocytes and  CD45intCD11bint microglia (Mg).  CD45hiCD11bhi myeloid cells (upper right gate) were further 
discriminated into  Ly6G+ neutrophils, and  Ly6G− mononuclear cells were differentiated according to Ly6C expression in  Ly6Chi inflammatory 
monocytes,  Ly6Cint monocyte-derived DCs and  Ly6Clo monocyte-derived macrophages. B, C Bar charts show total cell numbers of microglia and 
myeloid immune cell subsets in the brain. D, G Myeloid cells from blood and spleen were first identified as  CD11b+ (not shown). Contour plots 
show the classification of selected cells into monocyte subsets (according to Ly6C expression) and  Ly6G+ neutrophils. Bar charts compare the cell 
frequency in the blood (E, F) and spleen samples (H, I) as percentages from parent population. Data show individual values as mean + SEM, n = 4–5, 
*p < 0.05, **p < 0.01 (unpaired two-tailed t-test) from a representative experiment; Control (black bars) and PACAP-treated (white bars)

Fig. 1 PACAP administration alleviates severe brain pathology upon T. gondii encephalitis. A Experimental design and PACAP administration 
schedule. Mice were infected with 2 cysts of T. gondii (type II strain ME49) and treated with 100 µg PACAP i.p. on alternating days starting at 3 weeks 
post-infection; yellow indicates acute infection, followed by an intermediated phase (2 to 3 weeks post-infection, not indicated), and green indicates 
chronic infection. B, D, F Histological brain sections from infected control animals (left column) and PACAP-treated animals (right column). B H&E 
staining and C bar charts show number of inflammatory foci quantified across 10 consecutive brain sections per mouse. D F4/80 staining and E bar 
charts show the mean of F4/80+ cells across 10 random cortical areas per mouse. F Caspase-3 (Casp3) staining and G bar charts show the mean of 
 Casp3+ cells across 10 random cortical areas per mouse. Data show mean + SEM, n = 4, **p < 0.01, ***p < 0.001, ****p < 0.0001 (unpaired two-tailed 
t-test). Scale bars = 100 µm. (H) Parasite burden was determined by qPCR analysis of TgB1 abundance, and RT-qPCR of Sag1 and Bag1 gene 
expression in brain homogenate. (I) Parasite burden in peripheral organs determined by TgB1 abundance. Bar charts present results normalized to 
mean values of control group as mean + SEM obtained in two independent experiments and analyzed together, n = 4–5 (Mann–Whitney U-test); 
Control (black bars) and PACAP-treated (white bars)

(See figure on Previous page.)
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IFN-γ transcripts were reduced, as well as the expres-
sion of CXCL9 and CXCL10 chemokines, particularly 
important to T cell recruitment into the brain upon 
cerebral toxoplasmosis [66] (Fig. 3I). For this reason, we 
further investigated whether PACAP would affect T cell 
recruitment and their IFN-γ production. No difference 
was found in the total cell number of  CD4+ and  CD8+ T 
cells between the treated and control group (Fig.  4A, 
B). In contrast, the intracellular IFN-γ production was 

significantly decreased in  CD4+ T cells upon PACAP 
treatment, whereas it remained unaltered in  CD8+ T cells 
(Fig.  4C, D). As IFN-γ signaling regulates cell-intrinsic 
host defense factors against intracellular parasites, we 
analyzed the expression of Igtp, Gbp2b and Irgm1 in the 
brain tissue, and despite the reduction of IFN-γ, only Igtp 
showed reduced expression (Fig. 4E). Thus, PACAP treat-
ment did not alter recruitment of T cells, but reduced 
IFN-γ production by  CD4+ T cells

