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Mer regulates microglial/macrophage M1/
M2 polarization and alleviates
neuroinflammation following traumatic
brain injury
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Abstract

Background: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial/
macrophage activation and neuroinflammation are key cellular events following TBI, but the regulatory and
functional mechanisms are still not well understood. Myeloid-epithelial-reproductive tyrosine kinase (Mer), a
member of the Tyro-Axl-Mer (TAM) family of receptor tyrosine kinases, regulates multiple features of microglial/
macrophage physiology. However, its function in regulating the innate immune response and microglial/
macrophage M1/M2 polarization in TBI has not been addressed. The present study aimed to evaluate the role of
Mer in regulating microglial/macrophage M1/M2 polarization and neuroinflammation following TBI.

Methods: The controlled cortical impact (CCI) mouse model was employed. Mer siRNA was
intracerebroventricularly administered, and recombinant protein S (PS) was intravenously applied for intervention.
The neurobehavioral assessments, RT-PCR, Western blot, magnetic-activated cell sorting, immunohistochemistry and
confocal microscopy analysis, Nissl and Fluoro-Jade B staining, brain water content measurement, and contusion
volume assessment were performed.
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Results: Mer is upregulated and regulates microglial/macrophage M1/M2 polarization and neuroinflammation in
the acute stage of TBI. Mechanistically, Mer activates the signal transducer and activator of transcription 1 (STAT1)/
suppressor of cytokine signaling 1/3 (SOCS1/3) pathway. Inhibition of Mer markedly decreases microglial/
macrophage M2-like polarization while increases M1-like polarization, which exacerbates the secondary brain
damage and sensorimotor deficits after TBI. Recombinant PS exerts beneficial effects in TBI mice through Mer
activation.

Conclusions: Mer is an important regulator of microglial/macrophage M1/M2 polarization and neuroinflammation,
and may be considered as a potential target for therapeutic intervention in TBI.
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Background
Traumatic brain injury (TBI) is a devastating neuro-
logical disease and a major cause of death and disability
worldwide, not only young people but also the elderly [1,
2]. It is estimated that approximately 70 million individ-
uals suffer a TBI annually [3]. Notably, the pathophysio-
logical processes of TBI are rather complex, which occur
in the acute phase and yet continue to evolve over time,
leading to persistent, sometimes life-long, consequences
[4]. TBI is an important risk factor for a variety of
chronic neurological disorders, such as epilepsy, stroke,
psychiatric illness, and neurodegenerative diseases [5].
There is no doubt that TBI not only severely affects the
daily life of survivors and their families, but also results
in substantial socio-economic impacts [6]. However, a
comprehensive understanding of this notorious disease
is still lacking, and the need for therapeutics that effect-
ively improve long-term functional outcomes in TBI sur-
vivors remains unmet.
Mechanistically, both primary and secondary injury

mechanisms are involved in the neuropathology of TBI.
Secondary brain injury, which occurs from initial insults
to the brain, is an important determinant of TBI out-
comes [7]. It consists of ionic homeostasis disturbance,
excitotoxicity, oxidative stress, inflammation, and cell
death, among others. In particular, neuroinflammation is
one of the most common and important cellular events
following TBI [8]. It can evolve over minutes to days,
months, and even years after the initial injury and con-
tributes to the development of both acute and chronic
neurological consequences post-insult [9, 10]. Microglia,
the major resident immune cells in the brain, are pre-
sumed to be key players in neuroinflammation after TBI
[11]. Also, peripherally derived macrophages are actively
involved in acute neuroinflammatory responses after
TBI [12]. It has reported that microglia/macrophages are
highly plastic and assume their phenotypes dependent
on different microenvironmental cues, such as pro-
inflammation and anti-inflammation, among others [13].
The pro-inflammatory M1-like phenotype expressing
signature markers such as CD16 and CD32 tends to

release destructive mediators, including tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), and inducible
nitric oxide synthase (iNOS). In contrast, the anti-
inflammatory M2-like phenotype, characterized by the
molecular signatures of CD206 and arginase 1 (Arg-1),
produces beneficial mediators such as interleukin-10
(IL-10) and transforming growth factor-β (TGF-β) [14].
Notably, the M1-like phenotype is more likely associated
with uncontrolled neuroinflammation often observed in
neurodegenerative diseases, while the M2-like phenotype
promotes inflammation resolution and tissue repair [15].
Thus, a balanced response between polarized microglial/
macrophage phenotypes is essential for immune homeo-
stasis in the brain.
Currently, the dualistic roles of distinctly polarized

microglial/macrophage populations have been demon-
strated in major central nervous system diseases (CNS),
including TBI [16, 17]. Studies from animal models indi-
cated that despite both M1-like and M2-like polarized
microglial/macrophage being activated after TBI, the ac-
tivity of M2-like response declines over time, whereas
the pathological M1-like effect can persist for a long
period of time post-insult [16, 17], and modulating the
M1-M2 polarization balance has been shown to be bene-
ficial for functional outcomes [18, 19]. However, the mo-
lecular mechanisms underlying microglial/macrophage
polarization in TBI are still not fully understood. Re-
markably, the neuroinflammatory responses following
TBI are highly complex and cannot be so easily delin-
eated by using a binary M1/M2 nomenclature [20]. For
instance, in a controlled cortical impact (CCI) mouse
model of TBI, Morganti et al. found that activated
microglia/macrophages adjacent to the ipsilateral perile-
sional cortical tissue simultaneously express both “M1-
like” and “M2-like” phenotypic markers across multiple
time points after injury [21]. Instead of switching to a
polarized “M1-only” or “M2-only” phenotype, these cells
shape their responses in complex and mixed phenotypes
during CNS injury and disease, including TBI [12, 20,
21]. And the polarization responses of these cells are
heterogeneous and overlapping after injury, such that
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pro-inflammatory responses are occurring concurrently
with the expression of anti-inflammatory and tissue re-
pair mediators [12].
Myeloid-epithelial-reproductive tyrosine kinase (Mer),

