
Vandenbark et al. 
Journal of Neuroinflammation          (2021) 18:298  
https://doi.org/10.1186/s12974-021-02355-0

REVIEW

Microglia and astrocyte involvement 
in neurodegeneration and brain cancer
Arthur A. Vandenbark1,2,3*, Halina Offner1,2,4, Szymon Matejuk5 and Agata Matejuk6* 

Abstract 

The brain is unique and the most complex organ of the body, containing neurons and several types of glial cells of dif-
ferent origins and properties that protect and ensure normal brain structure and function. Neurological disorders are 
the result of a failure of the nervous system multifaceted cellular networks. Although great progress has been made 
in the understanding of glia involvement in neuropathology, therapeutic outcomes are still not satisfactory. Here, we 
discuss recent perspectives on the role of microglia and astrocytes in neurological disorders, including the two most 
common neurodegenerative conditions, Alzheimer disease and progranulin-related frontotemporal lobar dementia, 
as well as astrocytoma brain tumors. We emphasize key factors of microglia and astrocytic biology such as the highly 
heterogeneic glial nature strongly dependent on the environment, genetic factors that predispose to certain patholo-
gies and glia senescence that inevitably changes the CNS landscape. Our understanding of diverse glial contributions 
to neurological diseases can lead advances in glial biology and their functional recovery after CNS malfunction.
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Introduction
Brain homeostasis is based on the interplay among all 
cell types, with microglia and astrocytes subserving a 
wide array of salient neuronal functions [7]. In their rest-
ing state, microglia display ramified morphology and 
surveying properties. During development, microglia 
actively communicate with other brain cells, contribut-
ing to neurogenesis and synaptic pruning. In the adult 
brain, they participate in neuromodulation, surveil-
lance and monitoring, synaptic plasticity, learning and 
memory [82]. Astrocytes, the most numerous cells in the 
mammalian brain, stay in close contact with all CNS-
resident cells and occupy strategic locations including 
blood vessels. During brain development, astrocytes 

synchronize synapse growth and modulate neuronal cir-
cuity [3, 15]. In the adult brain they are responsible for 
the maintenance of blood–brain barrier (BBB) integrity 
and metabolic coupling, ion buffering, neurotransmit-
ter homeostasis, production of neuroactive factors (ATP, 
TNF-α) and control of neuronal synchronization and 
proper functioning of synaptic circuits [110]. Beyond 
homeostatic function, microglia and astrocytes are able 
to participate in inflammatory responses by taking on the 
role of local immune cells. During any disturbance or loss 
of homeostasis, microglia become activated, change their 
morphology and phenotype and increase their motil-
ity and phagocytic abilities [49]. Astrocytic responses to 
environmental changes include hypertrophic morphol-
ogy, upregulation of GFAP, scar formation, variations in 
intracellular  Ca2+ levels, activation of purinoreceptors 
and production of the inflammatory cytokines, NO and 
ROS [22, 87]. Similar to microglia, the activated state of 
astrocytes is a complex phenomenon recently revisited 
and described by Escartin et al. [21].
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Both types of cells are equipped with a set of dam-
age sensors, receptors and inflammatory mediators 
capable of responding to various brain injuries such 
as infection, stroke, traumatic brain injury, neurode-
generation and cancer. Although the ultimate goal of 
glial-mediated neuroinflammation aims at elimination 
of the threat, glial scar formation, resolving the occur-
ring injury and restoring brain homeostasis, the results 
of such responses are not always beneficial, especially 
in the context of neurodegeneration, where chronic 
exposure to macrophage inflammatory stimuli can 
induce neurotoxic reactive astrocytes [53]. Whether 
glial cells adopt a phenotype that aggravates tissue 
injury or promotes brain repair depends on a basic set 
of factors, including the nature of the damaging ele-
ment (toxic protein vs. LPS, acute injury vs. neurode-
generation), severity of injury, precise constellation of 
signals from the environment, presence of antagonistic 
mediators, current activation status of other cells (mac-
rophage infiltrates) and the concentration of immuno-
logical mediators. For example, one of the factors that 
controls microglial activity is S100B. Astrocytes under 
normal conditions constitutively release S100B, which 
acts as a neurotrophic factor, protecting microglia from 
neurotoxins. However, high concentrations of S100B 
bind the receptor for advanced glycation end products 
(RAGE) leading to microglial activation. In addition to 
the production of the same mediators, each cell type 
can produce specific factors that act on the partner or 
on distant cells (e.g., astrocytes can secrete granulo-
cyte and granulocyte–macrophage colony-stimulating 
factors to induce migration of granulocytes and mac-
rophages to the CNS). Finally, the response largely 
depends on the disease context, brain area and disease 
stage. One example is loss of astrocytic domain organi-
zation in almost all neurological disorders, a phenom-
enon that is not observed in Alzheimer disease (AD).

During the past decades, several clinical trials using 
agents that counteract β-amyloid (Aβ) deposition in AD 
have failed. Current therapies counteracting the immune 
responses both in neurodegenerative conditions and 
cancer are too generic and may not sufficiently account 
for specific glial involvement. Research into glial biol-
ogy is rapidly growing with the hope of finding new 
therapies for glial-specific targets. In this review we will 
attempt to address the complex issue on astrocyte and 
microglial cross-talk in the pathogenesis of the two most 
common neurodegenerative disorders, AD and pro-
granulin-related frontotemporal lobar dementia (GRN-
FTLD), as well as astrocytoma. A better understanding 
of microglia and astrocyte interactions may aid in the 
discovery and use of glia-based therapies for functional 
repair.