Fig. 3 Monocyte and microglia activation and inflammatory mediators. Previously identified brain monocytes subsets and microglia were analyzed 
by flow cytometry for surface expression of MHCII (A, E), and for intracellular production of iNOS, TNF and IL-1β (B–D, F–H). Bar charts show values 
of median fluorescence intensity (MFI) previously defined for each population and marker, based on their respective fluorescence-minus-one (FMO) 
controls (not shown). Data represent mean values + SEM, n = 4–5, *p < 0.05, **p < 0.01, ***p < 0.001 (unpaired two-tailed t-test); I gene expression 
of inflammatory mediators and chemokines was assessed in whole brain homogenate. Bar charts represent mean values + SEM obtained in two 
independent experiments and analyzed together, n = 4–5 per experiment *p < 0.05, **p < 0.01 (Mann–Whitney U-test); Control (black bars) and 
PACAP-treated (white bars)
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PACAP modulates BDNF and  p75NTR levels and modifies 
infection‑induced synaptic imbalance
As the inflammatory response during cerebral toxo-
plasmosis is known to modify neuronal function and 
synapse composition [9, 14–16], we next set out to 
investigate whether the beneficial anti-inflammatory 
outcome of PACAP extended to neuronal survival and 
improved synaptic plasticity in the brain. In previous 
studies, PACAP has been associated with neurotrophins 
and their respective receptors [67], which are crucial 
for growth, development, and survival of neuronal tis-
sue [68]. Therefore, we analyzed the transcriptional 
levels of the neurotrophins BDNF, NGF, NT-3, and the 

neurotrophin receptors  p75NTR, TrkA, and TrkB in the 
brain of PACAP-treated animals (Fig. 5A-B). When com-
pared to control group, PACAP treatment increased 
BDNF transcriptional levels (Fig.  5A), a crucial factor 
for neuronal function [69], and simultaneously reduced 
expression of  p75NTR (Fig. 5B), a receptor associated with 
neuronal cell death and reduced synaptic function [70, 
71], but not the other neurotrophin receptors (Fig. 5B). 
TrkB, the main receptor for BDNF also showed no differ-
ence at protein levels (Additional file 2). Those findings 
prompted us to evaluate whether PACAP could com-
pensate the reduction on synaptic alterations caused by 
cerebral immune response against T. gondii, particularly 
in the glutamatergic neurotransmission pathways previ-
ously described [16]. We detected increased transcrip-
tional levels of the glutamate transporter EAAT2 and 
vesicular glutamate transporter VGLUT1, both impli-
cated in neuronal protection and avoidance of excessive 
excitatory neuronal stimuli [72, 73] (Fig.  5C). Further-
more, we detected increased transcriptional levels of 
the α1 subunit of the GABA-a post-synaptic receptor 
(GABAAα1), an important component of the inhibitory 
GABAergic signaling, suggesting that PACAP probably 
try to counter-balance exacerbated excitatory neuronal 
signaling (Fig. 5C). Those results prompted us to extend 
our analysis to the glutamate–GABA axis. Accordingly, 
PACAP had no evident effect on glutamate decarboxy-
lases GAD65 and GAD67, responsible for the most 
GABA amount synthesized from glutamate in the mouse 
brain [74] (Fig.  5D, F). Further on, we found a reduced 
transcriptional level of GAT-1 (Fig. 5E), a critical trans-
porter implicate in the availability of GABA in the synap-
tic cleft and associated functions [75, 76]. No difference 
was detected for the other investigated transporters 
(GAT-2, GAT-3, VGAT). Of note, GAT-1 and GAT-2 
were found more expressed in the brain upon T. gondii 
infection, while GAT-3 and VGAT were less expressed 
Additional file  1, as previous depicted for other neu-
ronal markers upon infection [15, 16]. At last, we found 
increased levels of the specific neuronal component β-III 
tubulin (TUBB3) in the PACAP-treated brains, which 
in addition to transcriptional VGLUT1 levels indicates 
a reduced neurological damage, as previously described 
for chronic T. gondii infection [77]. Together, our results 
suggest that PACAP promoted neuronal viability likely 
via BDNF/p75NTR modulation, and can modify synaptic 
excitatory/inhibitory neuronal imbalance present upon 
T. gondii-induced neuroinflammation.

