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Abstract 

Zinc finger E-box binding homeobox 1 (ZEB1) is a master modulator of the epithelial–mesenchymal transition (EMT), 
a process whereby epithelial cells undergo a series of molecular changes and express certain characteristics of 
mesenchymal cells. ZEB1, in association with other EMT transcription factors, promotes neuroinflammation through 
changes in the production of inflammatory mediators, the morphology and function of immune cells, and multiple 
signaling pathways that mediate the inflammatory response. The ZEB1–neuroinflammation axis plays a pivotal role 
in the pathogenesis of different CNS disorders, such as brain tumors, multiple sclerosis, cerebrovascular diseases, 
and neuropathic pain, by promoting tumor cell proliferation and invasiveness, formation of the hostile inflammatory 
micromilieu surrounding neuronal tissues, dysfunction of microglia and astrocytes, impairment of angiogenesis, and 
dysfunction of the blood–brain barrier. Future studies are needed to elucidate whether the ZEB1–neuroinflammation 
axis could serve as a diagnostic, prognostic, and/or therapeutic target for CNS disorders.
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Introduction
Central nervous system (CNS) disorders, such as multi-
ple sclerosis (MS), Alzheimer’s disease (AD), neuropathic 
pain, and glioblastoma (GBM), are of high scientific 
interest worldwide due to their increasing prevalence 
and a lack of effective therapies [1, 2]. Focusing on meta-
bolic pathways to identify relevant biomarkers involved 
in the pathogenesis of neuroinflammation in disease may 
contribute to the advent of novel diagnostic and thera-
peutic strategies [3–5]. Epithelial–mesenchymal transi-
tion (EMT) is a crucial biological process in which a cell 
loses epithelial characteristics, like cell–cell adhesion, 
and converts into motile non-polarized mesenchymal 
cells with invasive properties [6]. The conversion from 
epithelial to mesenchymal cells facilitates cell prolifera-
tion, migration, and invasion [7, 8]. EMT contributes to 

the pathophysiological mechanisms of wound healing, 
tissue fibrosis, and tumorigenesis [6]. Three different 
types of EMT have been distinguished: type I, which is 
observed during embryogenesis; type II, which occurs 
during wound healing and tissue fibrosis; and type III, 
which is activated during the spread of cancer cells [9]. 
The regulatory role of EMT on proliferating cells may be 
affected by various factors, such as inflammation, which 
contributes to the pathological processes of numerous 
neurological disorders [10, 11]. For example, alteration 
of transforming growth factor β (TGF-B) expression, the 
most potent activator of EMT, as well as genes involved 
in EMT may be of importance in the induction of chronic 
neuroinflammation in AD [12]. Moreover, EMT has been 
suggested to play a role in inflammation-related carcino-
genesis [13, 14]. EMT is induced mainly through a series 
of EMT-promoting transcription factors (EMT-TFs), 
such as Twist-related protein 1 (TWIST1), Snail fam-
ily proteins, and zinc finger E-box binding homeobox-1 
(ZEB1) and -2 (ZEB2) [15]. The activation of EMT-TFs, 
such as ZEB1, is associated with loss of cellular con-
nectivity and changes in epithelial apical–basal polarity, 
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leading to changes in cell properties and alterations to 
their metabolic patterns [16].

The expression of ZEB1 differs markedly among vari-
ous adult human tissues, showing low expression in the 
prostate, pancreas, and liver, moderate expression in the 
heart, mammary gland, and ovary, and high expression 
in the thymus, aorta, uterus, and bladder [5, 17]. ZEB1 
and ZEB2 are involved in the regulation of uterine qui-
escence and contractility during pregnancy and labor 
[18]. Furthermore, ZEB1 modulates T-cell development 
in the thymus [19], controls self-renewal and generation 
of functional glandular structures in the prostate [20], 
governs cutaneous wound healing [21], regulates the 
activation of hepatic stellate cells [22], and maintains 
mammary basal cell fate and stem cell quiescence [23]. 
ZEB1 also plays a critical role in the development of 
embryos [17]. ZEB1 expression is essential for the main-
tenance of embryonic cells in undifferentiated states, as 
well as in the appropriate maturation and migration dur-
ing development [24, 25]. Excessive expression of ZEB1, 
as a δ1-crystallin enhancer, has been observed in sev-
eral organs of chicken embryos, including the nerve sys-
tem, heart, thymus, lung, and lens [17]. ZEB1 regulates 
EMT late in gestation and is crucial for the capacity of 
embryos to develop into fetuses [26]. ZEB1 overexpres-
sion in a mouse model indicated lack of ZEB1 is associ-
ated with greater mortality during the perinatal period 
due to severe T-cell insufficiency, respiratory disorder, 
and skeletal deficiency [19]. Mutation of the Zeb1 gene 
could have also resulted in a cleft palate as well as other 
craniofacial and skeletal anomalies [19]. A link between 
proliferative impairment in a subset of bone marrow-
derived progenitors with Zeb1 gene mutation has been 
suggested [20]. Moreover, evidence suggests the modula-
tory effects of Zeb1 on the differentiation of embryonic 
stem cells via the regulation of various cytoplasmic and 
nuclear proteins [24].

