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SARS‑CoV‑2 productively infects human 
brain microvascular endothelial cells
Rui‑Cheng Yang1,2, Kun Huang1,2, Hui‑Peng Zhang1,2, Liang Li1,2, Yu‑Fei Zhang1,2, Chen Tan1,2, 
Huan‑Chun Chen1,2, Mei‑Lin Jin1,2 and Xiang‑Ru Wang1,2* 

Abstract 

Background:  The emergence of the novel, pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has caused a global health emergency. SARS-CoV-2 is highly contagious and has a high mortality rate in severe 
patients. However, there is very limited information on the effect of SARS-CoV-2 infection on the integrity of the 
blood–brain barrier (BBB).

Methods:  RNA-sequencing profiling was performed to analyze the transcriptomic changes in human brain micro‑
vascular endothelial cells (hBMECs) after SARS-CoV-2 infection. Bioinformatic tools were used for differential analysis. 
Immunofluorescence, real-time quantitative PCR, and Western blotting analysis were used to explore biological 
phenotypes.

Results:  A total of 927 differentially expressed genes were identified, 610 of which were significantly upregulated 
while the remaining 317 were downregulated. We verified the significant induction of cytokines, chemokines, and 
adhesion molecules in hBMECs by SARS-CoV-2, suggesting an activation of the vascular endothelium in brain. Moreo‑
ver, we demonstrated that SARS-CoV-2 infection could increase the BBB permeability, by downregulating as well as 
remodeling the intercellular tight junction proteins.

Conclusions:  Our findings demonstrated that SARS-CoV-2 infection can cause BBB dysfunction, providing novel 
insights into the understanding of SARS-CoV-2 neuropathogenesis. Moreover, this finding shall constitute a new 
approach for future prevention and treatment of SARS-CoV-2-induced CNS infection.
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Background
Coronaviruses are a group of enveloped, positive-sense, 
single-stranded RNA viruses that primarily target the 
human respiratory system [1]. They also have neuro-
invasive capabilities, and can spread from the respira-
tory tract to the central nervous system (CNS) [2]. The 
coronavirus disease 19 (COVID-19) pandemic is caused 

by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) [3]. Multiple studies suggest that febrile 
seizures, anosmia, ageusia, ataxia, and encephalitis may 
be early signs and manifestations of COVID-19, indicat-
ing that this virus may also have neurotropic and neuro-
invasive capabilities [4, 5]. However, the mechanisms 
by which SARS-CoV-2 enters the host brain and causes 
neuroinflammatory responses are poorly understood. 
Identification of the specific host molecules involved in 
these essential steps is urgently needed to clarify these 
mechanisms.

The blood–brain barrier (BBB), formed by brain micro-
vascular endothelial cells (BMECs), astrocytes, microglial 
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cells, pericytes, and microvasculature, is the most impor-
tant physiological barrier in mammals [6]. As the inter-
face between the bloodstream and brain, it is essential 
for restricting the entry of many circulating pathogens, 
toxins, compounds, inflammatory factors, and immune 
cells into the CNS, thereby maintaining brain homeosta-
sis [7]. BMECs are the major components of the BBB, and 
are characterized by the expression of tight junction (TJ) 
proteins, including claudins (CLDNs), occludin (OCLN), 
and cytoplasmic zonula-OCLN family members (such as 
TJP1, TJP2, and TJP3) [8]. Reducing TJ proteins expres-
sion or changing their distribution can increase the BBB 
permeability, which is an important indicator of the BBB 
dysfunction [9]. Cell adhesion molecules, which are cell 
surface glycoproteins that facilitate cell–cell interactions, 
cell adhesion, and migration, are widely distributed in a 
variety of endothelial cells, including BMECs [10]. Vas-
cular endothelial cell adhesion molecule 1 (VCAM-1), 
intercellular cell adhesion molecule 1 (ICAM-1), and 
CD44 are widely believed to promote the migration of 
leukocytes or monocytes to the infection site [11].

The evidence that BMECs were infected by SARS-
CoV-2 was obtained in the brains of SARS-CoV-2-in-
fected patients, as well as in mouse and hamster models. 
Recent studies have revealed that the main protease of 
SARS-CoV-2 (Mpro) cleaves NF-κB essential modulator 
(NEMO). By ablating NEMO, Mpro induces the death 
of hBMECs and the occurrence of string vessels in mice 
[12]. And it was also reported that SARS-CoV-2 spike 
protein caused BBB dysfunction by inducing degradation 
of endothelial TJ proteins [13, 14]. However, the hBMECs 
responses to this process are poorly understood. Here, 
we applied RNA-seq and bioinformatic approaches to 
identify potential host mRNAs which are activated in 
hBMECs after SARS-CoV-2 infection. This is the first 
study to show that SARS-CoV-2 exhibits the ability to 
penetrate and disrupt the BBB in the hBMECs in  vitro 
model, which shall extend the current knowledge regard-
ing the SARS-CoV-2 neuropathogenic, as well as pro-
vide new clues for better prevention and therapies to this 
disease.

Methods
Cell lines and viruses
The hBMECs were kindly provided by Prof. Kwang Sik 
Kim in Johns Hopkins University School of Medicine, 
and this cell line is commonly used in the in vitro model 
of blood–brain barrier, especially in the field of menin-
gitis [15–18]. Immortalized hBMECs were cultured in 
RPMI1640 medium supplemented with 10% fetal bovine 
serum (FBS), 2 mM l-glutamine, 1 mM sodium pyruvate, 
essential amino acids, non-essential amino acids, vita-
mins, penicillin, and streptomycin (100  U/mL) [19, 20], 

and then incubated at 37 °C in a humidified atmosphere 
containing 5% CO2.