Discussion
Cerebral infection with T. gondii causes chronic inflam-
mation leading to neuronal alterations and behavioral 
changes of the host. The elicited immune response is 

Fig. 4 Lymphocyte infiltration into brain, IFN-γ production and 
host-defense factors. Immune cells were isolated from brain, and 
identified as single, live,  CD45hiCD11b−CD3+ lymphocytes as 
shown above. A Representative gating illustrates discrimination of 
 CD4+ and  CD8+ T cells, and values in quadrant gates indicate cell 
frequency from parent population. B Total cell number of recruited 
 CD4+ and  CD8+ lymphocytes to the brain. C–D Intracellular analysis 
of IFN-γ production. Bar charts present MFI values as mean + SEM, 
n = 4, **p < 0.01 (unpaired two-tailed t-test). Histograms show 
the representative IFN-γ production by  CD4+ and  CD8+ T cells in 
comparison to isotype-control. Bars and numbers above histograms 
indicate mean percentage of positively stained cells + SEM. E 
Gene expression levels of host-defense factors in the whole brain 
homogenate were assessed using RT-qPCR. Bar charts represent 
mean values + SEM obtained in two independent experiments and 
analyzed together, n = 4–5 per experiment, *p < 0.05 (Mann–Whitney 
U-test). Control (black bars) and PACAP-treated (white bars)
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essential for parasite control in the brain, although simul-
taneously entails damage to the neuronal tissue. Here, we 
demonstrate the beneficial effects of the neuropeptide 
PACAP on infection-induced neuroinflammation in the 
murine model of cerebral toxoplasmosis. PACAP admin-
istration reduced brain pathology, microglia activation, 
and infiltration of monocytes, diminished production of 
pro-inflammatory cytokines, and bolstered neuronal pro-
tection. In previous studies, PACAP was able to modify 
clinical symptomatology of certain neurological disor-
ders for example Parkinson’s [40, 41], Alzheimer’s [42], 
Huntington’s disease [43], and traumatic brain injury 
[44]. Additionally, administration of PACAP has been 
shown to modulate inflammation in murine models of 
septic shock, rheumatoid arthritis, Crohn’s disease, and 
multiple sclerosis [78–84]. In fact, although exerting a 
prominent impairment of inflammation, the immuno-
modulatory ability of PACAP was found to be ambigu-
ous, alternating from inhibitory to stimulatory effects 
[47]. Moreover, as modulator of microbial infections, 
PACAP has exhibited direct antimicrobial activity against 

bacteria and fungi [85]. In support, our previous studies 
indicate as well a reduction of T. gondii parasite burden in 
the acute phase of the infection in the periphery, through 
an indirect immunomodulatory anti-parasitic effect [39].

In our experimental model of cerebral toxoplasmosis, 
PACAP reduced the number of apoptotic caspase-3+ cells 
in the brain parenchyma. According to previous studies, 
the beneficial effects of PACAP on neurological diseases 
are mainly attributed to inhibition of caspase-3 activation 
mediated by receptor PAC1R [86], which is expressed 
by inhibitory neurons, astrocytes, and microglia [87]. 
Therefore, we suggest that PACAP treatment may act 
via PAC1R to reduce brain cell death upon T. gondii cer-
ebral infection. Moreover, our histopathological exami-
nation and flow cytometric analysis indicates reduction 
of inflammatory foci and infiltration of immune cells in 
the infected brains following PACAP treatment. Likely, 
this immunomodulation is a secondary branch-effect 
of PACAP, also mediated by binding to PAC1R or other 
receptors in brain parenchymal cells. Previously, we 
and others have described the important contribution 