Microglia and astrocytes in Alzheimer disease
Alzheimer disease is the most common neurodegenera-
tive disease with the deposition of extracellular amyloid-β 
(Aβ) proteins and neuronal intracellular neurofibril-
lary tangles (NFT) comprising hyperphosphorylated tau 
proteins. The depositions of Aβ and NFT are primarily 
observed in entorhinal cortex and “spread” to the hip-
pocampus and cerebral cortex as the disease progresses 
leading to neuronal loss, dementia and alterations in glial 
cells. Genetic, epigenetic and environmental factors play 
a role in the pathogenesis of AD [1]. There are two main 
and distinctive forms of the disease, early and late-onset 
AD. Early onset is a familial form caused by mutations in 
the genes responsible for Aβ production and degrada-
tion. These genes encode Aβ precursor protein (APP), 
presenilin 1 (PSEN1) and presenilin 2 (PSEN2), the lat-
ter two representing β- and γ-secretases involved in the 
cleavage of APP [77]. Most cases of AD are sporadic 
late-onset cases involving environment risk factors and 
many genes associated with the immune response, cho-
lesterol metabolism and regulation of endocytosis [77]. 
The core transcriptional features of cellular identity via 
integrative gene coexpression analysis of intact tissue 
samples revealed that the expression levels of APP and 
PSEN1 genes correlated with the variability of neuronal 
and oligodendroglial abundance, respectively [43]. In 
contrast, late-onset AD showed increased expression lev-
els of apolipoprotein E (APOE) and Triggering receptor 
expressed on myeloid cells 2 (TREM2) that correlated, 
respectively, with the abundance of astrocytes and micro-
glia, as well as with age and neurodegeneration.

Communication among neurons, microglia and astrocytes 
in AD
Microglia and astrocytes react to changes in their envi-
ronment, so it is not surprising to find them in their acti-
vated forms around amyloid plaques in AD. Aβ mainly 
produced by neurons activate microglia and astrocytes 
to capture and clear it from the brain to save neurons. 
Protective mechanisms that occur during early stages 
of disease include phagocytosis of Aβ, release of neu-
roprotective cytokines, exosomes, neurotrophic fac-
tors and neurotransmitters. Primary neurons disturbed 
by amyloid communicate with microglia via CX3CL1 
(fractalkine) and CCL2 using the glial-derived neuro-
trophic factor (GDNF) released by astrocytes (Fig. 1). The 
intercellular cross-talk among neurons, astrocytes and 
microglia is mediated by the neuronal Aβ-astrocytic C3/
C3a–microglial C3aR axis. The overproduction of Aβ by 
neurons stimulates astroglial NF-κB that induces expres-
sion and secretion of C3 [51]. In vitro and in vivo stud-
ies show that astrocytic C3 interacts with the microglial 
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C3a receptor to induce microglial Aβ phagocytosis and 
exacerbation of Aβ pathology [51]. Astrocyte-derived 
exosomes (ADE) are rich in complement compounds like 
C1q, C4b, C3d, factor B, factor D, Bb, C3b, and C5b–C9 
[28]. Activated astrocytes and microglia can respond to 
amyloid depositions directly by expressing scavenger 
receptors (SRs), Fc receptors, complement receptors 
(CR), RAGE, CD36 and TLRs. CD36 facilitates recruit-
ment of microglia to plaque depositions and promotes 
inflammation initiated by a TLR4/6 heterodimer [89]. 
Other TLRs (2, 3, 7 and 8) play pivotal roles in modulat-
ing neurodegenerative pathways, inducing activation and 
release of TNF-α, NO and superoxide [95]. TNF-α, one of 
the immune genes upregulated during the progression of 
AD, is essential and sufficient for induction of neurotoxic 
astrocytes and thus is an integral component of neuro-
pathological changes. Furthermore, reactive microglia 
stimulate tau pathology in a cell-autonomous manner 
[58], forming a barrier that impacts plaque composition 

and toxicity [16]. It is noteworthy that the spread of tau 
deposition can be reduced by treatment with an interleu-
kin 1 receptor antagonist [58].

Reactive astrocytes surround Aβ plaques and express 
receptors such as RAGE and SRs mentioned above, as 
well as a low-density lipoprotein receptor-like protein 
and membrane-associated proteoglycans that are known 
to bind Aβ. Reactive astrocytes form the border between 
the focal lesion and the surrounding CNS tissue and 
degrade amyloid plaques in an ApoE-dependent man-
ner [46]. Increased plaque load has been found in GFAP-
Vim-mice lacking astrocytes crossed with a mouse model 
of AD-like pathology [74]. In astrocytes, ApoE is not only 
involved in cholesterol metabolism, but also participates 
in synapse pruning, and therefore malfunction of ApoE 
in AD can cause fatal consequences for circuit function. 
ApoE is mainly expressed by astrocytes and reactive 
microglia. In humans, there are three genetic isoforms 
of apolipoprotein E responsible for cholesterol transport, 

Fig. 1 Three-party cross-talk among neurons, microglia and astrocytes in AD. Microglia and astrocytes actively respond to changes in the 
environment caused by amyloid (Aβ) depositions. Glia change their morphology and function, release neurotransmitters, immunomodulators 
such as cytokines, chemokines, complement factors and modulate each other’s activity as well as activity of other cells in the environment. Evident 
communication in AD is mediated by the neuronal Aβ-astrocytic C3/C3a–microglial C3aR axis. Some molecules and receptors as well as some 
genes and molecular pathways participating in the pathogenesis of the disease are shown. ADE astrocyte-derived exosomes, GDNF glial-derived 
neurotrophic factor, RAGE receptor for advanced glycation end products, sTREM soluble triggering receptor expressed on myeloid cells
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and one of them, ApoE4, is the best known risk factor for 
AD [55]. Generally, lipid metabolism is highly associated 
with AD pathology. Lipid transport is partially controlled 
by clusterin (CLU), a gene that also mediates apopto-
sis and an immune response. CLU in conjunction with 
ApoE is thought to be upregulated to protect neurons 
during damage mediated through astrocytes and micro-
glia, as inferred from an increased plaque load in double 
ApoE and CLU knock-out APP transgenic mice [77]. In 
humans, loss-of function alleles for another gene linked 
to lipid transport, an ATP-binding cassette transporter 
A7 (ABCA7), also a genetic risk factor for AD), has been 
associated with cortical and hippocampal atrophy [77]. It 
has been shown that stimulation of liver X receptor alpha 
(LXRa), a cholesterol sensor that regulates the func-
tion of immune cells and cholesterol metabolism, leads 
to increased levels of ApoE in astrocytes and increased 
phagocytosis of fibrillar Aβ by microglia [94]. The pro-
tective role of microglia and astrocytes ends when the 
immune response becomes chronic, and the phagocytic 
capacity of glia becomes overwhelmed. Hyperstimulation 
of glial cells can be fueled by various channel activators 
like Kv1.3 and P2X4 in microglia [69]. Further, release 
of various neuroinflammatory factors including IL-1β, 
TNF-α, NO, ROS, and neurotoxic products like gluta-
mate lead to excitotoxicity, unbalanced synaptic engulf-
ment and eventually neuronal death.