Alterations of ZEB1 expression regulate neural stem 
cell renewal and cell fate in the brain [27]. The expression 
of ZEB1 is pivotal for the balance between epithelial and 
mesenchymal gene expression as well as the proliferation 
of progenitor cells [28]. Loss of epithelial properties fol-
lowing ZEB1 activation is involved in several pathological 
conditions. ZEB1 alone or together with other EMT-
TFs plays a key role in the metastasis of brain cancers 
[29–31]. Suppression of EMT by knocking down ZEB1 
has been achieved in several studies [32–34], and inhibi-
tion of ZEB1 expression may prevent aggressive tumor 
progression [35]. Activation of ZEB1 can lead to chem-
oresistance in different types of cancers via the down-
regulation of E-cadherin [36, 37]. ZEB1 has an impact on 
pediatric solid tumors, such as neuroblastoma, via long 
intergenic noncoding RNAs (lncRNAs) and microRNAs 

(miRNAs) [38]. Moreover, ZEB1 contributes to the regu-
lation of immune system development and function [39, 
40]. Here, we summarize the current understanding of 
the regulatory mechanisms of ZEB1 in the CNS. Further-
more, we provide a comprehensive review of the current 
knowledge regarding the potential roles of ZEB1 in neu-
rological disorders.

ZEB1 structure
ZEB1, also known as TCF8 and δEF-1, belongs to the 
ZEB family encoded by the ZEB1 gene on chromosome 
10p11.2 [41, 42]. ZEB1 is a DNA-binding protein, which 
contains a homeodomain and two C2H2-type zinc fin-
ger clusters and binds to two high-affinity binding sites 
(E-boxes) [43]. Its DNA-binding activity is related to 
two zinc finger clusters present in the structure, which 
is essential for the recognition of the 5′-CANNTG 3′ 
sequence [36, 44, 45]. The ZEB1 protein is composed 
of 1117 amino acids with a homeodomain structure 
(HD) in the middle and a carboxy-terminal cluster [46]. 
The HD as the middle region is able to interact with the 
C-terminal binding protein (CtBP) and a Smad interac-
tion domain [37]. ZEB1 proteins have Smad-interacting 
domains that modulate the TGF-β signal at the cell sur-
face to affect gene regulation within the nucleus. The 
regulatory effect of ZEB1 is mediated via multiple motifs 
within the central area of this protein [47].

Mechanism of ZEB1 and its effect on EMT
ZEB1 induces EMT by binding to the promoter region 
of the E-cadherin gene (CDH1) and preventing its 
expression. It is downstream of many cascades linked to 
EMT, such as TGF-β, nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), Ras-Raf-MEK-
ERK (RAS/ERK), Wnt/β-catenin, and tyrosine kinase 
receptors. Recent studies have focused on ZEB1 and its 
influence on EMT function causing both malignancy 
and chemotherapy resistance in tumors. In addition, this 
important transcription factor has influenced many CNS 
diseases through various pathways (Fig. 1).

Effects of ZEB1 on the different signaling pathways
ZEB1 has been shown to be a major participant in various 
signaling pathways (Table 1). Expression of ZEB1 is mod-
ulated by multiple signaling pathways, like TGF-β, Wnt, 
NF-κB, hypoxia-inducible factor 1α (HIF-1α), cyclooxy-
genase-2 (COX-2), phosphatidylinositol 3-kinase (PI3K)/
Ak strain transforming AKT (AKT) and AKT/mTOR as 
well as miRNAs [5, 47]. ZEB1 regulates the BMP/TGF-β 
pathway through its antagonist effect on TGF-β signal-
ing. The TGF-β-mediated EMT effect on this pathway is 
induced via a stimulatory complex that binds the Smad 
domain along with binding to a co-activator consisting 
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of P/CAF and P300 [48, 49]. TGF-β is a trigger of EMT 
together with signaling pathways such as Wnt, RAS, 
and Notch, similar to ZEB1 [50]. TGF-β acts as a potent 
marker for the activation of ZEB1 and Smad2, which pro-
mote EMT, tumorigenesis, and cancer recurrence [51]. 
However, increased levels of Smad2 and ZEB1 were also 
observed in cells that did not respond to TGF-β suppres-
sion, suggesting an alternative unknown mechanism [52, 
53]. Finally, the significant interdependence between 
TGF-β and ZEB-1 and vice versa with miR200 has been 
shown to regulate EMT [54]. It has also been shown that 
the expression of ZEB1 can be affected by B-cell CLL/
lymphoma 6 (BCL6), which stimulates transcriptional 
suppressors causing E-cadherin abrogation and EMT 
enhancement [55, 56].

Furthermore, ZEB1 causes EMT induction through 
the suppression of E-cadherin via the ctBP-independent 
pathway by linking to the SWI/SNF BRG1, a chromatin 
restructuring protein. E-cadherin expression increases by 
preventing linkage between ZEB1 and BRG1 [57]. CtBP 
has been identified as a critical co-repressor for the reg-
ulation of BCL6 [58, 59]. The mucin 1 (MUC1) forms a 

complex with ZEB1, which mediates NF-κB and p65, 
suppresses miR-200c, and contributes to EMT activa-
tion [60]. Anoikis (detachment-induced apoptosis) can be 
suppressed by receptor tyrosine kinase (TrKB) at the cell 
surface. The crucial role of ZEB1 in TrkB-induced EMT 
leads to the suppression of anoikis has also been dem-
onstrated [61, 62]. Moreover, ZEB1 stimulates TrKB and 
promotes EMT by the modulation of a Twist–Snail axis 
[63]. Conversely, tyrosine kinase B1 (TKB1) increases 
glycogen synthase kinase-3β (GSK-3β), which prevents 
the induction of EMT, by suppressing ZEB1 [64]. Indeed, 
GSK-3β is the major factor of the Wnt/β-catenin cas-
cade, and together with the phosphatidylinositol 3-kinase 
PI3K/AKT pathway, may control ZEB1 expression [65]. 
Serine/threonine kinase B also known as protein kinase 
B (PKB) or AKT is responsible for stimulating ZEB1 
through the modulation of some signaling pathways, 
such as PI3K/AKT and/or AKT/mTOR [66, 67]. It has 
been shown that miR-708 and miR-199a-5p with a simi-
lar function are able to downregulate ZEB1 and reduce 
EMT through the PI3K/AKT/mTOR cascade [68, 69]. 
Aside from this, the apoptosis-stimulating protein of 