SARS-CoV-2 strain Wuhan-Hu-1 (NC_045512) was 
obtained from the Wuhan Institute of Virology, Chinese 
Academy of Sciences. Strain WBP-1 (EPI_ISL_1615558) 
was developed in this study. Chlorocebus sabaeus (Green 
monkey) VeroE6 (female, RRID: CVCL_YQ49) were 
purchased from American Type Culture Collection (ID: 
ATCC CRL-1586). VeroE6 cells were cultured in Dul-
becco’s modified Eagle medium (DMEM) supplemented 
with 10% FBS at 37  °C in a humidified CO2 incubator. 
The SARS-CoV-2 virus stocks were prepared on Vero 
cells and 50% tissue culture infective doses (TCID50) 
were calculated using the Reed–Muench formula. All 
experiments involving live viruses were performed in a 
biosafety level 3 (BSL3) facility in the Huazhong Agricul-
tural University.

SARS‑CoV‑2 infection of hBMECs
Confluent primary hBMEC monolayer was grown in 
12-well plates, then washed three times with serum-free 
1640 medium before infection at a multiplicity of infec-
tion (MOI) of 1. After 1 h of virus adsorption at 37 °C and 
5% CO2, the cultures were washed twice with serum-free 
1640 medium to remove unbound virus, then cells were 
cultured in 2% fetal bovine serum 1640 medium at 37 °C 
with 5% CO2 for 24 h and 72 h. Finally, cells were washed 
three times with pre-chilled phosphate-buffered saline 
(PBS), and subjected to RNA extraction using either a 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) or RIPA 
(Epizyme, Shanghai, China) buffer with a protease inhibi-
tor cocktail (GlpBio, Montclair, CA, USA) for Western 
blot analysis.

SARS‑CoV‑2 infection of mice
For the animal experiments, specific pathogen-free, 
12-month-old, female Balb/c mice were obtained from 
Laboratory Animal Services Centre, Huazhong Agricul-
tural University. All experiments were performed at the 
BSL-3 core facility at the Huazhong Agricultural Uni-
versity. After intraperitoneal injection with tribromoe-
thanol (Avertin; 250 mg/kg), each mouse was intranasally 
inoculated with SARS-CoV-2 stock virus at a dose of 105 
TCID50 in 50  μL DMEM. At 5 d post-inoculation, the 
mice were euthanized, and their brains were collected 
[21].

RNA‑sequencing and bioinformatic analysis
Total RNA extraction was performed using the TRIzol 
reagent, following manufacturer’s instructions. RNA 
quantity and quality were assessed using a NanoDrop 
2000 spectrophotometer (NanoDrop Technologies, 
Wilmington, DE, USA) and a Bioanalyzer 2100 system 
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(Agilent Technologies, CA, USA). RNA contamination 
was assessed by 1.5% agarose gel electrophoresis.

For the library preparation, 1  μg of RNA per sam-
ple was used. The mRNA was obtained from the total 
RNA by using poly(T) oligo-attached magnetic beads. 
Sequencing libraries were generated from the puri-
fied mRNA by using the VAHTS Universal V6 RNA-seq 
Library Kit for MGI (Vazyme, Nanjing, China), following 
the manufacturer’s recommendations, with unique index 
codes. Library quantification was assessed using a Qubit 
3.0 Fluorometer (Life Technologies, Carlsbad, CA, USA) 
and Bioanalyzer 2100 system (Agilent Technologies, 
CA, USA). Subsequently, sequencing was performed on 
the MGI-SEQ 2000 platform by Frasergen Bioinformat-
ics Co., Ltd. (Wuhan, China). The transcriptomic data 
were deposited to the BioProject database of the National 
Center for Biotechnology Information (NCBI; accession 
number PRJNA663975).

Low-quality reads, such as reads with adaptor 
sequences, reads with > 5% N, or bases with quality 
< Q20 (percentage of sequences with sequencing error 
rates < 1%), were removed using Perl script. The clean 
reads were mapped to the human genome (http://​ftp.​
ncbi.​nlm.​nih.​gov/​genom​es/​all/​GCF/​000/​001/​405/​GCF_​
00000​1405.​39_​GRCh38.​p13) by using HISAT2 [22]. 
New transcripts were predicted from the genome align-
ment by using StringTie [23], then reads were mapped 
to the merged transcriptome set by using bowtie2 [24]. 
The normalized expression level (FPKM) of each gene 
and transcript was quantified using RSEM [25]. Genes 
that were differentially expressed between sample groups 
were identified using DESeq2 [26]. The false discov-
ery rate (FDR) was used to identify the threshold of the 
P-value in multiple tests. Here, only genes with log2 (fold 
change)| ≥ 1 and FDR significance score (padj) < 0.01 were 
used for subsequent analyses.

Differentially expressed genes were compared against 
various databases for functional annotation. We com-
pared the plant-specific sequences from the NCBI-nr 
database and the Swiss-Prot database by using basic 
local alignment search tool (BLAST) x with an e-value 
cut-off of 10–5. The best BLAST hit based on the bit 
score was used for subsequent functional annotation. 
Gene Ontology (GO) annotation was performed based 
on the correspondence between the genes in the NCBI 
GO annotations. The database of this correspondence 
was obtained from https://​ftp.​ncbi.​nlm.​nih.​gov/​gene/​
DATA/​gene2​go.​gz. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway annotation was performed 
using BLAST x against plant-specific sequences from the 
KEGG database. GO and KEGG enrichment analyses 
were performed using the hypergeometric test as imple-
mented in the R phyper function.