Subsets of reactive microglia and astrocytes in AD: a lesson 
from single‑cell sequencing
Recently, exciting single-cell and nuclei sequencing dis-
coveries revealed many different subsets of responsive 
microglia and astrocytes in AD. Glial activation and sub-
sequent inflammatory events are key contributors to the 
pathogenesis of AD and not simply a response to amyloid 
deposition. To this point, Mathys et al. described succes-
sive stages of microglial changes and the implementation 
of the neurodegenerative reprogramming that included 
increased proliferation followed by upregulation of MHC 
class II and antiviral and interferon-response genes [63]. 
Two distinct reactive microglia subpopulations were 
identified at a later stage in a mouse model of neurode-
generation based on expression of Type I or type II inter-
feron-response genes. Both types of interferon-response 
genes are actively involved in immune responses but how 
these particular microglia subpopulations contribute to 
neurodegeneration remains to be addressed. Similarly, 
microglia with upregulated expression of both IFN-γ 
responsive and MHC II genes showing a fully inflamma-
tory response were found in EAE, an animal model for 
MS [68]. In this study a combination of high-dimensional 
single-cell cytometry and fate mapping was used to cre-
ate a murine immune cell atlas for studying immune 

responses in the brain, particularly during aging, neu-
rodegeneration (models of AD) and neuroinflammation 
(MS). In EAE, microglia were found to be homogenously 
reactive, whereas during aging and AD, responsive 
microglia constituted only a small subpopulation. Using 
the same, single-cell RNA sequencing technology, a new 
subset of microglia cells present in animal models of AD, 
amyotrophic lateral sclerosis (ALS) and aging, called 
disease-associated microglia (DAM), was identified as 
part of microglia sensory mechanism for damage detec-
tion [44]. DAMs are characterized by downregulation of 
microglial homeostatic genes including purinergic recep-
tors, CX3CR1 and Tmem119, and upregulation of genes 
related to phagocytosis and lipid metabolism as well as 
expression of many genes that are known AD risk fac-
tors including Apoe, Tyrobp, Ctsd, Lpl and TREM2. The 
TREM/Tyrobp (DAP12) signaling pathway is critical for 
reduction of Aβ deposition and limitation of neurode-
generation by dampening inflammatory responses in 
microglia via reducing cytokine production and increas-
ing phagocytic activity. As found in different AD mouse 
models, TREM2 is necessary for full activation of the 
DAM program. It postulated that amyloid plaques in the 
early stage of the disease activate DAMs, which are fully 
functional in protecting against disease. However, over 
time, plaques accumulate and stimulate the inflamma-
some in microglia leading to disease progression [36].

The first in  vivo comparison of mouse and human 
CNS microglia heterogeneity at a single-cell resolution 
confirmed the existence of developmental heterogene-
ity of microglia and significant regional differences in the 
brain, as well as disease-associated patterns. However, 
there were high inter-individual variations in both mice 
and humans [61]. In that study, mouse embryonic micro-
glia were characterized by increased expression of genes 
related to lysosomal activity, such as Ctsb or Lamp1, but 
also apolipoprotein E (ApoE). Moreover, the postna-
tal brains displayed high expression of Sparc and Cst3 
encoding cystatin C, which is involved in CNS neurode-
generative diseases. The same Cst3 gene was also detected 
in a subpopulation of ALDH1L1 + astrocytes in the adult 
mouse brain. The most uniform phenotype of existing 
microglia was found in adult brains from both mice and 
humans. Homeostatic human microglia only partially 
overlap with those of adult mouse microglia. Analysis of 
human MS brains revealed high inter-individual hetero-
geneity and similarity to some subtypes of microglia in 
disease models. Interestingly, when distorted, microglia 
were able to quickly recover and transform their phe-
notypes, confirming their remarkable plasticity to envi-
ronmental changes. The microglial recovery-associated 
gene signature was found in the unilateral facial nerve 
axotomy (FNX) model of acute neurodegeneration not 
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driven by any susceptibility gene [93]. During the onset 
of recovery in  situ, a transient microglia subset of the 
facial nucleus has been identified with high expression of 
Apoe and Ccl5, showing lesion-dependent gene regula-
tion [93]. The functional role of the recovery microglial 
subtype is presently unclear. Using the deep single-cell 
RNA-seq technique, Li et al. confirmed the previous find-
ing that regardless of the region of the mouse brain, the 
adult homeostatic microglia displayed limited transcrip-
tomic heterogeneity in contrast to postnatal brain micro-
glia that were characterized by developmental complexity 
[50]. A new subpopulation of metabolically active micro-
glia (WAMs), transiently present in the first postna-
tal week in the white matter, displayed gene expression 
patterns mimicking DAMs. WAMs were found to be 
involved in phagocytosis of newborn oligodendrocytes 
and most likely astrocytes. In contrast to DAMs, WAM 
appearance did not depend on the TREM2–APOE axis.

Human studies by Mathys et al. showed a heterogenous 
response to AD pathological progression between cell 
types, especially early in disease development [64]. Late 
AD pathology, however, was characterized by non-cell 
specific upregulation of autophagy, apoptosis and stress 
response genes associated with maintenance of protein 
integrity as a global stress response. In general, human 
AD pathology in microglia correlated with enrichment 
in immune/inflammatory pathways, Aβ clearance and 
genetic risk factors for AD such as TREM2, APOE and 
the MHC class II genes. Disease-associated signatures 
of astrocytes revealed reactive astrocytes with prefer-
ential expression of GLUL and the AD risk gene CLU. 
Recent studies by Habib et al. using single-nucleus RNA 
sequencing identified disease-associated astrocytes 
(DAAs) in the AD mouse model, but also in aged human 
brain. These DAAs were characterized by upregulated 
expression of genes involved in development, differen-
tiation and immune responses and included encoding 
proteins involved in amyloid metabolism and clearance, 
such as CLU, Serpina3n, Cathepsin B, APOE (the latter 
two among genes shared with DAMs), [32]. The authors 
proposed a scenario of continuous DAAs activation. 
The process starts with a beneficial reaction called glio-
sis, which protects the healthy neurons. Afterwards, as a 
consequence of cross-talk with environmental mediators 
and other cells like microglia, there is continuous activa-
tion of the inflammatory response and neurotoxic fac-
tors like SerpinA3N leading to the progression of disease. 
Of note, the presence of a pool of genes shared between 
DAMs and DAAs might suggest that there is a general 
transcriptional program initiated in different cells in 
response to pathology. The most recent human study by 
Srinivasan et al. showed lack of DAM response in human 
AD microglia (HAM), and instead, HAMs exhibited 

accelerated aging and age-independent changes such as 
upregulation of APOE [88]. Surprisingly, the reduction of 
a homeostatic gene signature defined in mouse microglia 
was not observed in human samples.