Fig. 1 Zinc finger E-box binding homeobox 1 (ZEB1) represents a core transcriptional factor that controls essential intracellular processes. Upstream 
markers, including RAS/ERK, PI3X/AKT, NF-kB, JAK2/STAT3, Wnt/β-catenin, and Smad, lead to upregulation of ZEB1 via triggering ZEB1 directly or by 
mediation with TWIST, Snail and Slug. ZEB1 bilaterally is influenced via miR-200, miR200c, and miR-205. NF-kB also is involved in the upregulation of 
ZEB1 by repressing miR-200c. Transforming growth factor β (TGF-β), tumor necrosis factor (TNFα), Janus kinase 2(JAK2)
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P53 (ASPP2), which correlates with the PI3K/AKT path-
way, forms an intermediate complex with β-catenin and 
promotes EMT through ZEB1-mediated suppression of 
E-cadherin [70, 71]. ZEB1 enhances cell migration via 
the regulation of miR-200 and PI3K signaling [72]. ZEB1 
modulates the polarization of M2-polarized tumor-asso-
ciated macrophages (TAMs) via EMT regulation [73]. 
Furthermore, Zeb1 regulates T-cell migration [74]. FLF3, 
an antagonist of the oncogenic pathway and a negative 
regulator of EMT, inhibits ZEB1 transcription and regu-
lates the Wnt and RAS oncogenic pathways [75]. MiR-
33b suppresses ZEB1 which can lead to EMT silencing 
via inactivating the Wnt/β-catenin/ZEB1 signaling path-
way [76, 77]. Epithelial-specific ETS transcription factor 
1 (ESE1) is induced in the epithelial confined state and 
luminal subtype of breast cancer. ESE1 is downregulated 
by the MEK–ERK pathway, leading to overexpression of 
ZEB1 and upregulation of EMT [78]. The ERK1/2-medi-
ated signaling cascades ERK/ZEB1 axis stimulates EMT 
and regulates cell apoptosis and migration [79].

Effects of ZEB1 on various cell types of the CNS
ZEB1 plays a crucial role in cell differentiation and 
migration as well as cell fate in the CNS. The func-
tion of ZEB1 has a complex transcriptional regula-
tory effect on neural progenitor cells. It can act as a 

repressive marker in embryonic NSC proliferation and 
migration via interaction with CTBP2 and the regula-
tion of Neurod1 and Pard6b [93]. Conversely, it plays 
a key role in the differentiation of human embryonic 
stem cells into neurons [94]. The HIF-1α pathway reg-
ulates neuronal polarization, maturation, and differ-
entiation through the modulation of ZEB1 values [95]. 
Furthermore, Zeb1 affects the trans-differentiation of 
mouse embryonic fibroblasts into functional neurons 
[96]. In the absence of ZEB1, immature differentia-
tion and mal-migration of neurons and radial glial cells 
occur due to the activity of Pak3, a p21-activated ser-
ine/threonine-protein protein kinase [97]. Moreover, 
ZEB1 is necessary for the differentiation of radial glia-
like stem cells, which are required in the adult hip-
pocampus for the formation of neurons and astrocytes 
[27]. ZEB1 also controls the onset of astrocyte precur-
sor emigration from the ventricular zone and regulates 
the timing of their differentiation via the modulation 
of the adhesion protein Cadherin-1 [98]. Moreover, 
ZEB1 expression in neurons may act as a regulator of 
their differentiation by repressing polarity genes in 
neural stem cells [99]. ZEB1 is also a prerequisite fac-
tor for NSC migration [100]. It has been suggested that 
ZEB1 is implicated in the regulation of retinal orga-
noid development [101].

Table 1 Various modulators of ZEB1 expression

AKT: Ak strain transforming, ASPP2: Apoptosis-stimulating protein of P53, EMT: Epithelial-mesenchymal transition, ESE1: Epithelial-specific ETS transcription factor 1, 
GSK-3B: Glycogen synthase kinase-3B, MUC1: Mucin 1, NF-κ β: Nuclear factor kappaβ, TGF-β: Transforming growth factor β, TKB1: Tyrosine kinase B1

Markers ZEB1 
suppressor

ZEB1 inducer Mechanisms Refs.

TGF-β * Making complex with SMADs and co-activators and involved in pathways (WNT, RAS, 
and Notch) to induce EMT

[22, 33, 80–85]

miR200c * Through ROS/miR-200c/ZEB1 axis suppresses ZEB1 and increase E-Cadherin [60, 86–88]

ERK1/2 * Directly activated ZEB1 via ERK/ZEB1 signaling pathway [78, 79]

NF-kB * Activation of NF-kB signaling due to different markers such as IL-7 and MUC1 leads to 
ZEB1 induction

[22, 89]

AKT * It has an induction effect on ZEB1 through PI3K/AKT/mTOR [66, 67, 69, 90, 91]

ASSP2 * Correlated with the PI3K/AKT pathway [71]

TKB1 * Augmenting GSK-3B which is deterrence on radiation-induced EMT by repressing 
ZEB1

[64]

MiR-200 * Works as a suppressor of ZEB1 and tumor invasion [29, 54, 72, 92]

MUC1 * Creating a complex with ZEB1 intermediating
NF-κB  p65 leads to miR-200c repression and contributes to EMT activation