Reverse transcription and real‑time quantitative 
polymerase chain reaction (RT‑qPCR)
Reverse transcription PCR was performed with 1 μg ali-
quots of total RNA from each sample and was followed 
by complementary DNA (cDNA) synthesis using the HiS-
cript II Q Select RT SuperMix for qPCR (+gDNA wiper) 
(Vazyme, Nanjing, China). RT-qPCR was performed with 
a QuantStudio 3 RT-qPCR System (Applied BioSystems, 
Foster City, CA, USA) using 2X M5 HiPer SYBR Premix 
EsTaq (Mei5 Biotechnology, Beijing, China), according 
to the manufacturer’s instructions and using the primers 
listed in Additional file 1: Table S1. The expression levels 
of the target genes were normalized to those of RPL13A. 
Each assay was performed three times independently.

For SARS-CoV-2 RT-qPCR, 100  ng of RNA was used 
as a template for the amplification of selected genes by 
using TransScript® II Probe One-Step RT-qPCR Super-
Mix (TransGen Biotech, Beijing, China). Average values 
from duplicates of each gene were used to calculate the 
viral genomic copies. Sequences of the primers target-
ing the SARS-CoV-2 RdRP gene were as follows: 5′-CAA​
TGG​TTT​AAC​AGG​CAC​AGG-3′ (forward) and 5′-CTC​
AAG​TGT​CTG​TGG​ATC​ACG-3′ (reverse). RT-qPCR was 
performed following the manufacturers’ instructions.

Western blot analysis
hBMECs were collected and lysed in RIPA buffer 
with a protease inhibitor cocktail, and centrifuged at 
12,000 rpm for 10 min at 4 °C to remove insoluble cell 
debris. The concentration of the soluble protein in the 
supernatant was measured using the bicinchoninic 
acid protein assay kit (New Cell & Molecular Biotech, 
China) and used for subsequent Western blot analysis. 
Aliquots of each sample were separated by 12% sodium 
dodecyl sulfate polyacrylamide gel electrophoresis, and 
then transferred to polyvinylidene difluoride mem-
branes. The blots were blocked with 5% bovine serum 
albumin in Tris-buffered saline containing Tween-20 
at room temperature for 1 h, and then incubated over-
night at 4  °C with primary antibodies against TJP1 
(Abcam, ab216880, 1:1000, Cambridge, MA, USA), 
OCLN (Abcam, ab31721, 1:1000, Cambridge, MA, 
USA), CLDN5 (Abcam, ab131259, 1:1000, Cambridge, 
MA, USA), VCAM1 (Abcam, ab174279, 1:1000, Cam-
bridge, MA, USA), ICAM1 (Proteintech, 60299-1-Ig, 
1:1000, Chicago, IL, USA), CD44 (Proteintech, 15675-
1-AP, 1:1000, Chicago, IL, USA), and β-actin (Protein-
tech, 66009-1-Ig, 1:5000, Chicago, IL, USA). The blots 
were subsequently washed and incubated with horse-
radish peroxidase-conjugated anti-rabbit (Biodragon, 
BF03001, 1:5000, Beijing, China) or anti-mouse IgG 
(Biodragon, BF03008, 1:5000, Beijing, China) at 37  °C 

http://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13
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http://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
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for 1  h and visualized using an electrochemilumines-
cence reagents (Bio-Rad, Hercules, CA, USA). Densi-
tometry analysis was analyzed in three independent 
blots by using Image Lab software version 5.2.1 (Bio-
Rad, Hercules, CA, USA).

Immunofluorescence assay
hBMECs grown in 6-well dishes were fixed with 4% para-
formaldehyde for 30  min, followed by three washes in 
PBS. Cells were incubated with the primary rabbit TJP1 
(Abcam, ab216880, 1:200, Cambridge, MA, USA), OCLN 
(Proteintech, 27260-1-AP, 1:200, Chicago, IL, USA), 
CLDN5 (Abcam, ab15106, 1:200, Cambridge, MA, USA) 
antibody, or SARS-COV-2 spike antibody (Abclonal, 
A20022, 1:100, Wuhan, China) overnight at 4  °C, and 
then incubated with Alexa Fluor 594 goat anti-rabbit 
antibody (Bioss, bs-0296R-AF594, 1:200, Woburn, MA, 
USA) for another hour. Cells were counterstained with 
DAPI (US Everbright Inc., D4080, Suzhou, China) to vis-
ualize the nucleus morphology and mounted and photo-
graphed using BX41 fluorescence microscopy (Olympus, 
Tokyo, Japan).

Mouse brain sections were incubated with primary 
TJP1 (Abcam, ab216880, 1:200, Cambridge, MA, USA), 
OCLN (Proteintech, 27260-1-AP, 1:200, Chicago, IL, 
USA), CLDN5 (Abcam, ab15106, 1:200, Cambridge, MA, 
USA), ICAM1 (Proteintech, 16174-1-AP, 1:200, Chicago, 
IL, USA), VCAM1 antibody (Abcam, ab134047, 1:200, 
Cambridge, MA, USA), CD44 antibody (Proteintech, 
15675-1-AP, 1:200, Chicago, IL, USA), or SARS-COV-2 
spike antibody (Abclonal, A20022, 1:100, Wuhan, China), 
followed by incubation with secondary antibody conju-
gated with Cy3 (Beyotime Biotechnology, China). The 
same sections were then incubated with CD31 (HuaAn 
Biotechnology, ER31219, 1:200, Hangzhou, China) pri-
mary antibody, followed by incubation with the appro-
priate secondary antibody fluorescein isothiocyanate 
(Beyotime Biotechnology, China) prior to final nuclear 
staining with DAPI. The sections were photographed and 
analyzed using a BX41 microscope (Olympus, Tokyo, 
Japan).