Fig. 5 Expression levels of neurotrophins, neurotrophin-receptors and functional neuronal markers. Overall brain gene expression levels of 
A neurotrophins and B neurotrophin-receptors; C gene expression levels of glutamate transporters (EAAT2, VGLUT1) and GABAα1 subunit; D 
expression of glutamate decarboxylases GAD65 and GAD67 and F western blot analysis; E expression levels of GABA transporters (GAT-1, GAT-2, 
GAT-3, VGAT); G protein levels of beta-III-tubulin (TUBB3). Bar charts represent mean values + SEM obtained in two independent experiments and 
analyzed together, n = 4–5 per experiment, *p < 0.05, **p < 0.01 (Mann–Whitney U-test); Control (black bars) and PACAP-treated (white bars). Western 
blot membranes show two representative samples of each group, and bar charts represent mean values + SEM, n = 4
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of recruited peripheral immune cells to control parasite 
burden in the brain in the cerebral toxoplasma model 
[11, 12, 88]. Surprisingly, we observed that restrain-
ing immune cell infiltration into the brain did not affect 
parasite control and stage conversion. Parasite levels in 
the periphery remained constant in the PACAP-treated 
group as well. In the acute toxoplasma model, we have 
previously detected reduced parasite burden by PACAP 
immunomodulation of mononuclear cells, enhanc-
ing their phagocytic capacity, although PACAP did not 
interfere directly with parasite replication in  vitro [39]. 
During acute infection, the fast replicating tachyzoites 
are the predominant life stage of T. gondii, and are sus-
ceptible to immune recognition and elimination, as well 
as to known therapeutic drugs [25]. In contrast, during 
chronic infection, tachyzoites that escaped the initial 
immune response convert into bradyzoites, which form 
cysts within a variety of tissues including brain and mus-
cles [10]. T. gondii cysts are shielded from therapeutic 
drugs and evade host immune responses [89], which sug-
gests they are also protected from the immune response 
of cells modulated by PACAP treatment, and therefore 
could explain no difference in parasite burden. Alto-
gether, PACAP provided neuroprotection and markedly 
modulated immune cell behavior without compromising 
parasite control.

In addition to the reduced infiltration of myeloid cells 
into the brain, PACAP modified the activation status 
and cytokine production of brain immune cells, point-
ing towards an anti-inflammatory effect. Markedly, 
 Ly6Chi inflammatory monocytes were reduced in num-
ber and activation status, exhibiting reduced MHCII 
expression. Additionally, PACAP slightly diminished 
levels of pro-inflammatory mediator iNOS and TNF by 
 Ly6Cint monocytes-derived DCs, while iNOS and IL-1β 
levels were reduced by  Ly6Clo monocyte-derived mac-
rophages. In our previous studies, we demonstrated the 
critical importance of  Ly6Chi monocytes upon cerebral 
toxoplasmosis [11]. In fact, antibody-mediated ablation 
of  CCR2+  Ly6Chi monocytes increased parasite burden 
and decreased survival of infected mice, also ablating 
 Ly6Chi monocytes in the blood [11]. In contrast, PACAP 
administration did not alter the presence of monocytes 
in the periphery, but still restricted their infiltration into 
the brain, reducing inflammation without compromising 
parasite control. Therefore, we hypothesize that PACAP 
exerted a specific immunomodulatory effect on the infil-
trating monocytes to prevent CNS immunopathology. 
We have previously demonstrated that PACAP restricted 
the recruitment of monocytes and neutrophils, reduced 
their expression of pro-inflammatory cytokines, and 
enhanced their phagocytic capabilities upon T. gondii 
acute infection [39]. Here we additionally detected that 

PACAP treatment diminished CCL2 levels in the brain, 
which can further reduce myeloid cell infiltration. We 
suggest that anti-inflammatory effects of PACAP in the 
brain involve microglia modulation, and overall shift of 
the local brain inflammatory environment. In our data-
set, PACAP reduced microglial MHCII expression and 
their production of pro-inflammatory mediators iNOS, 
TNF, and IL-1β. Similarly, in vitro studies have reported 
anti-inflammatory effects of PACAP on microglial cells, 
which was demonstrated by reduction of iNOS and IL-1β 
production in an LPS-sepsis model [90].