[60]

Snail * Corporation with ZEB1 and TGFβ to increase tumor invasiveness [63]

miR-33b * Inactivation of the Wnt/β-catenin/ZEB1 pathway concludes to EMT silencing [76, 77]

PI3K * Involves in different pathways in the induction of EMT [65–68, 70, 72, 90]

ESE1 * Downregulating through the MEK–ERK pathway, resulted in overexpression of ZEB 
and EMT upregulation

[78]

miR-708 * Suppressing ZEB1 resulted in EMT reduction [68]

miR-199a-5p * Suppressing ZEB1 resulted in EMT reduction [69]
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Malfunctions of ZEB1
ZEB1 is implicated in the pathological mechanisms of 
various diseases. Mutations in ZEB1 in humans have 
been linked to multiple developmental malformations, 
such as posterior polymorphous corneal dystrophy with 
corpus callosum maldevelopment, malformations of the 
inner ear, obesity, and cleft palate [102, 103]. In addition 
to the initiation of corneal cell apoptosis, stromal fibrosis, 
and squamous metaplasia, the loss of function of ZEB1 
inhibits corneal vascularization and activates immune-
mediated processes of the ocular surface [104]. Further-
more, it has been suggested that tumor cells that have 
undergone EMT obtain stem cell properties including, 
self-renewal, invasiveness, radioresistance, and chemore-
sistance [5]. ZEB1 plays a critical role in the regulation 
of DNA damage by controlling EMT in multiple tissues 
[44] and modulates cancer cell differentiation and inva-
siveness, vascular functionality, tumor angiogenesis, and 
immune responses [105]. It has been elucidated that 
increased ZEB1 activity influenced by hyaluronic acid 
through the ZEB1/epithelial splicing regulatory pro-
tein 1/CD44 axis promotes EMT and tumor invasion 
in breast cancer [106]. BCL6 also has a positive effect 
on the induction of EMT associated with the increase 
of ZEB1, leading to the suppression of E-cadherin and 
consequently tumor progression [56]. Silencing ZEB1 
also decreases PD-L1 as an immune checkpoint ligand 
along with the downregulation of miR200 and conse-
quently EMT activations in cancer cells [92]. Ultrasound-
targeted microbubble destruction, a novel therapeutic 
approach, has been suggested as a means of inhibiting 
cell migration via the suppression of ZEB1 and deacti-
vation of EMT by targeting the ROS/miR-200c/ZEB1 
axis [107]. Moreover, miR-200c suppressed ZEB1 via 
the modulation of the PI3K/Akt pathway and the func-
tion of TGFβ in non-small cell lung cancer [33, 90]. The 
activation of mir200a is linked to the suppression of the 
Wnt/β-catenin pathway that leads to overexpression of 
E-cadherin [108]. Downregulation of ZEB1 also affects 
the enhancement of apoptosis of cancer cells, followed 
by a reduction in tumor invasiveness and migration 
through the expression of Wnt5a and vimentin [109]. The 
key role of HIF-1α in promoting EMT through the acti-
vation of ZEB1 is substantial tumorigenicity [110, 111]. 
Furthermore, the negative effect of the circadian gene 
timeless, an essential protein that modulates circadian 
rhythm, on ZEB1 overexpression and EMT values has 
been described [112]. CSN5 is an oncogenic marker that 
directly interacts with ZEB1 and enhances its stability 
while promoting EMT in renal cell carcinoma cells [113]. 
Assessment of the function of X-inactive specific tran-
script (XIST) revealed that it mainly represses miR-429, a 
tumor suppressor, and then results in a higher expression 

of ZEB1 and EMT via the critical axis of XIST/miR-429/
ZEB1 and enhances tumor cell invasiveness [114]. MiR-
127 also has an attenuating effect on cell proliferation by 
targeting ZEB1 on smooth muscle cells [115]. The inhibi-
tory function of miR-200c on ZEB1 is also elucidated in 
trastuzumab-resistant gastric cancer, leading to suppres-
sion of EMT and enhancement of drug sensitivity [116]. 
The activity of NF-κB has been demonstrated to stimu-
late the induction of ZEB1 and EMT through the action 
of interleukin-17 (IL-17) and phosphorylation of ezrin 
Tyr353, respectively, in different cancers [91, 117]. ZEB1 
serves an important role in controlling the size of the 
neural progenitor pool, neuronal migration, and cleav-
age plane orientation of dividing progenitor cells. Upon 
the knockout of Zeb1, an extra number of premature 
neurons are produced and the cleavage plane of mitotic 
progenitor cells fails to orientate appropriately, resulting 
in random orientation and premature neuronal differen-
tiation, particularly in the upper layer of neocortical tis-
sues. It has been suggested that a malfunction of ZEB1 
together with its effector Pak3 could contribute to neo-
cortical developmental disorders [97].

ZEB1 contributes to inflammatory responses
Several studies have demonstrated the critical role of 
ZEB1 in promoting inflammatory responses. ZEB1 is 
crucial for the development of both T-cell and B-cell 
development [39]. Mutations of ZEB1 have been impli-
cated in T-cell immunodeficiency [89]. ZEB1 is a piv-
otal element to maintain immune cell viability, mobility, 
and cytokine expression, and regulates the expression of 
various cytokines, such as IL-1b, IL-6, IL-8, and TNF-α, 
by the modulation of the TGF-β-related Stat3 signaling 
pathways and Nf-κb [22, 80–82, 118–120]. Conversely, 
several pro-inflammatory cytokines, like TGF-β, increase 
the expression of ZEB1 via the activation of Smad, TK 
receptors, NF-κB, and the JAK1–STAT3 signaling path-
ways [121].