Statistical analysis
All data conformed to the Gaussian distribution. Data 
are expressed as mean ± standard deviation (SD), and the 
significance of differences between groups was evaluated 
using multiple t-tests. A level of p < 0.05 (*) was consid-
ered significant, and p < 0.01 (**) or p < 0.001 (***) were 
considered extremely significant. Graphs were plotted 
and analyzed using the GraphPad Prism ver. 6.0 (Graph-
Pad Software, La Jolla, CA, USA).

Results
SARS‑CoV‑2 infects brain microvascular endothelial cells
RT-qPCR and immunofluorescence were performed 
to determine the level of SARS-CoV-2 replication in 
human brain microvascular endothelial cells (hBMECs) 
at 24 h and 72 h. The hBMECs were infected with SARS-
CoV-2 at a MOI of 1 and processed for the examina-
tion. As shown in Fig. 1A, SARS-CoV-2 was observed in 
hBMECs, as demonstrated by SARS-COV-2 spike glyco-
protein-specific staining at 24 h and 72 h after infection. 
To confirm this observation, viral RNA was detected 
using RT-qPCR (Fig. 1B), and results showed high levels 
of viral RNA at 24 h and 72 h post-infection, indicating 
the successful infection of SARS-CoV-2 in hBMECs. In 
addition, immunofluorescence revealed a SARS-CoV-2 
spike glycoprotein-specific fluorescence in SARS-CoV-
2-challenged mouse brain. SARS-CoV-2 was stained in 
red, while CD31 was specifically applied for labeling the 
micro-vessels in green (Fig.  1C). Together, these results 
indicate that SARS-CoV-2 possesses the ability to infect 
hBMECs.

Identification of differentially expressed mRNAs in hBMECs 
upon SARS‑CoV‑2 infection
To better understand the mechanism of SARS-CoV-2 
infection in hBMECs, we conducted a comparative tran-
scriptomic analysis between the uninfected and infected 
primary cells. The heat map and the volcano plot revealed 
the alteration trends of these mRNAs in the cells upon 
infection with SARS-CoV-2 (Fig. 2A, B). In total, 18,947 
mRNAs were identified. Of these, 610 were significantly 
upregulated and 307 were downregulated (increased 
by ≥ twofold or decreased by ≤ 0.5-fold, at p ≤ 0.05) in 
SARS-CoV-2-infected hBMECs, compared with non-
infected cells (Additional file  2: Table  S2). The most 
significantly upregulated and downregulated mRNAs 
are listed in Tables  1 and 2, respectively. To verify the 
results of the differentially altered mRNAs, RT-qPCR 
was performed on 10 significantly upregulated and 10 
significantly downregulated mRNAs that were randomly 
selected from the most significant changed mRNAs in 
the sequencing data. The results demonstrated that the 
upregulation (Fig. 2C) or downregulation (Fig. 2D) trends 
of these mRNAs were consistent with those from the 
sequencing data.

Bioinformatic analysis of the altered mRNAs
We next analyzed the potential functions of the 917 dif-
ferentially expressed mRNAs in SARS-CoV-2-infected 
hBMECs. These mRNAs were assigned to three GO 
categories, including biological process, cellular com-
ponent, and molecular function. The mRNAs that 
belonged to biological process class were mainly involved 
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in inflammatory reaction (e.g., inflammatory response, 
cytokine production, NF-κB transcription factor activity, 
and response to interferon-gamma), leukocyte migration 
(e.g., positive regulation of leukocyte cell–cell adhe-
sion and myeloid leukocyte migration), and angiogen-
esis. Those classified as cellular components were mainly 
divided into extracellular matrix, receptor complex, pro-
teinaceous extracellular matrix, and extracellular matrix 
component. Lastly, those within the molecular function 
category were mainly associated with cytokine activity, 
cytokine receptor binding, growth factor activity, growth 
factor receptor binding, MAP kinase tyrosine/serine/
threonine phosphatase activity, platelet-derived growth 
factor receptor binding, extracellular matrix structural 
constituent, tumor necrosis factor receptor superfam-
ily binding, fibronectin binding, and laminin binding 
(Fig.  3A). The above results implied that the hBMECs 
were activated and injured in response to SARS-CoV-2.

The signaling pathways enriched by these 917 differ-
entially expressed mRNAs were also determined using 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis, and the results revealed several canonical 
signaling pathways that were significantly enriched, 
some of which have already been associated with 
inflammatory response (e.g., cytokine–cytokine recep-
tor interaction, NOD-like receptor signaling pathway, 
Toll-like receptor signaling pathway, NF-kappa B sign-
aling pathway, and MAPK signaling pathway), the BBB 
permeability (e.g., ECM–receptor interaction, IL-17 
signaling pathway, TNF signaling pathway, and HIF-
signaling pathways), and leukocyte migration (e.g., cell 
adhesion molecules and PI3K–Akt signaling pathway) 
(Fig.  3B). Taken together, these results revealed the 
potential signaling pathways involved in SARS-CoV-2 
infections, most of which are involved in the regula-
tion of BBB permeability as well as CNS inflammatory 
responses.
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SARS‑CoV‑2 infection induced high levels of inflammatory 
response in hBMECs
The infection-induced elevation of cytokines and 
chemokines have also been recognized as an impor-
tant contributor to CNS damage in various models of 
neuroinflammation [27, 28]. As shown in Fig.  4A, B, 
multiple cytokines (e.g., TNF, IL1B, IL6, IL32, etc.) and 
chemokines (e.g., CCL20, CXCL2, CXCL8, CXCL1, 
CCL2, etc.) were significantly upregulated in SARS-
CoV-2 infected cells. The RT-qPCR was also applied to 
verify these observations, and results were consistent 
with the sequencing data (Fig.  4C), further supporting 
that SARS-CoV-2 infection of hBMECs led to a high level 
of pro-inflammatory responses.