a member of the Tyro-Axl-Mer (TAM) family of recep-
tor tyrosine kinases [22], plays a critical role in the regu-
lation of inflammatory responses in peripheral
macrophages [23–26] and brain microglial cells [27–29].
Specifically, Mer signaling stires macrophage
polarization towards an M2-like phenotype [30]. For in-
stance, it reported that protein S (PS)-mediated activa-
tion of Mer inhibited M1-like polarization of peritoneal
and tumor-derived macrophages [31]. Besides, growth
arrest-specific protein 6 (Gas6)-mediated Mer signaling
increases the expression of M2-associated genes such as
Arg-2 and VEGF in bone marrow-derived macrophages
[32]. Mer signaling is also required for the efficient
clearance of early apoptotic cells by M2c-like macro-
phages [33]. However, the function of Mer in regulating
the innate immune response and microglial/macrophage
M1/M2 polarization in TBI has not been addressed. In
the present study, we hypothesized that Mer upregula-
tion is a key modulator of microglial/macrophage M1/
M2 polarization and neuroinflammation in the acute
stage of TBI. We found that inhibition of Mer shifts
microglial/macrophage polarization toward the M1-like
phenotype via regulating the signal transducer and acti-
vator of transcription 1 (STAT1)/suppressor of cytokine
signaling 1/3 (SOCS1/3) pathway, which exacerbates
neuroinflammation and secondary brain damage follow-
ing TBI. In contrast, activation of Mer signaling in-
creases microglial/macrophage M2-like polarization
while decreases M1-like polarization and confers neuro-
protection after TBI.

Materials and methods
Animals
Adult male and female C57BL/6 mice (22–27 g, aged 8–
10 weeks) which were purchased from Slac Laboratory
Co., Ltd. (Shanghai, China) were used for this study.
Notably, male mice were used in this study except that
14 female mice were tested to compare the effect of sex
differences on Mer expression and neurofunctional out-
comes after TBI. All mice were housed in filter-top cages
and fed a standard diet, with a 12-h light/dark cycle.
Free access to food and water as well as controlled
temperature and humidity were provided. All animal ex-
periments were performed according to the Institutional
Animal Care and Use Committee of Zhejiang University.
The procedures were conducted according to the Na-
tional Institutes of Health’s Guide for the Care and the
Use of Laboratory Animals and the ARRIVE (Animal
Research: Reporting In Vivo Experiments) guidelines. All

efforts were made to minimize animal suffering and the
number of animals sacrificed.

Randomization and blinding
All animals were randomized for group allocation and
surgical procedures and included in the analysis. The
operators responsible for the experimental procedures
and data analysis were blinded and unaware of group al-
location throughout the experiments.

TBI model
TBI was induced in C57BL/6 mice using a CCI model
(Suppl. Fig. 1A-C), as described previously [34]. Briefly,
mice were anesthetized by an intraperitoneal injection of
pentobarbital sodium (50 mg/kg) and placed in the
stereotaxic frame. A 4-mm-diameter craniotomy was
performed using a portable drill over the right parietal
cortex between bregma and lambda, 2 mm lateral to the
midline. The dura mater was kept intact over the cortex.
The CCI was performed perpendicular to the brain sur-
face using a PinPoint™ Precision Cortical Impactor (Cary,
NC, USA) with a 3-mm-diameter impact tip. The impact
velocity is 3 m/s, the impact duration is 150ms, and the
impact depth is 2 mm. After TBI, the bone flap was im-
mediately replaced and sealed, and the scalp was sutured
closed. The animal’s core body temperature was main-
tained at 37 ± 0.5 °C with a thermostatically controlled
heating pad during surgery. Sham animals were sub-
jected to all aspects of the protocol (surgery, anesthesia,
craniotomy, injection, and recovery) except for CCI. Re-
combinant PS (0.2 mg/kg) (9489-PS, R&D Systems) was
administered via the tail vein at 1 h, 1 day, and 2 days
after the CCI [35, 36] (Suppl. Fig. 2).

Intracerebroventricular (i.c.v.) injection
Previous studies demonstrated that i.c.v. delivery of
siRNA can efficiently silence target gene expression in
the brain with a range of 50–80% [37–39]. The i.c.v. ad-
ministration of siRNA was performed as previously de-
scribed [40] (Suppl. Fig. 1D-F). A 1-mm-diameter burr
hole was drilled into the right side of the skull (1.0 mm
lateral and − 0.25 mm anterior-posterior (AP) to
bregma). Mer siRNA or scrambled siRNA (500 pmol,
Thermo Fisher Scientific) mixed with the transfection
reagent (Engreen Biosystem Co., Ltd.), for a total volume
of 2 μl, was delivered into the ipsilateral ventricle (1.0
mm lateral and − 0.25 mm AP to bregma, 2.5 mm dorso-
ventral (DV) below the skull). The injection was per-
formed at a rate of 0.5 μl/min, then the needle stayed in
the brain for another 5 min after injection to avert leak-
age, and then the burr hole was sealed with bone wax,
and the incision was closed with sutures. Mice were
placed in individual recovery cages. The i.c.v. injection of
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siRNA was performed 1 day before and 10 min after
TBI.