The powerful sequencing technologies give us a unique 
opportunity to decipher the bidirectional communication 
mechanisms between microglia and astrocytes in many 
aspects of brain pathophysiology. However, they possess 
many technical variations and imperfections like under-
sampling and bias of cells that are sequenced. It must also 
be noted that human “healthy” tissue, used as a control in 
some studies, was derived from epilepsy surgery, where 
multiple seizures per day are taking place. Thus, caution 
should be taken in interpretation of these large amounts 
of data. Moreover, the expression signatures found in 
human samples only partially overlapped those found 
in mice. Animal models for AD characterized by accel-
erated amyloid or tau proteinopathy, although very use-
ful, do not mirror human pathology, which in most cases 
develops slowly with age. For example, single-cell RNA 
sequencing analysis of living microglia isolated from the 
aging and AD human cerebral cortex showed divergent 
enrichment for genes related to AD, in which DAM genes 
(in contrast to mice) were found to be present in several 
different human microglia subsets [71]. The complement 
component C1qB and the pattern recognition receptor 
CD14 were exclusively found in human studies [64]. Thus 
further single-cell resolution studies are needed to high-
light the complexity of glial involvement in human AD 
pathology. Most importantly, it is essential to understand 
how these different subsets of reactive glia translate into 
specific functions in health but also in particular disease 
contexts.

Genetic studies confirm the glial contribution 
to neuroinflammation in AD
Recent genetic studies have revealed more than 30 chro-
mosomal loci related to AD, many of which lie in non-
coding regions [77]. Studies that identify single nucleotide 
polymorphisms in inflammatory genes associated with 
AD risk underline the involvement of inflammation, 
microgliosis and astrogliosis (Fig. 1). Inflammatory reac-
tions that precede amyloid depositions were character-
ized by an increase in the level of cytokines, chemokines 
and complement as well as the involvement of microglia 
and astrocytes. It was reported that a genetic polymor-
phism in TGFβ1, an immunosuppressive cytokine that 
controls the activation of microglia, is associated with 
the risk of developing AD [56]. Another example of the 
glial participation in AD immune response is the involve-
ment of CR1 and CD33 genes, which are also genetic 
risk factors for AD [84, 118]. CD33 is a member of the 
SIGLEC (sialic acid-binding immunoglobulin-like lectin) 
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family of lectins able to inhibit cell signaling. CD33 was 
found to be upregulated in AD and the amount of amy-
loid depositions correlated with CD33-positive micro-
glia in AD patient brains [29]. CD33 influences the 
function of TREM2, which is expressed by microglia 
and infiltrating monocytes and upregulated by injury 
in AD [67]. TREM2 binds phosphatidylserine on apop-
totic cells and promotes phagocytosis of apoptotic cells 
and debris. It binds lipoprotein (e.g., ApoE) which in 
AD forms complexes with Aβ residues facilitating their 
removal by microglia [94]. The TREM2–APOE pathway 
is a major regulator of microglia function in neurode-
generation [47]. Besides phagocytosis, TREM2 also sup-
ports metabolism in microglia through mTOR signaling, 
and therefore, abnormal action and deficiency of TREM2 
may have detrimental effects on energetic and anabolic 
microglial metabolism. One of the proposed therapeu-
tic interventions in AD is based on nourishing microglial 
metabolism [97]. In TREM2 deficient 5XFAD mice, the 
total number of microglia was lower and microglia were 
less effective in Aβ amyloid internalization [107]. Also 
in humans, a homozygous loss-of-function mutation in 
TREM2 has been found to be associated with increased 
risk for AD [30]. In both humans and mice, dysfunctional 
TREM2 resulted in the accumulation of autophagic vesi-
cles and increased plaque-associated neurite dystrophy 
[97]. Gene profiling of human astrocytes from post-mor-
tem AD tissue revealed abnormal expression of 32 genes 
associated with  Ca2+ signaling and homeostasis [103]. 
Reactive astrocytes in AD display spontaneous  Ca2+ 
oscillations and aberrant intracellular  Ca2+ waves [104]. 
As noted above, ApoE4 isoform produced by astrocytes 
is one of the strongest genetic risk factors of AD [55]. 
Recent studies demonstrated that astrocytic ApoE4 con-
verts neuronal tau to a more aggressive state in different 
in vitro and in vivo tau models of AD [40]. Several studies 
of disease-susceptibility genes in AD revealed new can-
didates as disease risk factors with rare coding variants, 
also further confirming involvement of glia cells in the 
pathogenesis of this disease [86, 91].

Age as strongest risk factor for sporadic AD
One of the greatest risks for sporadic AD is aging, charac-
terized by gradual loss of physiological function and cell 
homeostasis, decreased levels of ATP, dysregulated apop-
tosis, increased radical production and decrease of BBB 
integrity. Gradual increase of inflammation occurring 
also in the CNS is a key factor of aging called “inflam-
maging” where the immune system undergoes a process 
of senescence [17]. Microglia and astrocytes effected 
by age are less effective in the regulation of synaptic 
plasticity and display altered lysosomal and mitochon-
drial functions and become activated by environmental 