IL-1β upregulates ZEB1 expression and promotes 
inflammation [86]. ZEB1 modulates the expression of 
several inflammatory response genes. Direct enhance-
ment of the production of inflammatory cytokines, such 
as IL-6 and IL-8, initiates inflammatory processes and 
facilitates tumor growth [122]. ZEB1-mediated immune 
responses also contribute to inflammation in the tumor 
micromilieu via its direct regulatory effect on the expres-
sion of IL-6 [123]. ZEB1 induction of programmed 
death-ligand 1 and CD47 contributes to the formation of 
the hostile inflammatory microenvironment surround-
ing tumors [74]. ZEB1 promotes inflammatory responses 
through the suppression of N-methyl purine glycosy-
lase, a DNA glycosylase, in epithelial cells via the induc-
tion of inflammatory mediators, such as IL-1β, and the 
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generation of reactive oxygen species [124]. Furthermore, 
IL-17 influences the upregulation of the ZEB1-mediated 
NF-κB pathway as well as tumor cell migration through 
stimulation of EMT [117]. Sodium tanshinone IIA sul-
fonate, an antioxidant and anti-inflammatory substance, 
can prevent EMT by targeting ZEB1, Snail1, and the 
Smad signaling pathway [125]. Using lipopolysaccharide 
application to induce local inflammation in the lungs 
enhances tumor cell migration through a Zeb1-depend-
ent mechanism [126]. The enhancement of TNF-α values 
increases ZEB1 as a target of miR-200c and miR-141 in 
cells, suppresses E-cadherin, and regulates EMT pro-
gression [87]. MiR-9 directly targets NF-κB that leads to 
inflammatory responses in lymphatic endothelial cells via 
the promotion of EMT-associated genes, such as ZEB1 
(Fig. 2) [87].

Microglia act as the first line of the innate immune 
defence [127], and astrocytes are pivotal regulators 
of both innate and adaptive immune responses in the 
CNS [128]. The expression of ZEB1 in both microglia 
and astrocyte critically contribute to neuroinflamma-
tion in the CNS [129]. The expression of ZEB1 regulates 
microglia immune responses to CNS insults and reduces 
the production of astrocytic CXCL1 via the TGFβ-
dependent signaling pathway [11]. ZEB1 enhances the 
neuronal output of neural stem cells of the hippocam-
pus at the expense of glial cells [27]. The ZEB1 gene has 
been reported to be involved in cognitive impairment in 

humans [83]. The reduction in Zeb1/2 and lncRNA-1604 
in the neocortex and striatum can lead to a neurodegen-
erative process in a mouse model of Huntington’s disease 
[130]. The dysregulation of the lncRNA-1604/miR-200c/
ZEB axis during neural differentiation could also lead 
to neurodegenerative diseases [131]. Fused in sarcoma, 
an RNA-binding protein linked to neurodegenerative 
diseases acts through miR-200c and its target transcript 
ZEB1 [132]. Loss of ubiquilin 1, a protein critical for com-
bating neurological disorders linked to protein aggrega-
tion, significantly increases the expression of ZEB1 [133].

ZEB1 in CNS disorders
Several studies have shown that ZEB1, along with other 
factors such as TWIST, Snail, and Slug, is an important 
transcription factor involved in EMT promotion in the 
CNS and plays an important role in the pathophysiol-
ogy of different neurological disorders, including brain 
tumors, neuropathic pain, acute ischemic stroke, and MS 
(Fig. 3; Table 2).

ZEB1 effects in CNS tumors
ZEB1 as a key element of EMT promotion has been 
extensively studied in different brain tumors, particularly 
GBM. GBM is the most aggressive malignant primary 
brain tumor in which a variety of therapeutic strategies 
have failed to demonstrate efficacy [155]. Several investi-
gations have reported that the ZEB1 pathway contributes 

Fig. 2 The schematic diagram shows the role of ZEB1 interaction with various inflammatory mediators in the induction of neuroinflammation. 
Interleukin (IL), matrix metalloproteinases (MMPs), nuclear factor kappa B (NF-κB), Type 1 T helper: Th1, T helper 17 cells: Th17, colony-stimulating 
factor 2 (CSF2), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β)
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to GBM initiation and progression, invasion, radiore-
sistance, and chemoresistance. ZEB1 is expressed in the 
tumor invasive zone of human GBM tissues, which is 
associated with hypoxic regions of the tumor [156]. The 
clinical studies demonstrate that GBM patients with a 
high level of ZEB1/YAP1 gene signature have a shorter 
median overall survival [144]. The expression of Smad 
interacting protein 1 (SIP1, also known as ZEB2), a mem-
ber of the ZEB group of transcription factors, plays a role 
in the impairment of colony formation and invasion of 
tumorigenic glioma cells through the regulation of E-cad-
herin and mesenchymal proteins, such as fibronectin and 
vimentin [157]. SIP1 and N-cadherin are also implicated 
in the migration of IL-1β/TGF-β-induced neurosphere 
cells from the human LN-229 glioma cell line [158, 159]. 
TGF-β showed a regulatory effect on ZEB1 expression 
along with Smad2 and EMT signaling leading to GBM 
cell aggression [52]. Moreover, the Wnt/β-catenin path-
way promotes GBM aggregation and tumor malignancy 
via activation of EMT inducers such as ZEB1, Twist, and 
Snail [143]. Lef1, an effector of the Wnt signaling path-
way, activates ZEB1 and enhances GBM cell migration 
and chemoresistance [160]. It has been revealed that 
GBM invasiveness is mediated by an alteration in N-cad-
herin dynamics, through the regulatory effect of ZEB1 
on roundabout guidance protein 1 [139]. BMI-1 is an 