Further investigation on the inflammatory brain envi-
ronment upon T. gondii infection interestingly showed 
that exogenous PACAP did not interfere with T cell 
infiltration into the brain, although it reduced IFN-γ 
intracellular production by  CD4+ T cells, and the over-
all brain expression of CXCL9 and CXCL10. During 
cerebral toxoplasmosis,  CD4+ and  CD8+ T cells are the 
major source of IFN-γ in the brain, directly controlling 
parasite replication [91, 92]. Pointed out by previous 
studies,  CD4+ T cells are targets for PACAP regulation, 
indicating inhibition of Th1 and favoring of Th2 differen-
tiation and response [93–95]. Moreover, in vitro experi-
ments indicated that macrophages and DCs treated 
with PACAP induce Th2 cytokines and inhibit IFN-γ 
in primed  CD4+ T cells [94, 96]. Besides, our analysis 
showed reduction of the IFN-stimulated host-defense 
factor Igtp, even though the parasite burden was not 
altered. In our dataset, the absence of the modulation by 
PACAP on the recruitment of T cell can be explained by 
the late administration of the neuropeptide at the third 
week post-infection, when the pathology is already estab-
lished in the CNS. This hypothesis is supported by pre-
vious studies, where peripheral depletion of  CD4+ and 
 CD8+ T cells did not show any effect on intracerebral T 
cell number, indicating that this recruitment was negligi-
ble after acute infection [65]. The reduction of IFN-γ pro-
duction and Igtp expression suggest that PACAP may not 
abolish the strong Th1 response induced by T. gondii, but 
can restrain brain immunopathology.

Overall, the neuroprotective and immunomodula-
tory effects of PACAP are mostly attributed to the com-
plex and wide distribution of its receptors in a variety of 
cell types, including neurons and immune cells. Upon 
inflammation, most of inhibitory immuno-modulation 
of PACAP targets pro-inflammatory signaling cascades 
including NF-κB and MAPK pathways, consequently 
downregulating an array of cytokines and chemokines 
produced by innate immune cells [47]. Our previous 
data have shown that PACAP administration increased 
expression levels of its own receptors VPAC1R and 
VPAC2R in immune cells, which were followed by 
reduced infiltration of monocytes and neutrophils, and 
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reduced pro-inflammatory cytokine expression during 
acute toxoplasmosis [39]. Additionally, several studies 
indicate that the anti-inflammatory activity of PACAP on 
macrophages, monocytes, and DCs are primarily exerted 
through VPAC1R [97–100]. While VPAC1R is consti-
tutively expressed in those cells, VPAC2R is induced in 
lymphocytes, monocytes, and macrophages after inflam-
matory stimulation, and has been linked to increased Th2 
response [93–95]. Aligned with our finding that PACAP 
reduced IFN-γ production by  CD4+ T cells in the brain, 
studies with transgenic mice overexpressing the recep-
tor VPAC2R in  CD4+ T cells developed increased Th2 
responses, while the Th1 response prevailed in VPAC2R-
deficient mice [95, 101]. Of note, VPAC1R and VPAC2R 
were also found expressed by the newly discovered innate 
lymphoid cells 2 (ILC2), the innate-correlated cells of the 
Th2 adaptive immune response, showing to be impor-
tant for immune response [102]. In microglia, PAC1R is 
the main receptor mediating anti-inflammatory effects 
of PACAP, inhibiting NO production during ischemia, 
reducing pro-inflammatory cytokine release, and induc-
ing a microglial phenotype transformation associated to 
regenerative growth, tissue repair and clearance of local 
cellular debris [45, 103]. Taken together, we suggest that 
the beneficial effects of PACAP upon cerebral toxo-
plasmosis rely partially on the differential expression of 
PACAP receptors on the immune cells directly involved 
in the disease control.