changes in aged brain. Aging significantly impairs cogni-
tive properties that are severely impaired in AD patients. 
Transcriptomic profile of aging microglia revealed upreg-
ulated transcripts linked to brain inflammation, cell 
stress response and age-related diseases such as AD [9, 
72]. Transcriptome-wide studies of bulk ex  vivo human 
microglia allowed creation of an atlas of gene sets from 
aged humans that are mainly expressed by microglia and 
are associated with neuropathological tissues and sus-
ceptibility genes of AD, confirming the strong relation-
ship between age and neurodegenerative diseases [72]. 
Aged human microglia were characterized by down-
regulated genes within the TGF-β pathway suggesting 
loss of homeostatic programs and induction of a reactive 
profile. Intriguingly, the APOEε2 haplotype was found 
to be associated with a reduced aging human microglia 
signature. However, the much stronger AD risk factor, 
APOEε4, has not yet been related to an aged microglia 
signature. Further studies of this group on aged human 
samples by single-cell sequencing confirmed the enrich-
ment of microglia subsets involved in interferon response 
and antigen presentation, as well as genes involved in 
neurodegenerative diseases with only one particular sub-
type of microglia that has been changed (reduced) in AD 
[71]. In contrast to mouse models, human genes linked 
to DAMs or interferon-response genes were distributed 
across different human clusters. As shown by Hammond 
et  al., during aging in mice, there is progressive expan-
sion of clusters that contain very few cells in adult sam-
ples. Specifically, two microglia clusters were expanded 
in aged mice, one expressing a number of inflammatory 
signals such as CCL4 and IL-1β and the other, inter-
feron-response genes that can modulate inflammation 
[34]. A phenotypic signature in a subset of microglia 
located around Aβ plaques in APP/PS1 mice resembled 
CD11c + microglia in geriatric mice, both subsets being 
characterized by increased phagocytosis-associated 
markers CD11c and CD14 [68].

Similar to microglia, aged astrocytes in mice display 
upregulation of inflammation-related genes but also an 
increase in oxidative stress genes [32]. As recently shown, 
old astrocytes were dysfunctional in ion buffering and 
glutamate clearance that impact synaptic plasticity and 
cognitive decline in the senescent brain [81] One sug-
gested therapeutic strategy for memory enhancement in 
AD patients is to target the A2A receptor on astrocytes 
that is overexpressed during the disease. Ablation of this 
receptor in aging mice resulted in upregulation of Arc/
Arg3.1, an immediate early gene that is required for long-
term memory, and improved memory in mice [73]. Taken 
together, the changes that occur in old glia may impact 
the development and progression of age-related diseases 
such as AD.
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Progranulin‑related frontotemporal lobar dementia 
(GRN‑FTLD): a monogenic microglial disorder
Frontotemporal lobar dementia (FTLD) is the second 
most common neurodegenerative disorder that usually 
occurs in middle-aged humans. The disease affects the 
frontal and temporal lobes with early onset of demen-
tia and impairment of behavior, language and cognition. 
Like Alzheimer disease, most FTLDs are sporadic and 
most likely are caused by a combination of genetic and 
environmental factors. Some cases, however, are induced 
by genetic factors and are inherited in an autosomal 
dominant way. The disease has a large familial compo-
nent, with about 30–50% of cases reporting family his-
tory of disease. The disease is associated with multiple 
genes (Fig.  2). Mutations in the gene that encodes pro-
granulin (GRN) on chromosome 17q21–22, have been 
identified in patients with inherited FTLD characterized 
by tau-negative, ubiquitin-positive inclusions [99]. The 

43  kDa transactivating DNA binding protein (TDP-43) 
is the major ubiquitinated protein causing proteinopa-
thy in most cases of FTLD. Pathologic TDP-43 has been 
also found in ALS, 25–50% of Alzheimer’s cases, and Par-
kinson’s disease [4, 11, 76]. GRN mutation accounts for 
approximately 20% of familial and 5% of sporadic cases 
and results in loss of function or significantly diminished 
expression [6].

Progranulin is a ubiquitous, anti‑inflammatory molecule
Progranulin participates in many biological functions, 
including development, inflammation, growth and cell 
motility. In the brain, it acts as a neuronal growth fac-
tor, regulates synaptic structure and function, and is a 
modulator of neuroinflammation. Progranulin is charac-
terized by anti-inflammatory function that in part can be 
explained by its binding as a ligand for TNFR2 expressed 
by microglia [26] (Fig. 2). Studies in GRN-deficient mice 

Fig. 2 Contributions of microglia and astrocytes in the pathogenesis of GRN-FTLD. In normal conditions progranulin, an anti-inflammatory 
molecule with many biological functions is produced in the CNS predominantly by microglia and to a lesser degree by astrocytes, endothelial cell 
and neurons. Its production is differentially regulated dependent on the cell type. GRN can be degraded by microglial MMP-12 to granulins with 
pro-inflammatory actions. This process is regulated by astrocytic SLP1 molecule. In GRN-FTLD the inflammatory milieu driven by genetic factors 
and proinflammatory mediators like granulins changes the morphology and function of glia cells. Microglia and astrocytes become activated with 
higher lysosomal and phagocytic activities that increases TDP-43 proteinopathy. Some molecules, genes and molecular pathways participating in 
the process are presented. Poly I:C polyinosinic:polycytidylic acid, SLP1 secretory leukocyte protease inhibitor
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have shown overproduction of TNF and MCP-1 and 
increased spontaneous, age-dependent activation of 
astrocytes and microglia. Furthermore, neurons from 
GRN-deficient mice were shown to be more susceptible 
to damage by activated microglia and depletion of oxy-
gen and glucose [116]. GRN knockout mice have demon-
strated excessive activation of microglia with abnormal 
phagocytosis and excess of proinflammatory cytokines 
rendering them neurotoxic [60, 92]. Accordingly, the loss-
of-function mutation in GRN in humans is associated 
with dysregulation of pro-inflammatory cytokines, in 
particular IL-6 [116]. Progranulin is produced by a wide 
range of cell types, and in the CNS it is mainly released 
by mature neurons and microglia, with low levels found 
in astrocytes and endothelial cells [90]. The production 
of GRN in microglia and astrocytes is dependent on the 
state of activation whereas in neurons, GRN increases 
with age and is dependent on the neuronal activity asso-
ciated with BDNF (brain-derived neurotrophic factor). 
Increased expression of GRN is associated with neuro-
degeneration [2, 75]. Strong upregulation of progranulin 
may occur in astrocytomas and associated vascular cells 
[52].