Neurobehavioral function assessment
Modified neurological severity scores (mNSS)
The mNSS score was assessed as previously reported
[34]. It includes sensory, motor, balance, and reflex tests.
The neurological function was graded on a scale of 0–18
(normal score, 0; maximal deficit score, 18) and recorded
before TBI, as well as at 1, 3, and 7 days after TBI.

Foot-fault test
It was performed to evaluate the motor function simi-
larly to that described previously [40]. Mice were placed
on hexagonal grids of different sizes. Mice placed their
paws on the wire while moving along the grid. With
each weight-bearing step, the paw may fall or slip be-
tween the wire. This was recorded as a foot fault. The
total number of steps (movement of each forelimb) that
the mouse used to cross the grid was counted, and the
total number of foot faults for each forelimb was re-
corded. The percentage of forelimb faults to the total
number of steps was calculated.

Rotarod test
It was performed to test the motor coordination and the
limb strength as previously described with the Rota-Rod
Treadmills (BW-ZH600, Shanghai Bio-will Co., Ltd.)
[40]. Test sessions consist of six trials at a variable speed
(an initial velocity of 5 rpm was used for the first 10 s, a
linear increase from 5 to 10 rpm for the next 30 s, and a
linear increase from 10 to 20 rpm between 40 and 90 s).
The final score was determined as the mean time that a
mouse was able to remain on the rod over six trials.

Brain water content measurement
Brain water content was measured as previously re-
ported [34]. Briefly, mice were sacrificed 72 h after TBI,
and the brains were obtained without transcardiac perfu-
sion. Tissue samples of injured hemispheres were dis-
sected and weighed on an electric analytic balance to
obtain the wet weight and then dried at 100 °C for 48 h
to obtain the dry weight. Brain water content was calcu-
lated using the following formula: brain water content
(%) = (wet weight − dry weight)/wet weight × 100%.

Contusion volume assessment
To measure the contusion volume in the ipsilateral cor-
tex 72 h after TBI, cresyl violet-stained sections were
digitized and analyzed by using ImageJ (National Insti-
tutes of Health, Bethesda, MD, USA) as previously re-
ported [41]. The volume was computed by adding the
injury areas and multiplying with the inter-slice distance
(500 μm). Hemispheric tissue loss was expressed as a

percentage that was calculated by the use of the follow-
ing formulae: [(contralateral hemispheric volume − ipsi-
lateral hemispheric volume)/(contralateral hemispheric
volume) × 100%].

Quantitative RT-PCR
Total RNA was isolated from sham and injured brains
using the TRIzol reagent (Sigma-Aldrich, St. Louis, MO,
USA) according to the manufacturer’s instructions.
Then, RNA (1 μg) from each sample was reverse-
transcribed to cDNA by PrimeScriptTM RT reagent kit
(Takara Bio Inc, Shiga, Japan). Afterward, quantitative
reverse transcription-polymerase chain reaction (RT-
PCR) was conducted with SYBR® Premix Ex Taq™
(Takara Bio Inc, Shiga, Japan) on a 7300 Plus Read-Time
PCR System (Thermo Fisher Scientific). The cDNA was
used as a template in a 20 μl reaction volume (10 μl of
PCR mix, 5 pmol of forward and reverse primers, 1 μl
cDNA template and proper volume of water). The PCR
reaction was performed as follows: Cycling conditions
began with an initial DNA denaturation step at 95 °C for
20 s, followed by 40 cycles at 94 °C for 15 s, 56 °C for 30
s, and 72 °C for 25 s. Each sample was examined in tripli-
cate. The threshold cycle (CT) readings were collected,
and the relative expression of mRNA of target genes was
calculated with the 2−ΔΔCT method and was normalized
to the glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) level in all samples. The expression levels of
the mRNA were then reported as fold changes versus
sham controls. The sequences of the primer pairs for
target genes are as shown below:

Gene Forward primer sequence
(5′–3′)

Reverse primer sequence
(5′–3′)