Further on, we demonstrate that PACAP exerted not 
only beneficial anti-inflammatory effects on cerebral tox-
oplasmosis, but also showed a neuroprotective outcome 
in the infected brain parenchyma. Interestingly, we found 
higher transcriptional levels of the neurotrophin BDNF 
in the brain of PACAP-treated mice, and no differences 
were detected for NGF or NT-3. In fact, PACAP-medi-
ated neuroprotection have been attributed to enhanced 
expression of neurotrophins and related receptors via 
PAC1R signaling [33]. Of note, PAC1R is considered the 
main PACAP receptor in the brain, and the one with 
the highest affinity for PACAP [104]. In terms of neuro-
trophins, BDNF is crucial for neuronal survival, and its 
expression was also found reduced upon neurodegen-
eration [105] and cerebral toxoplasmosis [16]. Indeed, 
in  vitro studies on primary neuronal cultures revealed 
that PACAP stimulates and recovers BDNF expres-
sion upon injury conditions, mainly via PAC1R [67, 
106]. Additionally, reduced hippocampal BDNF was 
also detected in PAC1R knockout mice [107]. Overall, 
enhancement of BDNF expression is proposed as a key 
mechanism in neuroprotection and rescue of cognitive 
impairment via PAC1R [33]. Since PACAP affected BDNF 
transcriptional levels, we sought to further investigate the 
modulation of neurotrophin-related receptors. BDNF 

mainly binds to TrkB (Ntrk2), NGF to TrkA (Ntrk1), and 
the binding of neurotrophins to  p75NTR (Ngfr) is more 
promiscuous and complex, and it is thought to define 
the affinity of the neurotrophins and their precursors to 
other receptors [68]. In fact,  p75NTR has been nominated 
as death-receptor, and binding of the BDNF precursor to 
 p75NTR has shown to induce cell death and reduce syn-
aptic function [108]. Surprisingly, we found that PACAP 
reduced expression of  p75NTR in the brain, and did not 
alter TrkB levels, suggesting an additional contribution 
of PACAP to neuronal survival via BDNF–p75NTR axis 
modulation. Other studies in stroke models have shown 
that PACAP reduced  p75NTR levels, regulated the activ-
ity of TrkB by increased phosphorylation, and conse-
quently increased affinity for BDNF [109, 110]. We have 
previously demonstrated that  p75NTR signaling not only 
shaped brain neuronal architecture, but also altered the 
behavior of innate immune cells during neuroinflamma-
tion [52]. Moreover, we have previously found a benefi-
cial association of  p75NTR and immune cells upon PACAP 
treatment of acute T. gondii infection, in which reduced 
expression of  p75NTR on  Ly6Chi inflammatory monocytes 
and increased overall BDNF gene expression was associ-
ated with reduction on pro-inflammatory mediators and 
enhanced parasite elimination [39]. Therefore, we sug-
gest that PACAP-mediated neuroprotective effects and 
immunomodulatory properties provide a beneficial over-
lap via modulation of BDNF/p75NTR axis to counteract T. 
gondii neuroinflammation. In addition, PACAP increased 
the levels of TUBB3, a specific cytoskeleton component 
of neurons shown to be modified upon cerebral T. gon-
dii infection [77], reinforcing PACAP contribution to 
neuronal survival. Still, future studies are necessary to 
address the involvement of PACAP, BDNF precursors 
and  p75NTR function in immune cells within the brain.

Besides neurotrophins, PACAP-treated mice showed 
an increase in the expression levels of synaptic mark-
ers EAAT2 and VGLUT1 from neuronal glutamatergic 
pathway, and GABAAα1 from inhibitory GABAergic 
pathway. As recently shown in our previous studies, the 
expression of these synaptic markers was significantly 
decreased upon cerebral toxoplasmosis, suggesting that 
T. gondii neuroinflammation shifted the synaptic exci-
tation–inhibition balance towards excitotoxicity at the 
transcriptional [16] and protein level [15]. Detrimental 
alterations in the glutamatergic and GABAergic sign-
aling upon T. gondii infection have also been further 
characterized, and suggest a neurodegenerative state 
of the infected CNS [77, 111]. Here, PACAP’s overall 
reduction of brain inflammation without dysregula-
tion of parasite control points towards a less dysfunc-
tional neuronal network. The explanation relies on the 
reduced IFN-γ production, MHCII expression, NO 
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production and other pro-inflammatory cytokines in 
the brain, which have detrimental effects on neurons 
[112]. Antibody-mediated depletion of IFN-γ during 
cerebral toxoplasmosis partially recovered synaptic 
alterations, although it triggered an uncontrolled para-
site burden in the brain [16]. Therefore, PACAP exerts 
amelioration of brain immunopathology and conse-
quently reduces synaptic dysfunction.