There are different mechanisms of GRN regulation in 
microglia as compared to astrocytes. In microglia the 
production is stimulated by anti-inflammatory cytokines 
such as IL-4 and IL-13 and inhibited by inflammatory 
stimuli such as LPS or IL-1β/IFN-γ (Fig. 2). Conversely, 
in astrocytes GRN is stimulated by inflammatory agents, 
including IL-1β/IFN-γ or the toll-like receptor 3 ligand 
and polyinosinic:polycytidylic acid (poly I:C) [90]. More 
importantly, astrocytes in contrast to microglia are a 
key source of secretory leukocyte protease inhibitor 
(SLPI), especially in humans [90]. GRN mutation carri-
ers displaying the highest levels of SLP1 have later onset 
of disease [27]. SLPI inhibits proteolytic GRN cleavage 
caused by microglial MMP-12 which results in produc-
tion of granulins, small molecules with pro-inflammatory 
properties. Granulins have been found in inflammatory 
CNS conditions including an animal model for spontane-
ous MS [62]. Thus, astrocytes might control and regulate 
microglia activation by secretion of SLP1 and the com-
plex interplay among progranulin, MMP-12 and SLP1 
may regulate inflammatory responses in vivo.

The pathology of GRN‑FTLD involves gliosis and has a strong 
inflammatory component.
Astrocytosis and microgliosis with an abnormal lyso-
somal activity and activation of microglia with strongly 
enhanced phagocytic abilities as a result of chronic neu-
ronal stress are characteristic for GRN-FTLD [96]. GRN 
haploinsufficiency is associated with abnormal micro-
glial activation and neurodegeneration. Astrocytosis 

and microgliosis accompanying increased TDP-43 phos-
phorylation are especially evident in homozygous Grn 
knockout mice [45]. Large human GWAS data involving 
the immune system have provided evidence for broad 
genetic overlap between FTLD and immune-mediated 
disease genes, particularly in the HLA region rich in 
genes associated with microglial function [10]. New 
candidates that can modulate the FTLD gene such as 
PGBD5, LRRK2 and TBKBP1 have been found. The latter 
two of these genes are upregulated during inflammatory 
responses and may also be involved in the regulation of 
TNF-α secretion. Importantly, elevated levels of TNF-α 
is a basic feature of FTLD [10]. It is worth noting that 
prolonged infectious or inflammatory conditions were 
observed in patients with FTLD decades before the onset 
of neuropsychiatric symptoms [116].

Potential treatments for GRN-FTLD patients might 
include GRN gene replacement, injected recombinant 
GRN protein or stimulation of GRN signaling. In a mouse 
model of FTLD, an overexpression of GRN resulted in 
normalized level of LAMP1 expression and a reduction 
in lysosomal abnormalities [5]. Several alkalizing agents 
including chloroquine already used in humans for other 
applications were found to upregulate GRN levels in 
lymphoblasts from GRN-FTLD patients and organotypic 
cortical slice cultures from mice deficient for GRN [13]. 
However, due to the carcinogenic and obesity-promoting 
properties of GRN, boosting production of this molecule 
can be a difficult task with associated risks [96]. Recent 
studies have revealed disease modifiers for GRN-related 
FTLD, including SORT1, RIPK1 and PSAP, that may rep-
resent new targets for disease-modifying therapies [109]. 
Clearly, further research in FTLD genetics, neuroimaging 
and fluid biomarkers for early detection will be required 
to enable possible intervention with novel drugs.

Microglia in astrocytoma
Astrocytoma is the most common primary brain tumor 
derived from astrocytes. Grade IV astrocytoma, called 
glioblastoma multiforme (GBM), is one of the most 
aggressive and deadly malignant tumors [114]. Like 
astrocytes, astrocytic tumors have marked heterogene-
ity, which would appear to be the main cause of poor 
treatment efficacy. A recent study by John Lin et  al. 
using an intersectional, FACS-based approach allowed 
the identification of five distinct astrocyte subpopula-
tions across three brain regions that show extensive 
molecular and functional diversity [42]. Some of the 
subpopulations possessed high proliferative and migra-
tory properties typical of highly invasive brain tumors. 
It is therefore possible that malignant cells might origi-
nate from such populations. It was reported that cer-
tain adult brain subpopulations of astrocytes correlated 
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with cellular populations present in highly heterog-
enous gliomas in mice and humans with increased 
expression of genes linked to synapse formation [42]. 
The high cellular heterogeneity with genetic and epige-
netic variability are features of GBM [113]. Exome and 
transcriptome sequencing revealed a diverse array of 
recurrent genomic mutations in these tumors, includ-
ing  TP53, IDH1,  NF1, PTEN,  PDGFRA,  EGFR  and 
MAPK pathway mutations [102, 106]. During the 
development and progression of astrocytoma, there is 
a close interplay among neurons, astrocytes and micro-
glial cells that promote tumor development, growth 
and invasion [25, 65, 78, 100] (Fig. 3). It is apparent that 
glioma tumor progression is facilitated by neuronal 
activity [101]. In turn, the activated cancer cells pro-
mote neuronal and synaptic activity [42]. Malfunction 
of the latter leads to seizures, which are a hallmark of 
glioma and tumor progression.

Normal cellular communication among brain cells is 
severely interrupted in astrocytomas. Cells lose their abil-
ity to communicate via calcium signaling, which becomes 
unsynchronized. The calcium signaling is mainly used 
by tumors for increased cell mobility and chemotaxis. 
However, targeting the calcium pathway would be non-
specific, as it would affect both neurons and glial cells. 
Cross-talk among microglia and astrocytes with neo-
plastic cells is possible through different mechanisms of 
communication and transportation such as direct cell-
to-cell contact, cytokines, chemokines, neurotropic fac-
tors, nanovesicles and non-vesicular mediated secretion 
[65]. In addition, almost 50 human ABC transporter pro-
teins are involved in the active transport of a wide range 
of substances, including immune modulators, which 
participate in microglia/astrocyte/GBM intercommuni-
cation and some of these genes are known to be overex-
pressed in gliomas [8]. Targeting the microenvironment, 

Fig. 3 Participation of astrocytes, microglia and TAMs in glioblastoma-associated events. Active cross-talk among glia cells, macrophages and tumor 
cells via inflammatory modulators and receptors are taking place in astrocytoma. Activated glia and macrophages change their morphology and 
metabolism as well as undergo transcriptomic re-programming, actively participating in anti-tumor responses at the first stage of tumorigenesis. 
However, as tumor progresses, glia cells and TAMs reprogrammed by tumor milieu boost tumor growth and invasion. Some of molecules 
participating in the process are depicted. In the upper right corner some genes and molecular pathways participating in tumor proliferation, 
migration and invasion as well as an angiogenesis are presented. ATG5 autophagy-related 5 gene, CHI3L1 glycoprotein chitinase 3-like 1, GSC 
glioma-like stem cells, HIF-1 hypoxia-inducible factor-1, Wnt wingless-type MMTV integration site family, TAMs tumor-associated macrophages
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especially glial cells within and around cancer tissue, has 
gained favor as a future therapeutic approach.