CD16 TTTGGACACCCAGATGTTTCAG GTCTTCCTTGAGCACCTGGATC

CD32 AATCCTGCCGTTCCTACTGATC GTGTCACCGTGTCTTCCTTGAG

iNOS CAAGCACCTTGGAAGAGGAG AAGGCCAAACACAGCATACC

CD206 CAAGGAAGGTTGGCATTTGT CCTTTCAGTCCTTTGCAAGC

Arg-1 TCACCTGAGCTTTGATGTCG CTGAAAGGAGCCCTGTCTTG

IL-10 CCAAGCCTTATCGGAAATGA TTTTCACAGGGGAGAAATCG

Mer CCTCTGCTTCGCCACATCTGTA
TG

GACCAGCCAATCTCATTC
CGACAG

SOCS-
1

CCTCGTCCTCGTCTTCGTCCTC GAAGGTGCGGAAGTGAGT
GTCG

SOCS-
3

GACCAAGAACCTACGCATCCAG
TG

GCACCAGCTTGAGTACAC
AGTCG

GAPD
H

TTCAACGGCACAGTCAAGG CACCAGTGGATGCAGGGAT

Western blot
Western blot was performed as previously described
[34]. Briefly, tissue samples from the ipsilateral cortex of
sham/TBI mouse brains were homogenized in RIPA
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buffer (50 mM Tris-HCl at pH 7.4,150 mM NaCl, 1%
Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 1
mM EDTA) with protease and phosphatase inhibitors,
followed by denaturation at 95 °C for 10 min. Then the
protein samples were separated by SDS-PAGE and
transferred onto polyvinylidene fluoride (PVDF) mem-
branes (Millipore). Next, the PVDF membranes were
blocked with 5% bovine serum albumin for 1 h and incu-
bated with the primary antibodies overnight, including
anti-Mer antibody (1:1000, Abcam, ab184086), anti-p-
Mer antibody (1:500, Abcam, ab192649), anti-STAT1
antibody (1:1000, CST, 14994), anti-p-STAT1 antibody
(1: 1000, CST, 9167), anti-SOCS-1 (1:1000, Abcam,
ab62584), anti-SOCS-3 (1:1000, Abcam, ab16030), and
anti-GAPDH (1:5000, Abcam, ab8245). After that, the
PVDF membranes were disposed of with the relevant
secondary antibodies (1:5000) for 1 h at room
temperature and observed using the ECL kit chemilu-
minescence reagents (Millipore, Billerica, MA, USA).
The signals of protein bands were detected with the
Chemidoc detection system and quantified using Quan-
tity One software (Bio-Rad).

CD11b-positive cell isolation
A magnetic-bead conjugated anti-CD11b antibody was
used to isolated microglia/macrophages from injured
brain tissue using magnetic-activated cell sorting
(MACS) technology as previously described [18]. Ipsilat-
eral cortical tissues from sham and CCI mice were disso-
ciated using Neural Tissue Dissociation Kit (Miltenyi
Biotec, 130-093-231) according to the manufacturer’s in-
structions. The dissociated brain samples were re-
suspended and applied to a Strainer (70 μm). Debris in
the sample was removed using Debris Removal Solution
(Miltenyi Biotec, 130-109-398). Red blood cells were
lysed by Red Blood Cell lysis Solution (Miltenyi Biotec,
130-094-183). Myelin was removed by Myelin Removal
Beads (Miltenyi Biotec, 130-096-733). Finally, cell sample
was incubated with anti-CD11b microbeads (Miltenyi
Biotec, 130-049-601) and loaded onto a magnetic LS col-
umn ((Miltenyi Biotec, 130-042-401) placed in the mag-
netic field of a MACS Separator (Miltenyi Biotec, 130-
090-976). After washing, the magnetically labeled cells
were flushed out immediately by firmly pushing the
plunger into the column to get CD11b positive cells,
which can be used for PCR analysis.

Immunohistochemistry and confocal microscopy analysis
Mice were anesthetized and transcardially perfused with
0.1 mmol PBS and 4% paraformaldehyde (PFA) at 3 days
post-TBI. Twenty-micrometer coronal cryosections were
permeabilized and incubated in 5% Donkey Serum for 1
h for blocking. Then the brain tissues were incubated in
primary antibody overnight at 4 °C. The primary

antibody information is as follows: anti-Mer antibody (1:
400, AF591, R&D Systems), anti-CD16/32 antibody (1:
200, Abcam, ab25235), anti-CD206 antibody (1:400,
Abcam ab64693), anti-Iba-1 antibody (1:500, Wako, 019-
19741 or 1:500, Abcam, ab5076). After the incubation
overnight, the cryosections were incubated with the sec-
ondary antibodies (1:500, Jackson Immunoresearch La-
boratories) for 1 h at room temperature. After that, the
sections were rinsed with PBS and covered with fluores-
cence mounting medium with 4',6-diamidino-2-pheny-
lindole (DAPI) (Vector Laboratories, H-1200).
For image analysis and quantification of

immunofluorescent, Nissl, and Fluoro-Jade B (FJB) stain-
ing, coronal sections from bregma − 1.0 to − 3.0 mm
were collected. In each animal, 5 randomly selected
fields from 5 nonadjacent sections with intervals of
100 μm in the ipsilateral cortex were analyzed. The re-
gion of interest (ROI) is ~ 200 μm adjacent to the lesion
boundaries in the brain lesions. For immunofluorescence
analysis of ROI (450 × 350 μm2 per field) (as indicated in
Fig. 2d, left and Suppl. Fig. 3A), the fluorescence inten-
sity and the number of Mer+, CD16/32+, and CD206+

cells, as well as their colocalization with Iba-1 staining,
were calculated by using ImageJ software and averaged
per mouse, and each group included 6 animals [42].

Nissl staining
Nissl staining was performed according to the
manufacturer’s instructions. After 20-μm coronal sec-
tions had been deparaffinized and rehydrated, the slides
were stained in Nissl Staining Solution (C0117, Beyo-
time) for 5 min at 37 °C. A large cell body, with abun-
dant cytoplasm and with substantially significant levels
of Nissl body, represents a normal neuron. However,
some other cell forms such as a shrunken cell body, con-
densed nuclei, and reduced or disappearance of Nissl
body represents a damaged cell. In each animal, 5 ran-
domly selected fields (450 × 350 μm2 per field) in the ip-
silateral cortex (Suppl. Fig. 3B) were analyzed in 5
nonadjacent sections (100 μm apart) and averaged per
mouse. Cell counting was performed by using the Ima-
geJ software, and a total of 6 mice from each group were
used for quantification.

Fluoro-Jade B (FJB) staining
The FJB staining was performed as previously described
[34]. Twenty-micrometer coronal sections were first
immersed in a solution containing 1% sodium hydroxide
in 80% alcohol for 5 min, followed by 2 min in 70% alco-
hol and 2min in distilled water. The slides were then in-
cubated in a solution of 0.06% potassium permanganate
for 10 min, rinsed in distilled water for 2 min, and incu-
bated in a 0.0004% solution of FJB (Chemicon, Temec-
ula, CA, USA) made in 0.1% acetic acid for 30 min. The
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slides were rinsed, air-dried, cleared in xylene for a mi-
nute, and coverslipped with fluorescence mounting
medium with DAPI. All sections were observed and
photographed under a fluorescence microscope with
blue (450–490 nm) excitation light. In each animal, 5
randomly selected fields (640 × 480 μm2 per field) in the
ipsilateral cortex (Suppl. Fig. 3C) were analyzed in 5
nonadjacent sections (100 μm apart) and averaged per
mouse. Cell counting was performed by using the Ima-
geJ software, and a total of 6 mice from each group were
used for quantification.