Finally, it is important to point out the limitations 
of our study. Exogenous administration of PACAP is 
sought to recover and/or enhance the beneficial effects 
of the endogenous presence of the neuropeptide, 
which are diminished or lost during neuroinflamma-
tion [45]. We applied PACAP via i.p. injections, and 
despite the relatively short half-life in the organism, 
we achieved neuroprotective results. In recent stud-
ies, intranasal administration of PACAP has proven to 
deliver more efficiently the neuropeptide to the brain, 
showing rapid absorption via nasal mucosa and high 
uptake in the occipital cortex and striatum [113, 114]. 
Still, PACAP is transported directly across the BBB 
in a very rapid transport rate [50, 115], and its uptake 
was found particularly high in the hypothalamus and 
hippocampus [116]. Besides the administration route 
and brain-region-specific penetration, another aspect 
not explored in this study is the effect of PACAP spe-
cific on astrocytes, which are known to contribute 
to recover the neuronal homeostasis during cerebral 
toxoplasmosis. We believe that PACAP restriction of 
myeloid immune cell infiltration and the shifted brain 
inflammatory environment, together, can be par-
tially mediated by the effect of PACAP on astrocytes, 
once they also express PACAP receptors. Moreover, a 
comprehensive characterization of the PACAP recep-
tors and neurotrophin receptors on  Ly6C+ monocytes 
and on the recently described ILCs are necessary for 
the understanding of the neuro-immune mechanism 
involved in neuroinflammation and neurodegeneration.

Conclusions
In summary, exogenous administration of PACAP 
ameliorated T. gondii infection-induced brain pathol-
ogy, restrained the recruitment of peripheral myeloid 
cells to the brain, and reduced the activation status and 
production of pro-inflammatory mediators by micro-
glia and monocytes, resulting in neuroprotection. This 
immunomodulation restricted the detrimental effects 
of neuroinflammation. Moreover, PACAP promoted 
neuronal health likely via BDNF/p75NTR axis modu-
lation, resulting in diminished dysregulation of the 

neuronal network with implications on glutamatergic 
and GABAergic signaling inflicted by cerebral toxoplas-
mosis. Together, our findings unravel that exogenous 
PACAP administration provides beneficial cumulative 
effects of neuroprotection and immunomodulation to 
overcome infection-induced neuroinflammation.
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Quantitative reverse transcription PCR; SEM: Standard error of the mean; TLA: 
Toxoplasma lysate antigen; TNF: Tumor necrosis factor; TrkA: Tropomyosin 
receptor kinase A; TrkB: Tropomyosin receptor kinase B; VGLUT1: Vesicular 
glutamate transporter 1.
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Additional file 1. Complementary transcriptional levels of PACAP 
receptors and neuronal markers. Overall brain gene expression levels for 
(A) PACAP receptors, (B) glutamate decarboxylases GAD65 and GAD67, 
and (C) GABA receptors. Additional naïve dataset was introduced as 
comparison to previously unknown transcriptional levels in the brain of 
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Bar charts represent mean values + SEM obtained in two independent 
experiments and were analyzed together, n = 4-5 per experiment, *p 
< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (ANOVA with Tukey cor-
rection); Naïve (gray bars), control (black bars) and PACAP-treated (white 
bars). 

Additional file 2. Complementary protein levels of neurotrophin receptor 
TrkB. Overall brain expression levels of TrkB in control vs PACAP-treated 
animals. Western blot membrane shows two representative samples of 
each group, and bar charts represent mean values + SEM, n = 4. 
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