important gene for controlling the proliferation and self-
renewal of GBM cancer stem cells. Suppression of BMI1 
has been shown to downregulate GBM stem cell prolifer-
ation [161]. It has also been shown that increasing ZEB1 
in parallel with BMI1 can synergistically induce EMT and 
stem cell proliferation [162]. The EMT-activator ZEB1 is 
a promoter of metastasis, and SOX2 and BMI1 are targets 
of EMT activators, especially ZEB1 [29]. Mesenchymal 
stem-like cells expressed C5a contribute to ZEB1 expres-
sion and brain tumor invasiveness through the stimula-
tion of p38 mitogen-activated protein kinase [146]. The 
interaction between ZEB1 and O-6-methylguanine-DNA 
methyltransferase, the most reliable prognostic marker 
for GBM therapy resistance, has been demonstrated 
in poor response to temozolomide (TMZ) through the 
upregulation of c-MYB by the ZEB1–miR-200 feedback 
loop [139]. Furthermore, ZEB1 was a crucial role in TMZ 
resistance in GBM cells through the upregulation of 
c-MYB by the ZEB1–miR-200 pathway [139]. The antag-
onistic effect of IL-24 on ZEB1 leads to a suppression of 
GBM cell migration and invasion as well as an enhance-
ment of the chemosensitivity of tumor cells to TMZ 
[163]. Alfa-6-integrin, a regulator of GBM proliferation 
and stemness, regulates the expression of GBM stem 
cells via the modulation of the ZEB1/YAP1 transcription 
complex that leads to enhancement of cell proliferation 

Fig. 3 The schematic diagram shows the relationship between ZEB1 and its downstream signaling pathways with various CNS disorders
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and stemness via the stimulation of the forkhead box 
M1 gene [144] and promotes radioresistance of GBM 
cells through the modulation of DNA damage response 
[145]. The E3 ubiquitin-protein ligase parkinsonian 
protein 2 acts as a ZEB1 antagonist, inhibits EMT, and 
prevents GBM cell invasion [164]. Hypoxia is a strong 
inducer of a mesenchymal shift in GBM cells, which is 
associated with increased migration and invasiveness 
of GBM cells. Knockdown of HIF1α has been shown to 
not only suppress ZEB1, but also inhibit the mesenchy-
mal trans-differentiation in GBM [100, 156]. Moreover, 
the direct effect of recombination signal binding protein 
for immunoglobulin kappa J on the activation of EMT 
inducers, such as ZEB1, SNAIL1, and CD44 genes, could 
increase the invasiveness of GBM cells, which has been 
correlated with the hypoxic pseudopalisading regions 
[140, 141]. The function of lncRNAs has been studied in 
various cancers, including GBM [165, 166]. LINC00645, 

a lncRNA, was identified as a collaborator with miR-
205-3p and ZEB1 in a signaling pathway promoting EMT 
stimulated by TGF-β. Indeed, miR-205-3p modulated 
TGF-β under the function of LINC00645, leading to 
the invasiveness of gliomas [84]. Moreover, LINC00511 
in conjunction with the LINC00511/miR-524-5p/YB1/
ZEB1 axis contributes to EMT. While LINC00511 is 
influenced by ZEB1, it indirectly upregulates YB1 via 
sponging miR-524-5p and promotes GBM tumorigenesis 
[142]. Moreover, the lncRNA ZEB1 antisense 1 (ZEB1-
AS1) showed excessive expression in cancer cells, such 
as gliomas, compared with primary normal cells [167]. 
ZEB1-AS1 enhanced tumorigenesis and proliferation of 
GBM cells by interacting with miR200c/141 [168]. The 
interaction between miR-200c and miR-141 decreased 
EMT as well as glioma cell growth and aggression by 
downregulating ZEB1 [88, 168]. A link between isocitrate 
dehydrogenase 1 (IDH1) and ZEB1 expression has been 

Table 2 A summary of markers and signaling pathways and their related mechanisms implicated in ZEB1-related CNS disorders

CNS diseases Markers and pathways Mechanisms Refs.

Cerebrovascular diseases TGF-b1 Inhibition of astrocytic CXCL1 via TGF-b1 pathways [83, 129]

PGC-1α Its expression happens after ischemic stroke to reduce brain damage via 
the downregulation of inflammatory cytokines and interaction with ZEB1

[134]

p63, p73 ZEB1 creates a linkage between p63 and p73 for promoting the cell 
survival pathway

[135]

CXCL1, TGF-β1 pathway Brain protection by ZEB1 via CXCL1 inhibition in the TGF-β1 pathway [129]

Neuropathic pain XIST Sponging miR-150 leads to overexpression of ZEB1 and neuropathic pain [136]

ciRS-7, STAT3 Sponging of miR-641 or activation of miR-135a-5p contributes to 
expressing pro-inflammatory cytokines, such as IL-6, IL-12, and TNFα lead-
ing to EMT induction

[137, 138]

GBM MGMT Lower effect of temozolomide therapy by the interference of ZEB1 with 
MGMT

[139]

CBF1 Activating EMT inducers such as ZEB1, SNAIL1, and CD44 genes [140, 141]

miR-205-3p, LINC00645, TGF-β LINC00645 in collaboration with miR-205-3p and ZEB1 promotes EMT 
stimulated by TGF-β

[84]

LINC00511, miR-524-5p,YB1 By influencing on ZEB1 promoted GBM aggression [142]

miRNA-200 GBM invasiveness increases followed by inhibition of miRNA-200 by ZEB1 [29]