Statistical analysis
All data were shown as means ± standard deviation. For
comparison between two groups, the F test was
conducted to determine the similarity in the variances
between the groups that are statistically compared, and
statistical significance was analyzed by Student’s t test.
For multiple comparisons, Bartlett’s test for equal
variances was used to determine the variances between
the multiple groups and one-way or two-way analysis of
variance (ANOVA) followed by Bonferroni’s post hoc
test which was used to test statistical significance. All
analyses were performed using GraphPad Prism 8 soft-
ware by an investigator blinded to the experimental con-
ditions. A p value < 0.05 was considered as statistically
significant.

Results
Dynamic changes in mRNA expression of microglial/
macrophage M1/M2 polarization markers following TBI
Polarized microglia/macrophages can be commonly
distinguished by their expression profiles of signature
surface markers and cytokines/chemokines. To evaluate
the microglial/macrophage activation states following
TBI (Suppl. Fig. 2A), RT-PCR was performed using total
RNA extractions from the perilesional cortical tissues at
3 h, 12 h, 1 day, 3 days, and 7 days after TBI or sham op-
eration (Fig. 1a). Levels of M1-associated markers, in-
cluding CD16 (Fig. 1b), CD32 (Fig. 1c), and iNOS (Fig.
1d), were gradually increased over time from 12 h on-
ward and remained elevated for at least 7 days after in-
jury. The mRNA levels of tested M2-like markers,
including CD206 (Fig. 1e), Arg-1 (Fig. 1f), and IL-10
(Fig. 1g), began to be significantly upregulated at 1 day,
12 h, and 1 day after TBI, respectively, and all peaked
around day 3 post-injury, then declined dramatically on
day 7, even though they did not return to baseline levels.
These results indicated that both M1-like and M2-like
polarized microglia/macrophages were activated during
the acute and subacute phase response after TBI. TBI in-
duces transient upregulation in the M2-like phenotype
but causes sustained upregulation in the M1-like

phenotype post-insult, which is consistent with recent
reports [16, 17].

Expression patterns and cellular localization of Mer
following TBI
Mer plays a critical role in regulating microglial/
macrophage phenotypes and properties under
physiological and pathological conditions [29]. We first
analyzed the levels of Mer protein and mRNA in the
injured cortex at different time points after TBI (Suppl.
Fig. 2A). As shown in Fig. 2a, b, both Mer protein and
mRNA levels were significantly increased 12 h after TBI,
peaked around day 3 and returned to the pre-injury
levels around day 7. We further investigated the cellular
localization and expression of Mer in microglia/macro-
phages in the ipsilateral cerebral cortex at 3 days after
TBI, using double immunofluorescent staining of Mer
and microglial/macrophage marker Iba-1. As demon-
strated in Fig. 2c, e, Mer was abundantly expressed in
the plasma membrane of microglia/macrophages in the
sham group and substantially upregulated in the acti-
vated microglia/macrophages with phagocytotic morph-
ology (Fig. 2d, e) near the lesion at 3 days post-TBI.

Inhibition of Mer worsened the functional outcomes after
TBI
Previous studies reported that i.c.v. delivery of siRNA
can efficiently silence specific genes in the brain [37–39].
To determine the role of Mer in the pathophysiology of
TBI, we administrated Mer siRNA into the ipsilateral
ventricle at 1 day before and 10min after TBI to inhibit
its expression in the brain [43] (Suppl. Fig. 2B). Data
from the Western blot and RT-PCR demonstrated the
knockdown efficacy of Mer siRNA was > 70% (Fig. 3a,
b). Besides, we evaluated the functional outcomes fol-
lowing TBI using the mNNS score and foot-fault and
rotarod tests performed before and 1, 3, and 7 days after
TBI. When compared to the sham group, TBI mice ex-
hibited significantly worse in all neurobehavioral tests
(Fig. 3c–e). More importantly, administration of Mer
siRNA significantly aggravated the neurobehavioral defi-
cits post-injury when compared with the group that re-
ceived control siRNA at days 1, 3, and 7 after TBI, based
on mNNS scores (Fig. 3c), foot-fault test (Fig. 3d), and
rotarod test (Fig. 3e). Specifically, research studies re-
ported that sex differences exist in the pathophysiology
of CNS injuries and diseases [44]. To evaluate sex-
dimorphic responses after TBI, neurobehavioral function
assessment was performed before and after TBI. Our
preliminary data showed that there is no difference in
behavioral tests between male and female mice at days 1,
3, and 7 after TBI, based on the mNSS score (Suppl. Fig.
4A), foot-fault test (Suppl. Fig. 4B), and rotarod test
(Suppl. Fig. 4C). Also, the expression levels of Mer in
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the injured cortex between male and female mice were
analyzed on day 3 post-injury. As shown in Suppl. Fig.
4D-E, no difference was detected in Mer protein (Suppl.
Fig. 4D) and mRNA (Suppl. Fig. 4E) expression between
male and female mice on day 3 after TBI.
To assess the gross pathological changes, we

compared brain contusion volume and tissue edema
among sham and TBI groups at 3 days post-injury. As
demonstrated, TBI caused significant loss of brain tissue
(Fig. 3f) and increased brain edema in the ipsilateral
hemisphere (Fig. 3g). Interestingly, although Mer siRNA
did not affect the brain contusion volume on day 3 after
TBI (Fig. 3f), it significantly elevated brain edema level

at 3 days post-injury, when compared to both the vehicle
and control siRNA group (Fig. 3g). These findings sug-
gested that Mer presence and its upregulation after in-
jury is beneficial for the recovery after TBI.