Activated TAMs and astrocytes in astrocytoma
Glia cells are first to react to the alterations in tumor 
microenvironment. Poor prognosis of astrocytoma cor-
relates with an increased number of activated microglia 
and infiltrating macrophages. The tissue macrophage 
compartment in glioma or tumor-associated mac-
rophages (TAMs), including resident microglia, accounts 
up to 30–50% of all cell types in gliomas, and the increase 
in their number correlates with a higher grade and 
worse prognosis. Resident microglia constitute a smaller 
portion, about 15% of TAMs, and reside in the tumor 
periphery whereas the rest are infiltrating bone marrow-
derived macrophages that occupy the perivascular area 
[14]. These two populations have unique gene expression 
profiles and play different roles in tumorogenesis. The 
role of microglia at early stages of tumor transformation 
is still unclear.

It is postulated that at the beginning, microglia use 
their immune machinery to stop the malignant process, 
whereas during tumor progression activated microglia 
support the GBM [111]. One of the existing problems 
in studying the involvement of particular macrophage 
populations is the lack of specific phenotypic markers. 
A recently identified microglia-specific transcriptional 
regulator, Sall1, may be promising in future studies [12]. 
Activated microglia and macrophages play a central 
role in the delivery of growth factors and signaling mol-
ecules to nearby neurons and transformed astrocytes. 
In response, GBM facilitates recruitment of TAMs by 
release of MCP, GM-CSF, CSF-1 and osteopontin [83, 
112].

Microglia promote the spread of astrocytoma by 
secretion of enzymes, such as MMP2, MMP9 and 
MMP14 which degrade the extracellular matrix and 
facilitate tissue invasion [59]. However, MMP inhibi-
tors failed in clinical trials, but may have some applica-
tion as prognostic biomarkers [80]. Several chemokines 
and chemokine receptors were implicated in the inva-
sion process: CCL2, a member of the monocyte che-
moattractant protein (MCP) chemokine family, plays 
an important role in mediating monocyte migration 
through its receptor CCR2. CCL2 produced by tumor 
cells stimulates microglial IL-6 production, which leads 
to tumor growth and invasiveness [20]. Low CCL2 
expression in glioma patients has been associated with 
a significantly prolonged patient survival [14]. However, 
meta-analysis of the data from clinical trials using neu-
tralizing monoclonal antibodies against CCL2 to block 
the CCL2–CCR2 axis, did not give positive results. 
A recent report showed that the CXCR4 antagonist, 

peptide R, affects not only the migration of myeloid 
cells, but also tumor cell metabolism and proliferation, 
and seems to have some therapeutic value [80].

Astrocytes, together with glial progenitors, serve 
as a cellular origin for malignant glioma [119]. The 
molecular pathways and their regulations are different 
in GBM and non-transformed reactive astrocytes that 
nevertheless actively participate in tumor development 
and progression [108]. Like microglia, activated astro-
cytes change their morphology and metabolism as well 
as undergo transcriptomic re-programming, actively 
participating in anti-tumor responses, tumor growth 
and invasion. Unlike microglia, astrocytes numerously 
occupy the peritumoral area and are also present at 
the tumor edge, thereby creating a peripheral hypoxia 
[54]. Mutual astrocyte–GBM cross-talk is evident and 
eventually works in favor of tumor growth. Mesenchy-
mal transition and increased resistance to glioblastoma 
therapy has been linked to astrocyte reactivity [70]. 
A transcriptional shift of glioblastoma cells towards a 
mesenchymal phenotype followed by increased prolif-
eration and migration is partially caused by a glycopro-
tein Chitinase 3-like 1 (CHI3L1, also termed YLK-40) 
released by tumor-associated reactive astrocytes [115]. 
Pro-angiogenic and metastatic activity of CHI3L1 has 
been efficiently blocked in vitro and in vivo in an ani-
mal model of glioblastoma multiforme by neutralizing 
antibody treatment, highlighting the potential benefit 
of this approach [23]. Additionally, astrocytes protect 
glioma cells from chemotherapy partly through creat-
ing gap junctions with GBM [117]. At the tumor site, 
both microglia and astrocytes contribute to a positive 
loop based on IL-6 production by microglia trigger-
ing astrocytes to release MCP-3, a chemokine attract-
ing more microglial cells [39]. A three-party cross-talk 
is maintained via CX3CL1 released by astrocytes and 
neurons and its receptor, CX3CR1 that is only present 
on microglia. CX3CL1 produced by human glioma cells 
enhance cellular influx and increase MMP expression 
and tumor invasion [24]. Many studies have focused 
on Glioma-like Stem Cells (GSC) that are found in the 
marginal zone near microglia/macrophages. The latter 
promote high invasiveness of GSC by secretion of IL-6 
in a TLR-4 dependent manner. Depletion of IL-6 in vivo 
resulted in inhibition of tumor growth and subsequent 
microglia infiltration [20]. However, GSC represent less 
than 20% of the tumor mass, while the majority of cells 
are undifferentiated glial cells. It is possible that tumor 
cells use existing programs and/or existing cells to 
change the environment and foster malignant growth. 
Such activation of the neuronal milieu may as a conse-
quence induce proliferation of glioma cells [42].
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Immunosuppression in astrocytoma
Immunosuppression is the hallmark of a growing tumor 
despite the increased infiltration of immunologically 
competent cells such as resident microglia and mac-
rophages. Of note, other subpopulations of immune 
cells participate in immunosuppression and contribute 
to glioblastoma tumor progression [79]. Recent analysis 
of the gene expression profile of microglia in a mouse 
model of glioblastoma using RNA sequencing, con-
firmed microglial role in suppression of the adaptive 
immune response to the tumor, reduction of capacity 
to directly kill tumor cells and promotion of tumor cell 
invasion and proliferation [57]. Microglia are unable to 
see cancer cells due to decreased expression of MHCII 
[65]. In addition, the tumor environment reprograms 
microglia and macrophages to act as promoters of 
tumor growth and invasion in part by creating an anti-
inflammatory milieu [35]. Cytokines such as IL-6, TGF-
β, IL-10 and IL-4 dominate over inflammatory TNF-α, 
IL-12 and IL-2; and the NFkB signaling pathway stimu-
lated by TNF-α is significantly downregulated in high-
grade gliomas. Glioblastoma cells block astrocytic 
anti-tumor responses partially by releasing IL-10 and 
IFN-γ resulting in tumor growth [33, 66]. In response, 
tumor-reactive astrocytes increase expression of 
CD274 as well as IL-10 and IFN-γ by reprogramming 
myeloid cells and upregulating PD-L1 and FasL [37]. 
Moreover, IL-4, through activation of NFAT and STAT6 
transcription factors, induces the expression of IGF-1 
in TAMs, which signals neighboring tumor cells to acti-
vate the PI3K pathway to promote cell proliferation and 
tumor expansion.