Since KEGG analysis revealed that the TNF signaling 
pathway, IL-17 signaling pathway, and cytokine–cytokine 
receptor interaction were enriched, we subsequently 
analyzed the expression of these cytokine receptors. As 

shown in Fig. 4D, E, a total of 17 cytokine receptors were 
significantly altered in hBMECs upon SARS-CoV-2 infec-
tion. Except for IL17RE, the transcription levels of all 
other cytokine receptors were significantly increased in 
response to infection (Fig. 4F).

Moreover, RNA-sequencing data also showed that 
adhesion molecules, including CD44, ICAM1, and 
VCAM1, were significantly induced in response to SARS-
CoV-2 infection (Additional file 2: Table S2), and we fur-
ther verified this upregulation in vitro and in vivo. In the 
hBMECs model, we found that mRNA transcription lev-
els of CD44, ICAM1, and VCAM1 significantly increased 
at 24  h or 72  h after SARS-CoV-2 infection (Fig.  5A). 
Similar results were also observed from Western blot-
ting, wherein the expression levels of adhesion molecules 
in challenged hBMECs were significantly increased after 
SARS-CoV-2 infection at 72 h, compared to that in con-
trol cells (Fig.  5B). In addition, immunofluorescence 

Table 1  The most significantly upregulated mRNAs in hBMECs upon infection

Gene symbol Ensembl gene ID log2(fold change) p value q value

PRRC2A ENSG00000204469 21.97584681 1.86E−08 1.53E−07

PTDSS2 ENSG00000174915 21.30706691 5.01E−08 3.88E−07

SAA2 ENSG00000134339 10.07835285 3.79E−17 6.57E−16

SAA1 ENSG00000173432 9.932668453 5.99E−17 1.02E−15

LCN2 ENSG00000148346 9.826441157 1.49E−51 8.29E−50

SULT1A4 ENSG00000213648 9.478170754 0.015280772 0.042089886

SFT2D3 ENSG00000173349 8.882246082 5.53E−13 7.05E−12

CHI3L1 ENSG00000133048 8.853778776 1.20E−41 5.21E−40

CFB ENSG00000243649 8.432931778 6.22E−12 7.35E−11

CCL20 ENSG00000115009 8.275035624 4.64E−125 7.85E−123

CSF2 ENSG00000164400 8.201980672 3.01E−15 4.57E−14

PI3 ENSG00000124102 8.089107263 8.07E−11 8.64E−10

TNF ENSG00000232810 8.020602424 1.11E−10 1.17E−09

CHI3L2 ENSG00000064886 7.836029091 3.94E−10 3.88E−09

CSF3 ENSG00000108342 7.776493262 7.93E−20 1.59E−18

C15orf48 ENSG00000166920 7.250651063 0 0

SAA2-SAA4 ENSG00000255071 7.18957744 3.05E−08 2.44E−07

PDZK1IP1 ENSG00000162366 7.168359056 2.26E−81 2.17E−79

PTX3 ENSG00000163661 6.916996585 1.80E−15 2.77E−14

CXCL2 ENSG00000081041 6.754935681 8.15E−113 1.19E−110

IL1B ENSG00000125538 6.695314953 3.74E−27 1.08E−25

CXCL8 ENSG00000169429 6.669732672 3.53E−292 1.71E−289

LTB ENSG00000227507 6.542726279 2.40E−07 1.70E−06

IL3RA ENSG00000185291 6.474107802 1.86E−06 1.14E−05

CA9 ENSG00000107159 6.440743779 2.39E−06 1.45E−05

CXCL1 ENSG00000163739 6.365756137 0 0

SMG1 ENSG00000157106 6.227596608 9.18E−06 5.04E−05

ATF6B ENSG00000213676 6.220025614 0.000252727 0.0010654

CCL2 ENSG00000108691 6.206816673 2.96E−61 2.04E−59

G0S2 ENSG00000123689 6.171508146 1.04E−05 5.69E−05
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analysis was performed to further observe the expres-
sion of CD44, ICAM1, and VCAM1 in the brains of 
challenged mice. In infected mice, CD44, ICAM1, and 
VCAM1 expression was obviously enhanced and dis-
tributed around the blood vessels that being labeled 
with CD31, compared with the control group (Fig.  5C). 
Taken together, these results indicate that SARS-CoV-2 
infection could induce high level of pro-inflammatory 
responses in hBMECs.

SARS‑CoV‑2 infection damaged the BBB integrity 
viadecreasing TJ proteins
We next wondered whether SARS-CoV-2 infection could 
disrupt the BBB. Since TJ proteins are recognized as key 
components of monolayer hBMECs and determine the 
permeability of the BBB, we monitored the alteration 
of these TJ proteins (e.g., TJP1, OCLN, and CLDN5) in 
monolayers hBMECs at 24 h and 72 h post-SARS-CoV-2 

infection, by RT-qPCR and Western blotting. We found 
the mRNA transcription levels of TJP1, OCLN, and 
CLDN5 were unaffected by the infection at 24  h, but 
were significantly decreased after 72  h of SARS-CoV-2 
infection (Fig.  6A). Similar results were also obtained 
from Western blotting, wherein the expression levels of 
TJ proteins at 72  h were significantly lower in hBMECs 
infected with SARS-CoV-2 than in control cells (Fig. 6B). 
Immunofluorescence also supported that these TJ pro-
teins were well arranged and distributed around the 
uninfected hBMECs, while in contrast they were incon-
secutive, irregularly distributed, or scattered around the 
cells 72  h after SARS-CoV-2 infection, indicating the 
breakdown of TJ proteins between the adjacent endothe-
lial cells (Fig.  6C). In  vivo, the distribution of these TJ 
proteins in the brain of mice was additionally exam-
ined, as seen in Fig. 6D. The in situ immunofluorescence 
revealed that the TJ proteins (TJP1, OCLN, and CLDN5) 