Mer modulated microglial/macrophage M1/M2
polarization after TBI
To investigate the role of Mer in regulating microglial/
macrophage M1/M2 polarization and neuroinflammation
following TBI, we evaluated the level of Mer in both M1-
like and M2-like polarized microglia/macrophages in TBI-
affected cortical regions. Results from double immuno-
fluorescent staining demonstrated that Mer was at a
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Fig. 1 Dynamic changes in mRNA expression of microglial/macrophage M1-like and M2-like phenotypic markers following TBI. a Representative
photographs of whole brains in the sham and different traumatic brain injury (TBI) groups (at 3 h, 12 h, 1 day, 3 days, and 7 days post-insult,
respectively). Scale bar = 1 mm. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to assess the mRNA expression
levels of microglial/macrophage M1-like and M2-like phenotypic markers in the injured cortex at 3 h, 12 h, 1 day, 3 days, and 7 days after TBI or
the equivalent area of the sham-operated brains. b–d Expressions of mRNA of M1-like phenotypic markers, including CD16 (b), CD32 (c), and
iNOS (d), were gradually increased over time from 12 h onward and remained elevated for at least 7 days after injury. e–g Expressions of mRNA
of M2-like phenotypic markers, including CD206 (e), Arg-1 (f), and IL-10 (g), were significantly upregulated at 1 day, 12 h, and 1 day after TBI,
respectively, and all peaked around day 3 post-injury, then declined dramatically on day 7, even though they did not return to baseline levels. In
b–g, data are expressed as fold change. n = 6 mice per group. ns, nonsignificant, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; versus sham-
operated controls; NS, nonsignificant, p > 0.05; ###, p < 0.001; versus the TBI group on day 3. One-way ANOVA followed by Bonferroni’s post
hoc tests
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relatively lower level in CD16/32-positive M1-like cells
(Fig. 4a and Suppl. Fig. 5A), but highly expressed in
CD206-positive M2-like cell population (Fig. 4b and
Suppl. Fig. 5A), in the perilesional area of cortex at 3 days
post-TBI.
To specifically evaluate the effect of Mer siRNA on the

M1/M2 polarization state of microglia/macrophages
after TBI, CD16/32 or CD206 was co-labeled with the
microglia/macrophage marker Iba-1 in the cortex sur-
rounding the lesion cavity at 3 days post-insult, respect-
ively. As demonstrated, the percentage of CD16/32 and
Iba-1 double-positive M1-like cells was significantly in-
creased in the cortex on day 3 after TBI, which was

further elevated in the Mer siRNA group (Fig. 4c, d). On
the other hand, the percentage of CD206 and Iba-1
double-positive M2-like cells was also increased signifi-
cantly in the ipsilateral cortex on day 3 after TBI when
compared with the sham group (Fig. 4e, f), but it was
significantly decreased following Mer siRNA administra-
tion when compared with the TBI + vehicle or TBI +
control siRNA group (Fig. 4e, f). In addition, the ratio
between CD16/32+Iba-1+ M1-like cells and CD206+Iba-
1+ M2-like cells was nearly doubled after Mer siRNA ad-
ministration (Fig. 4g). Taken together, these findings in-
dicated that Mer plays an important role in regulating
microglial/macrophage M1/M2 polarization following
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TBI, and inhibition of Mer expression tips the balance of
TBI-induced microglial/macrophage activation towards
the pro-inflammatory M1-like phenotype.

Downregulation of Mer aggravated neuronal damage and
degeneration following TBI
To further evaluate the pathological effects of Mer
knockdown following TBI, Nissl and FJB staining were
employed to access the neuronal damage and degeneration
following TBI. As shown, TBI caused a significant decrease
in the number of Nissl-positive neurons in the perilesional
cortex at 3 days post-insult (Fig. 5a). Moreover, in vivo
knockdown of Mer aggravated neuronal damage following
TBI, as demonstrated by the significant decrease in the

number of Nissl-positive neurons in the injured cortex in the
TBI + Mer siRNA group compared to the TBI + vehicle or
TBI + control siRNA group (Fig. 5a). Besides, FJB staining
showed that TBI induced a significant increase in the num-
ber of degenerating neurons in the injured cortex, and Mer
siRNA application further increased the number of degener-
ating neurons in the injured cortex after TBI (Fig. 5b). These
data indicated inhibition of Mer expression aggravated neur-
onal damage and degeneration following TBI.