TGF-β, SMAD2 Along with ZEB1 lead to GBM cell aggression [52]

WNT/β-catenin, twist, snail Wnt/β-catenin pathway via activation of EMT inducers such as ZEB1, 
twist, and Snail promotes GBM aggregation and tumor malignancy

[143]

α6-integrin, FGFR1, YAP1, FOXM1 α6-integrin is involved in radioresistance as well as GBM stemness and 
proliferation by administering FGFR1 under the coordination of ZEB1 and 
YAP1 leading to FOXM1 stimulation

[144, 145]

ma, MAPK These markers with influence on ZEB1 expression lead to tumor invasion [146]

Multiple sclerosis JAK2, miR-101-3p JAK2 is suppressed followed by the inhibition of miR-101-3p through 
ZEB1 activities and increasing cytokines relevant to pathogenicity

[147]

Zfhep1, Zfhep2, IL2 IL2 was associated with T-cell formation and can be suppressed via ZEB1 
(related to upregulation of Zfhep1 and not Zfhep2)

[148, 149]

TLR4, miR-200a-3p [150, 151]

CNS traumatic injuries ErbB2, TGF- β [72, 152]

XIST, miR-27a, Smurf1 Suppressing XIST caused to inhibit of miR-494 in the PTEN/AKT/mTOR 
signaling pathway leading to alleviating neuroinflammation via the 
deactivation of ZEB1 after SCI

[136, 153, 154]
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reported in lower-grade glioma. The expression of ZEB1 
was enhanced in IDH1/2-mutant gliomas, and IDH1/2-
mutant gliomas exhibited significantly lower values of 
ZEB1 protein [169]. The role of ZEB1 as a potential prog-
nosis biomarker and drug target in medulloblastoma has 
been reported [170].

Various miRNAs have shown therapeutic potential by 
acting on GBM cancer cell migration and invasion via the 
modulation of ZEB1. GBM invasion increases through 
the inhibition of the ZEB1–miRNA-200 axis effects on 
stem cell markers, such as OLIG2, SOX2, and CD133 
[29]. miR-200c negatively modulates ZEB1 regulation 
and consequently reduces the migration of these cells 
[171]. Similarly, miR-574 independently targeted ZEB1 in 
GBM cells, which contributed to the inhibition of GBM 
proliferation [172]. miR-205 also inhibited the prolifera-
tion of GBM cells by affecting the Akt/mTOR cascade 
via interaction with ZEB1 [173]. Moreover, metformin 
suppresses the AKT/mTOR/ZEB1 signaling pathway via 
the inhibition of the TGF-β1-induced EMT-like process 
in GBM cancer stem cells [174]. Moreover, the activation 
of miR-590-3p, as well as miR-139-5p, prevented GBM 
tumor invasion by targeting ZEB1 and ZEB2 and inhibit-
ing EMT [175, 176].

ZEB1 and MS
Although the exact role of ZEB1 in MS needs to be clari-
fied, some studies have clarified the different roles of 
ZEB1 in the pathology of MS. The dysfunction of brain 
endothelial cells plays a role in the initiation of neuro-
inflammation and cell injury in MS. A link between the 
damage of the blood–brain barrier (BBB) and the EMT 
process has been suggested [177]. Evidence suggests the 
implication of ZEB1 in the dysfunction of BBB under 
pathological conditions [178]. Furthermore, one of the 
hallmarks of MS is inappropriate activation of interferon-
gamma (IFN-γ)-producing Th1 and Th17 cells [179]. 
ZEB1 contributes to pathogenic Th1 and Th17 cell dif-
ferentiation in MS. ZEB1 mutation inhibits the expres-
sion of miR-101-3p, which leads to the suppression of 
the Janus kinase/signal transducer and activator of tran-
scription (JAK/STAT) pathway and excessive release of 
IL-17 and IFN-γ [180]. Dysregulation of the JAK/STAT 
pathway plays an important role in the pathophysiol-
ogy of several autoimmune diseases, including MS [181]. 
Moreover, ZEB1 regulates IL-2 expression and is impli-
cated in T-cell development through the modulation of 
the balance between Zfhep1 and not Zfhep2, the splice 
variants of ZEB1, in an experimental model of MS [147–
149]. Knockdown of ZEB1 in dendritic cells decreases 
IL-12 secretion and increases Th2 differentiation [182]. 
The highly upregulated liver cancer (HULC), an lncRNA 
determined to be upregulated in patients with MS, may 

be involved in MS progression. HULC activates the miR-
200a-3p/ZEB1 signaling pathway and regulates EMT 
[150].