Table 2  The most significantly downregulated mRNAs in hBMECs upon infection

Gene symbol Ensembl gene ID log2(fold change) p value q value

NEU1 ENSG00000204386 − 21.88265783 2.17E−08 1.76E−07

CHMP3 ENSG00000115561 − 5.362242755 0.000493786 0.001962402

GJB1 ENSG00000169562 − 5.101785064 0.001368014 0.004937517

CFAP47 ENSG00000165164 − 4.724579521 0.005709798 0.017747683

MGARP ENSG00000137463 − 4.503180663 0.010783266 0.031122636

CCDC187 ENSG00000260220 − 3.996799492 1.20E−06 7.63E−06

CHAT ENSG00000070748 − 3.913490411 3.62E−33 1.30E−31

LEFTY2 ENSG00000143768 − 3.808163847 6.57E−07 4.35E−06

novel.1068 – − 3.551248115 0.000551614 0.002160943

EXTL1 ENSG00000158008 − 3.265373003 0.001404158 0.005049692

OR2B6 ENSG00000124657 − 3.085358052 0.012758699 0.035990702

TXNIP ENSG00000265972 − 3.066511011 2.61E−255 1.08E−252

SERPINF2 ENSG00000167711 − 3.043253694 1.57E−198 4.88E−196

SLC2A2 ENSG00000163581 − 3.019859147 0.012528758 0.035401966

THSD7A ENSG00000005108 − 2.990344181 6.00E−08 4.59E−07

OR1F12 ENSG00000220721 − 2.971771113 1.57E−10 1.63E−09

H2AC7 ENSG00000196866 − 2.87703511 0.003118136 0.010338306

LCN12 ENSG00000184925 − 2.834977689 1.15E−06 7.32E−06

novel.19299 – − 2.832122052 9.66E−06 5.29E−05

H3C4 ENSG00000197409 − 2.772546205 1.60E−06 1.00E−05

CAPN3 ENSG00000092529 − 2.712469596 3.46E−05 0.000173351

H2BC8 ENSG00000273802 − 2.702182842 3.80E−07 2.62E−06

SCARA5 ENSG00000168079 − 2.635582038 5.34E−166 1.15E−163

FOXJ1 ENSG00000129654 − 2.605063889 0.01084363 0.031254005

SMTNL2 ENSG00000188176 − 2.554792408 0.000873797 0.003281935

CDH12 ENSG00000154162 − 2.525048622 3.71E−54 2.22E−52

SRGAP3 ENSG00000196220 − 2.482822207 1.21E−08 1.01E−07

ERP27 ENSG00000139055 − 2.475509651 0.006759849 0.020625759

DNAH6 ENSG00000115423 − 2.439137171 0.008656114 0.025631459

novel.774 – − 2.410152295 2.27E−44 1.08E−42
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were well-expressed and distributed around the brain 
vessels of the control mice, whereas they were incon-
secutively distributed, irregular, or gapped in vascular 

endothelial layer in the brains of challenged mice, fur-
ther evidencing the disruption of TJ proteins between 
adjacent endothelial cells. Together, these findings firmly 
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suggest that SARS-CoV-2 infection induced BBB disrup-
tion by downregulating the expression of TJ proteins as 
well as by altering their distribution.

Discussion
With mounting infections, fatalities, and economic losses 
caused by SARS-CoV-2, understanding the pathogen-
esis of SARS-CoV-2 is imperative. Aside from the lungs, 
other tissues and organs, such as the heart, liver, kid-
neys, spleen, hilar lymph nodes, bone marrow, and even 
brain tissues are also affected in patients with COVID-19 

[29–31]. Notably, neurological and psychiatric symptoms 
have been reported in patients with SARS-CoV-2 infec-
tion [32, 33]. A case of CNS involvement in a patient 
infected with SARS-CoV-2, exhibiting meningitis and 
encephalitis, was confirmed by SARS-CoV-2 RT-qPCR by 
using the patient’s cerebrospinal fluid [34]. Recent stud-
ies have also demonstrated the ability of SARS-CoV-2 to 
infect CNS cells, especially the BMECs of the BBB [35]. 
Experiments also reveal that SARS-CoV-2 spike protein 
altered human BBB function by inducing degradation 
of endothelial TJ proteins [13, 14]. Therefore, this study 
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aimed to explore the essential host mRNAs involved in 
SARS-CoV-2 infection of hBMECs.

Using the RNA-seq approach, the differentially 
expressed mRNAs in hBMECs in response to SARS-
CoV-2 were identified. Expression levels of 927 mRNAs 
were significantly changed in response to infection; 

among which, 610 were significantly increased while 317 
mRNAs were decreased. In addition, GO and KEGG 
enrichment analysis of these differentially expressed 
mRNAs illustrated the potential roles of the altered 
mRNAs in SARS-CoV-2 pathogenesis in hBMECs. More-
over, in vivo and in vitro experiments demonstrated that 
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SARS-CoV-2 damaged the integrity of the BBB by nega-
tively regulating the expression of TJ proteins, such as 
TJP1, OCDN, and CLDN5. Meanwhile, the SARS-CoV-2 
induction of cytokines, chemokines, and adhesion mol-
ecules largely promoted the development of the CNS 
inflammation response (Fig. 7). To the best of our knowl-
edge, this is the first demonstration of the differential 
induction of host mRNAs by SARS-CoV-2 in hBMECs, 
providing a theoretical basis for future studies on BBB 
damage caused by SARS-CoV-2.