Inhibition of Mer reduced STAT1 activation and SOCS
expression following TBI
Previous studies indicated that Mer is a pleiotropic
regulator of the innate immune system, and it regulates
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Fig. 3 In vivo knockdown of Mer worsened the functional outcomes after TBI. a Western blot was used to assess the knockdown efficacy of Mer
siRNA. Representative immunoblots and quantification showing Mer siRNA inhibited the expression of Mer protein in the injured cortex at 3 days
post-TBI. TBI + vehicle: TBI + V, TBI + control siRNA: TBI + C, TBI + Mer siRNA: TBI + M. GAPDH: loading control. Data are expressed as fold change
compared to the TBI + V group; n = 6 mice per group. b Quantitative RT-PCR analysis also showing Mer siRNA significantly inhibited the
expression of Mer mRNA in the injured cortex at 3 days post-TBI. Data are expressed as fold change compared to the TBI + V group; n = 6 mice
per group. c–e Modified neurological severity scores (mNSS) (c), foot-fault test (d), and rotarod test (e) were performed before and 1, 3, and 7
days after TBI. n = 8 mice per group. f Quantification of TBI-induced lesion volume at 3 days post-insult. n = 6 mice per group. Scale bar = 1 mm.
g Cerebral edema was measured by brain water content. Mer siRNA significantly elevated brain edema level at 3 days post-injury, when
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inflammatory responses through modulating multiple
downstream cellular pathways such as STAT1/SOCS
signaling [22, 25]. Activation of Mer signaling is
associated with phosphorylation of the tyrosine residue
749 in the kinase domain [45]. To clarify the mechanism
by which Mer interferes with microglial/macrophage
M1/M2 polarization, we determined the expression of
the suppressor of cytokine signaling SOCS-1 and SOCS-
3 after TBI, which are key mediators of Mer signaling in
regulating inflammatory responses [46, 47]. As demon-
strated, the levels of phosphorylated Mer (p-Mer) (Fig. 6a)
and phosphorylated STAT1 (p-STAT1) (Fig. 6b) were sig-
nificantly inhibited by Mer siRNA administration on day 3
following TBI. More importantly, the protein and mRNA
expression of SOCS-1 (Fig. 6c, d) and SOCS-3 (Fig. 6e, f)

were significantly reduced after TBI in the Mer siRNA
treatment group when compared with the vehicle or con-
trol siRNA group. These findings indicated that Mer sig-
naling is required for activation of STAT1 and SOCS
signaling pathway in the perilesional area of the cortex fol-
lowing TBI.

Mer activation alleviated functional deficits following TBI
To further determine the role of Mer following TBI,
administration of recombinant PS (a ligand and activator
of Mer) was performed at 1 h, 1 day, and 2 days after
TBI, respectively (Suppl. Fig. 2C and 2D) [48]. Western
blot assay revealed PS treatment caused a significant
increase of p-STAT1 (Fig. 7a), SOCS-1 (Fig. 7b), and
SOCS-3 (Fig. 7c) expression when compared with the
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vehicle group. PCR assay revealed that expression of
M1-associated markers, including CD16 (Suppl. Fig. 5B),
CD32 (Suppl. Fig. 5C), and iNOS (Suppl. Fig. 5D), was
heavily suppressed by PS treatment when compared with
the vehicle group. By contrast, the tested M2-like
markers, including CD206 (Suppl. Fig. 5E), Arg-1 (Suppl.
Fig. 5F), and IL-10 (Suppl. Fig. 5G), were further upregu-
lated after PS administration. Consistently, PCR assay of
MACS-sorted CD11b-positive cells revealed that expres-
sion levels of M1-associated markers, including CD16
(Fig. 7d), CD32 (Fig. 7e), and iNOS (Fig. 7f), were largely
suppressed by PS treatment when compared with vehicle
treatment. By contrast, the tested M2-associated
markers, including CD206 (Fig. 7g), Arg-1 (Fig. 7h), and
IL-10 (Fig. 7i), were further increased after PS adminis-
tration. Furthermore, TBI-induced brain edema was re-
duced by PS treatment at 3 days post-injury (Suppl. Fig.
6A). Also, TBI-induced neuronal damage was attenuated
by PS treatment, as demonstrated by the significant in-
crease in the number of Nissl-positive neurons (Suppl.
Fig. 6B-C) and the significant decrease in the number of
FJB-positive degenerating neurons (Suppl. Fig. 6D-E) in
the injured cortex in the TBI + PS group compared to
the TBI + vehicle group. Moreover, PS treatment signifi-
cantly alleviated neurobehavioral deficits on day 3 post-

injury, based on the mNNS score (Fig. 7j), foot-fault test
(Fig. 7k), and rotarod test (Fig. 7l). However, Mer siRNA
administration abolished PS-induced changes in p-
STAT1 level (Fig. 8a) and expression levels of SOCS-1
(Fig. 8b) and SOCS-3 (Fig. 8c) in TBI mice. In addition,
the mNNS score (Fig. 8d), foot-fault test (Fig. 8e), and
rotarod test (Fig. 8f) showed worsened neurological out-
comes in mice from the PS + Mer siRNA group when
compared with the PS + control siRNA treatment group.
Taken together, these findings suggested that Mer pro-
moted STAT1-mediated upregulation of SOCS expres-
sion, alleviated secondary brain injury, and improved
functional outcomes following TBI.

Discussion
Neuroinflammation is conceived as an important
manipulable aspect of secondary brain injury following
TBI [13]. Here, we demonstrate that Mer upregulation
provides neuroprotective effects in a CCI mouse model
of TBI via regulating microglial/macrophage M1/M2
polarization and neuroinflammation (Fig. 9).
Mechanistically, Mer mediates activation of the STAT1/
SOCS signaling pathway. Inhibition of Mer markedly
decreases microglial/macrophage M2-like polarization
while it increases M1-like polarization, thus aggravating
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secondary brain damage and functional deficits after
TBI.
TBI is an evolving neurological event, and it heavily

contributes to both acute injuries and chronic
neurodegenerative cascades post-insult [49, 50]. This
disease is challenging to be treated because of its hetero-
geneous nature and complex pathogenic cascades [51,
52]. Of note, microglial/macrophage activation and neu-
roinflammation are hallmark features of TBI pathophysi-
ology [8]. As the resident innate immune cells in the
CNS, microglia usually respond within minutes toward
the sites of damage, where they can even sustain for
many years following TBI [13]. Initially, these responses
allow them to scavenge debris, promote tissue remodel-
ing and repair, and protect the brain from secondary