ZEB1 and neuropathic pain
ZEB1-related neuroinflammatory responses could 
contribute to neuropathic pain. The miR-28-5p/ZEB1 
pathway has been suggested as a potential therapeutic 
target for neuropathic pain. Overexpression of miR-
28-5p reduces neuropathic pain behaviors in a chronic 
sciatic nerve injury model in rats through the inhibition 
of neuroinflammation induced by the release of Cox-
2, IL-6, and IL-1β. MiR-28-5p binds to the 3-untrans-
lated area of Zeb1, downregulates Zeb1 expression, 
and inhibits cytokine expression [183]. Moreover, miR-
128-3p and miR-96-5p are reported to suppress Zeb1 
expression and regulate neuroinflammation and neuro-
pathic pain [184, 185]. In addition, miR-200b/miR-429 
serves as a key regulator of neuropathic pain via target-
ing ZEB1 [186]. lncRNA X-inactive specific transcript 
(XIST) increased significantly in the spinal cord tissues 
and microglia in a chronic constriction injury rat model. 
Silencing ZEB1 alleviated neuropathic pain and down-
regulated the expression of XIST through the regulatory 
effects of miR-150 [136]. Circular RNAs, such as ciRS-7, 
increased EMT by upregulating ZEB1 and STAT3. This 
was associated with either sponging of miR-641 or acti-
vation of miR-135a-5p, which contributed to the expres-
sion of pro-inflammatory cytokines, like IL-6, IL-12, and 
TNFα, and the induction of neuropathic pain [137, 138]. 
Furthermore, lncRNAs, such as LINC00657, contribute 
to the development of neuropathic pain in animal mod-
els of chronic pain through the regulation of the miR-
136/ZEB1 axis. MiR-136 regulates neuroinflammatory 
responses as well as the expression of ZEB1. Inhibition of 
ZEB1 inhibits neuropathic pain behaviors in  vivo [187]. 
Oxaliplatin-induced chronic pain enhanced the values 
of ZEB1 in the spinal dorsal horn neurons through the 
regulatory effects of NF-κB and/or Ras/Erk as well as by 
triggering the interaction between DNA (cytosine-5)-
methyltransferase-3β and ZEB1 [188].

ZEB1 and ischemic/traumatic brain injuries
The induction of ZEB1 is part of a neuroprotective 
response by neurons after brain ischemic insults. High 
values of ZEB1 expression in neocortical tissues are 
observed in neocortical specimens of patients with 
stroke [135]. ZEB1 regulates microglial activities in acute 
ischemic stroke. After the induction of brain ischemia, 
ZEB1 expression significantly increases in the ischemic 
cerebral tissues, particularly in microglia. A greater rami-
fied morphology of microglia in ischemic tissues is asso-
ciated with a higher expression of ZEB1, which enables 
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microglia to react more precisely to stimuli and promotes 
inflammatory responses following ischemic events. Fur-
thermore, in an experimental ischemic stroke model, 
upregulation of ZEB1 leads to the inhibition of astro-
cytic CXCL1 expression during the response to TGF-
β1-dependent signaling and reduction in the entrance 
of neutrophils into the brain. It has been suggested that 
targeting ZEB1 expression may lead to moderate acute 
ischemic brain injuries [83, 129]. The expression of 
PPARγ-coactivator-1α (PGC-1α) enhances after ischemic 
stroke and reduces brain damage by downregulating 
neuroinflammatory cytokines and regulating neurotro-
phins. ZEB1 expression was indirectly related to PGC-1α 
through the modulation of Sirt1 [134]. ZEB1 expres-
sion promotes cell survival in the neocortex after acute 
ischemic insults through the modulation of proapoptotic 
isoforms of p63 and p73 [135]. In addition, the applica-
tion of ZEB1 antagomir improved neurological function 
and cerebral edema, and decreased the expression of 
TNF-α, IL-1β, IL-6, and GFAP in ischemic tissues in an 
intracerebral hemorrhage rat model [189].

The astrocytic response to CNS injury is implicated in 
EMT and upregulation in ZEB expression. CNS injury-
related astrogliosis enhances EMT and its related gene 
expression. In experimental models of spinal cord injury 
or transient ischemic stroke, the knockdown of the 
Zeb2f in astrocytes lessened astrogliosis, induced greater 
lesions, and delayed functional motor recovery [190]. Fol-
lowing CNS injury, meningeal cells actively migrate into 
the injury site undergoing EMT and build the menin-
geal barrier between normal and injured tissues, which 
is regulated by the TGF-β1/non-Smad/SNAI1 pathway 
[191]. Expression values of the TGF-β receptor and the 
Ephrins receptor (ErbB2) are greatly enhanced in the 
meningeal cells of the injury site to maintain the integrity 
and homeostasis of CNS cells within the lesion site [152]. 
Thus, ZEB1 could be a potential target to regulate tissue 
reconstruction after CNS injuries. The suppression of 
XIST after spinal cord injury (SCI) enhances the function 
of the XIST/miR-27a/Smurf1 pathway and causes the 
inhibition of miR-494. This process leads to the allevia-
tion of neuroinflammation via the deactivation of ZEB1 
and the reduction of neuroinflammatory mediators, such 
as COX-2, TNF-α, and IL-6 [136, 153, 154].

Conclusion
Considering the critical role of neuroinflammation in 
various diseases, EMT is known to be an important 
process of pathogenicity in various neurological dis-
orders. ZEB1 as a focal transcription factor of EMT 
has been considered a potential target for the prog-
nosis and treatment of various neurological diseases. 
Although recognition of the exact role of ZEB1 in CNS 

dysfunction requires additional analysis and evaluation, 
it was concluded that ZEB1, in partnership with other 
EMT transcription factors, has dominant functions in 
EMT and neuroinflammation. The complex interaction 
between ZEB1, immune cells, and various cytokines is 
tightly connected to neuroinflammation through the 
regulation of different signaling pathways. The ZEB1–
inflammation axis plays a crucial role in the patho-
genesis of various CNS disorders through promoting 
tumor cell proliferation and invasiveness, formation 
of the hostile inflammatory micromilieu surrounding 
neuronal tissues, dysfunction of BBB, dysfunction of 
microglia and astrocytes, and disturbances of angio-
genesis. The molecular mechanisms and signaling path-
ways orchestrating the association between ZEB1 and 
inflammatory processes are linked with the initiation, 
progression, and outcomes of various CNS disorders. 
Future studies are required to demonstrate whether the 
modulation of ZEB1 could play a beneficial role as a 
diagnostic, prognostic, and/or therapeutic approach for 
CNS disorders.
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