Several studies have reported that the excessive inflam-
matory response induced by SARS-CoV-2 infection is 
a major cause of disease severity and death in infected 
patients [36–38]. Moreover, induction of the endothe-
lial adhesion molecules is widely accepted as an impor-
tant indicator of endothelial cell activation, which causes 
the recruitment of macrophages and monocytes that are 
responsive to the infection, and release cytokines and 
prime adaptive T and B cell immune responses [39]. Sim-
ilarly, in this study, we found that the expression levels of 
CD44, ICAM1, and VCAM1 were significantly elevated 
in SARS-CoV-2-infected hBMECs and in the brains of 
SARS-CoV-2-infected mice, indicating that there would 
be an increased recruitment of mononuclear leukocytes 
from the periphery to the CNS.

Additionally, increased levels of several cytokines and 
chemokines, including TNF, IFNG, IL1B, IL2, IL6, IL7, 
IL8, IL9, IL10, IL17A, CSF3, CCL2, IP10, MCP3, and 
macrophage inflammatory protein 1α have been reported 
in patients infected with SARS-CoV-2 [40–42]. Consist-
ent with these observations, we also found the increased 
amounts of chemokines and cytokines, including CCL20, 
TNF, CXCL2, IL1B, CXCL8, CXCL1, CCL2, IL6, IL32, 
CXCL6, CXCL3, CCL5, IL17C, and IL11, in hBMECs in 
response to SARS-CoV-2 infection. This massive produc-
tion of these pro-inflammatory molecules will trigger the 
development of the CNS cytokine storm, which is the 
most important factor in mediating the BBB dysfunction 
[43]. More importantly, the cytokine storm could further 
induce the activation of microglia and astrocytes, as well 
as the neuronal injury, finally leading to neurodegenera-
tive disorders and sequelae [44]. Of note, high levels of 
IL1B and IL6 have been linked to the worse prognosis in 
patients with COVID-19 [45, 46].

Based on the KEGG enrichment analysis, we also 
noticed that the JAK–STAT-, MAPK-, HIF-1-, NF-κB-, 
NOD-like receptor-, TNF-, and IL-17-signaling pathways, 
which are commonly recognized as inflammatory ampli-
fication loops that cause BBB dysfunction, were activated 
in SARS-CoV-2-infected hBMECs [47–50]. Meanwhile, 
genes associated with cytokine receptors, such as IL3RA, 
CXCR4, CXCL12, IL2RG, IL10RA, IL12RB1, IL15RA, 
IL13RA2, IL1RAP, TNFRSF11B, CD40, TNFRSF11A, 
RELT, IFNGR2, IFNAR2, TNFRSF10D, TNFRSF12A, 
and TNFRSF10B, were all found to be upregulated in 
the infected cells. Among these, IFNGR2 and IFNAR2 
encode components of the IFNG receptor complex. 
TNFRSF11B, CD40, TNFRSF11A, RELT, TNFRSF10D, 
TNFRSF12A, and TNFRSF10B are members of the TNF 
receptor superfamily. Given the increased levels of TNF 
and IFNG in the plasma of patients with COVID-19, we 
inferred that TNF- and IFNG signaling pathways were 
likely to be activated in SARS-CoV-2-infected hBMECs. 
Therefore, the inhibition of inflammatory signaling in 
CNS may be a beneficial strategy in treating SARS-CoV-2 
infection.

The BBB serves as a physical and physiological barrier 
against the entry of cells and molecules into CNS [7]. 
Despite the highly restrictive nature of the CNS, some 
viruses, such as those causing rabies, Japanese encepha-
litis, SARS, MERS, and dengue, employed different strat-
egies to break through the BBB, thereby invading the 
CNS and causing encephalitis [51–54]. BMECs are the 
most direct and functional structural components of the 
BBB, and these are tightly interconnected by the forma-
tion of TJ proteins, which regulate the permeability of 
the BBB. In general, there are two possible mechanisms 
for the spread of neurotropic virus across the BBB. The 
first mechanism involves the infection of and the subse-
quent transport of viral genetic material across vascular 
endothelial cells [55], and the second one is termed as 
the “Trojan horse mechanism” which involves the infec-
tion of leukocytes that help to pass through the BBB [56]. 
Once the virus enters host CNS, it continues the life cycle 
of viral budding, allowing further infection of neurons, 
glia, and microglia [57]. In the present study, our data 
supported that hBMECs allowed SARS-CoV-2 infec-
tion, but no evidence supporting viral replication was 

Fig. 6  SARS-CoV-2 damaged the integrity of BBB by downregulating and disorganizing TJ proteins. A RT-qPCR analysis of TJP1, OCLN, and CLDN5 
transcription in hBMECs 24 and 72 h post-infection with SARS-CoV-2. RPL13A was used as the internal reference. Data were presented as the 
mean ± SD from three independent experiments. *p < 0.05, **p < 0.01. B Western blot analysis of TJP1, OCLN, and CLDN5 in hBMECs in response 
to SARS-CoV-2 at 24 and 72 h post-infection. β-Actin was used as the loading control, and differences were analyzed by densitometry. **p < 0.01, 
***p < 0.001. C Immunofluorescence analyses of TJP1, OCLN, and CLDN5 expression and distribution in hBMECs 24 and 72 h after infection with 
SARS-CoV-2. Nuclei were stained in blue with DAPI, while TJP1, OCLN, and CLDN5 were stained in red. Scale bar, 10 μm. D Brain samples of both 
mice infected with SARS-CoV-2 for 5 d and those without were analyzed for the integrity of vascular endothelium by immunofluorescence. TJ 
proteins, TJP1, OCLN, and CLDN5 were selected as the markers reflecting the integrity of the vascular endothelium in red. CD31 was specifically 
applied for labeling the micro-vessels in green. The cell nucleus was stained in blue with DAPI. Scale bar indicates 50 μm

(See figure on next page.)