Most glioblastoma patients show a hyperactive PI3K 
pathway due to either PTEN alterations or PIK3CA 
mutations [85]. Of interest, IGF-1 can increase activity 
of the PI3K pathway found in CSF-1R-resistant tumor 
cells. Combinations of IGF-1, NFAT or STAT6 inhibi-
tors with CSF-1R inhibitors partially prevented tumor 
recurrence. Clinical trials focusing on inhibition of CSF-
1R signaling, on which microglia/macrophage functions 
critically depend, have failed, even though the treat-
ments enhanced phagocytosis. There is some hope in 
STAT3 blockade, which inhibits genes that stimulate the 
cell cycle and glioblastoma growth by blocking apopto-
sis. STAT3 is not normally activated in healthy brains 
under basic conditions. Conversely, the STAT3 pathway 
is highly activated in glioma and in turn inhibits activ-
ity of microglia and macrophages [80]. Several strategies 
targeting microglia/macrophages have been employed, 
including depletion, inhibition of recruitment and 
angiogenesis and enhancement of glioma invasion and 
immune potentiation. Thus far, none of these approaches 
were effective for treatment of glioblastomas.

Recently, particular attention has been paid to the 
Wingless-type MMTV integration site family (Wnt) of 
lipidated and glycosylated proteins that regulate many 
biological processes, including cell communication and 
lifelong immune regulation. These proteins are abnor-
mally activated in gliomas partly due to several mutations 
(Matias et  al. 2018a). How the aberrant Wnt signaling 
pathway effects each cell population involved in cancer 
progression has not yet been established, although Wnt 
molecules like Wnt5a and Wnt3a can be secreted not 
only by GSC but also activated microglia and astrocytes 
[48]. However, a recent study showed that high levels of 
Wnt5a in glioma were associated with upregulation of 
inflammatory processes and microglia activation and 
infiltration [19].

Some metabolic restrictions, such as low glucose lev-
els, a low pH, hypoxia and the generation of suppressive 
metabolites facilitate immunosuppression and limit anti-
cancer immune responses [18]. Hypoxia as a key feature 
of the tumor environment, especially in rapidly growing 
astrocytomas, and is the main factor in promoting tumor 
cell proliferation, invasion and drug resistance. Low oxy-
gen pressure induces astrocytic secretion of CCL20 that 
further reinforces HIF-1α (hypoxia-inducible factor-1) in 
tumor cells [41]. It has been found that the HIF-1α/miR-
224-3p/ATG5 pathway impacts the mobility of cells by 
regulating hypoxia-induced autophagy in glioblastomas 
and astrocytomas [38]. MiR‐224‐3p inhibits hypoxia-
induced autophagy by directly targeting a key regulator of 
autophagy, an autophagy-related 5 (ATG5) gene that may 
be a novel target against hypoxia-induced autophagy in 
glioblastoma and astrocytoma. Hypoxic modification was 
found to influence both gene expression and metabolic 
changes that were associated with improved anticancer 
immune responses. Several metabolic modules have also 
been proposed for analysis during every phase of disease 
to help identify targeted, time-dependent therapies [105].

Concluding remarks
Currently, the extraordinary complexity and hetero-
geneous nature of glia have become an obstacle in glia 
research [31]. Genetic studies highlight the prominent 
role for different subtypes of glia in susceptibility to dif-
ferent pathological disorders. Glia aging is also a key fac-
tor in the development of neuropathology. Genes induced 
by aging and involved in lipid and lysosomal biology are 
so far the only characteristics common for animal and 
human studies. Glial cells, especially astrocytes, are 
masters at providing metabolic fitness to the CNS, thus, 
targeting metabolic pathways may offer some therapeu-
tic strategies. Recently, several different glial-specific 
targets, partially described in this paper, raise hope for 
discovering new therapeutics (Fig.  4). Special interest 
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has been paid to the dysfunction of cellular metabolism 
and bioenergetic fitness as a possible genesis of neuro-
pathology, for example the neuroenergetic hypothesis of 
AD or the Warburg and reverse Warburg hypotheses in 
cancer [98, 105]. Several different molecular glial targets 
can be modulated by gene therapy, recombinant pro-
teins, epigenetic, transcription and translation regulators 
or nonsense suppression. Presently for AD and GRN-
FTLD only symptomatic treatments are available. Cur-
rently although still not available, some disease modifiers 
known to upregulate GRN levels such as SORT1, RIPK1 
and PSAP are being investigated [109]. Modifiers of age 
of onset are potential targets for disease-delaying thera-
pies. There is a need for new tools, new techniques such 
as single-cell sequencing methods that produce unbiased, 
high-throughput data or different omics to grasp multi-
ple functional and molecular patterns of glial cells that 
change upon environmental factors. Deciphering the 
nature of glial cellular diversity in the brain, how particu-
lar cell populations function and communicate in larger 
cellular networks during development, adulthood and 

aging and most importantly how to restore loss-of func-
tion in glia cells are the future goals for neurobiology.
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