Page 13 of 17Yang et al. Journal of Neuroinflammation          (2022) 19:149 	

A

B

C

D

TJP1

OCLN

CLDN5

ACTB

Infection
220KDa

59 KDa

23 KDa

42 KDa

Control InfectionControl

24h 72h

TJP
1

OCLN

CLD
N5

TJP
1

OCLN

CLD
N5

Ti
gh

t j
un

ct
io

n 
pr

ot
ei

ns
ex

pr
es

si
on

 re
la

tiv
e 

to
 β

-a
ct

in

0.0

0.5

1.0

1.5
Control
Infection 24h
Infection 72h

********

TJP1 OCLN CLDN5
0.0

0.5

1.0

1.5

Ti
gh

t j
un

ct
io

n 
pr

ot
ei

ns
tra

ns
cr

ip
tio

n 
re

la
tiv

e 
to

 R
P

L1
3A Control

Infection 24h

Ti
gh

t j
un

ct
io

n 
pr

ot
ei

ns
tra

ns
cr

ip
tio

n 
re

la
tiv

e 
to

 R
P

L1
3A

TJP1 OCLN CLDN5
0.0

0.5

1.0

1.5 Control
Infection 72h

* **
**

24h 72h

Control

TJP1

Infection

24h 72h

OCLN

24h 72h

CLDN5

10 μM

DAPI TJP1/OCLN/CLDN5

Control

Infection

TJP1 OCLN CLDN5

50 μM

DAPI TJP1/OCLN/CLDN5 CD31
Fig. 6  (See legend on previous page.)



Page 14 of 17Yang et al. Journal of Neuroinflammation          (2022) 19:149 

observed. However, we demonstrated that SARS-CoV-2 
invasion of the brain increased the BBB permeability by 
downregulating and redistributing TJ proteins. There-
fore, damaging the BBB integrity could be an important 
strategy employed by SARS-CoV-2 in order to cause host 
CNS infection.

Several host molecules have been reported to mediate 
BBB dysfunction by regulating TJ proteins in CNS infec-
tion, including ROS generation, upregulation of matrix 
metallopeptidases (MMPs; e.g., MMP3, MMP7, MMP8, 
and MMP9), cytokines (e.g., IL1B, IL6, IL17, and TNF), 
chemokines (e.g., CXCL1 and CXCL10), growth factors 
(e.g., VEGF, PDGF, and ANGPTL4), transcription factors 

Fig. 7  Schematic representation of SARS-CoV-2-induced BBB damage and CNS dysfunctions. SARS-CoV-2 infection induced production of 
multiple cytokines, chemokines, and adhesion molecules in hBMECs. Meanwhile, SARS-CoV-2 infection could increase the BBB permeability, by 
downregulating as well as remodeling the intercellular TJ proteins
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(e.g., SNAI1 and EGR1), and activation of Rho kinase 
[27, 58–62]. In the current study, we demonstrated that 
SARS-CoV-2 infection induced high levels of inflamma-
tory responses in hBMECs, suggesting that the induction 
of severe CNS inflammation and systemic inflammatory 
responses may be an important contributor influencing 
the BBB integrity in SARS-CoV-2 infection. More impor-
tantly, we also found the significant induction of MMP3, 
MMP7, MMP9, VEGFA, PDGFA, PDGFB, ANGPTL4, 
and SNAI1 in the challenged hBMECs (Additional file 3: 
Table  S3). This prompted us to believe that these pro-
inflammatory factors, MMP family, and growth factors, 
derived from the brain or the periphery, could promote 
disruption of the BBB in response to SARS-CoV-2 infec-
tion. Interestingly, a recent study found that SARS-CoV-2 
RNA was observed in the BMECs, perivascular space 
and vascular wall in the infected K18-hACE2 transgenic 
mice. And the damage of BBB integrity was also found 
in the infected mice. But the expression and the ultras-
tructure of TJP1, OCLN, and CLDN5 were shown to be 
unchanged, whereas, the basement membrane was dis-
rupted [63]. Therefore, the molecular mechanisms of the 
damage of BBB integrity caused by SARS-CoV-2 infec-
tion still need further study. However, the CNS cytokine 
storm induced by SARS-CoV-2 should be one of the key 
factors to help it destroy the integrity of the host BBB.

Conclusions
In summary, we showed here that BMECs, which com-
prise the most important component of BBB, were 
susceptible to SARS-CoV-2 infection. Our findings high-
lighted that SARS-CoV-2 infection could lead to BBB 
disruption as well as the CNS inflammatory responses, 
which are the two essential aspects determining the 
occurrence and development of CNS infection and out-
comes. Moreover, as SARS-CoV-2 infection is productive 
in endothelial cells, which can allow the entry of the virus 
into CNS and facilitate the infection of microglia and 
neurons within CNS parenchyma. Understanding the 
mechanisms of SARS-CoV-2-induced BBB dysfunction 
may provide new concepts for further therapeutic inter-
vention in COVID-19.
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