injury after TBI [53]. However, abnormal activation of
microglia can interfere with endogenous repair mecha-
nisms and drives inflammatory damage after TBI [53]. In
addition, peripherally derived macrophages actively par-
ticipate in acute neuroinflammatory responses after TBI
[12]. Indeed, microglia/macrophages have multi-
dimensional activation states in CNS diseases depending
on different pathophysiological conditions [54]. They
can become polarized ranging from the classic M1-like
phenotype to an alternative M2-like phenotype after
CNS injuries including TBI [8, 55]. The M1-like re-
sponse is presumed to be pro-inflammatory [15],
whereas the M2-like phenotype owns anti-inflammatory
effects [56]. Multiple molecular pathways, such as STAT,
nuclear factor-κB (NF-κB), and interferon regulatory
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Fig. 7 Mer activation alleviated functional deficits following TBI. a–c Representative immunoblots and quantification showing protein expression
of p-STAT1 (a), SOCS-1 (b), and SOCS-3 (c) in the injured cortex at 3 days post-TBI; TBI + vehicle: TBI + V, TBI + recombinant protein S: TBI + PS.
GAPDH: loading control. Data are expressed as fold change compared to the sham group; n = 6 mice per group. d–i Quantitative RT-PCR analysis
of MACS-sorted CD11b-positive cells showing mRNA expression of CD16 (d), CD32 (e), iNOS (f), CD206 (g), Arg-1 (h), and IL-10 (i) in the injured
cortex at 3 days post-TBI. GAPDH: loading control. Data are expressed as fold change compared to the sham group; n = 6 mice per group. j–l
Modified neurological severity scores (mNSS) (j), foot-fault test (k), and rotarod test (l) were performed at 3 days after TBI. n = 8 mice per group.
In a–l, data are presented as mean ± SD; ***, p < 0.001. One-way ANOVA followed by Bonferroni’s post hoc tests
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factor (IRF), are involved in the regulation of M1/M2
phenotypic transitions [57–59]. Preclinical evidence indi-
cated that mixed phenotypes are present in the patho-
logical processes of TBI, which offer opportunities for
therapeutic interventions [60]. In the current study, we
also found that TBI induces transient upregulation in
the M2-like phenotype but causes sustained upregula-
tion in the M1-like phenotype post-insult, which is con-
sistent with other findings [16, 17]. Modulating
microglial/macrophage M1/M2 polarization via regulat-
ing those intrinsic molecular switches will facilitate the
repair activity of microglia/macrophages and promote
neurovascular network restoration after TBI. Notably,
microglia/macrophages are endowed with spectacular
plasticity, allowing them to acquire multiple phenotypes
and thereby fulfill numerous activities in health and dis-
ease [61]. The existing M1/M2 paradigm, based on ex-
pression analysis of a small subset of genes (labeled M1
or M2), is inadequate for accurate description of the true
diversity of microglia/macrophages during complex dis-
ease environments such as TBI [13]. Indeed, existing evi-
dence suggests that microglia/macrophages do not

strictly polarize to an “M1-only” or “M2-only” phenotype
in response to the multifaceted inflammatory milieu fol-
lowing TBI [20]. In contrast, these cells are dually la-
beled with “M1/M2” markers and display a mixed
phenotype in both the microenvironment and within the
same cell after injury [12, 21]. Thus, a binary M1/M2
polarization paradigm is not adequate to define the in-
flammatory profiles following TBI [21]. And it is not
feasible to classify the cells (e.g., M1, M2a, M2b, M2c)
depending on few selectively chosen inflammatory
markers [21, 56], while exploring the role and underlying
regulatory mechanisms of these markers in the context
of TBI-induced neuroinflammation would be more fa-
vorable [20, 62]. Also, multiple methodological ap-
proaches that can reveal transcriptomic and proteomic
profiling of microglia/macrophages are indeed needed in
future studies, which will help tremendously in our un-
derstanding of microglial/macrophage diversity and de-
velopment of better-targeted therapies for a variety of
neurological disease conditions including TBI [13, 61].
Mer, an important member of the TAM family, is

predominantly expressed on myeloid-derived
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hematopoietic cells and functions as a pleiotropic inhibi-
tor of the innate immune response [63]. RNA sequen-
cing data demonstrated that Mer mRNA is highly
enriched in microglia in the CNS [64]. In contrast, the
mRNA expression levels of the other two family mem-
bers, namely Axl and Tyro3, are very low in microglia
[64]. Moreover, PS and Gas6, two best-characterized li-
gands, can bind the Ig1 and Ig2 domains of Mer via their
C-terminal regions [65]. Upon ligand stimulation, Mer
can be activated and initiate classic ligand-inducible
dimerization, causing receptor autophosphorylation, re-
cruitment of signaling proteins with SH2 or PTB do-
mains, and activation of downstream pathways. As an
example, activation of Mer can induce SOCS expression
and inhibit inflammation through regulating type I inter-
feron receptor (IFNAR)-associated STAT1 pathway [22].
Genetic targeting of Mer can lead to persistent

inflammation and tissue damage in a mouse model of
acetaminophen-induced acute liver failure [66]. Also,
Mer can mediate recognition and subsequent efferocyto-
sis of apoptotic cells to prevent immune responses [67].
In an in vivo murine model of allergic airway inflamma-
tion, Mer-mediated apoptotic eosinophil clearance by
phagocytes contributes to resolution of allergic airway
inflammation [68]. In a murine model of experimental
myocardial infarction, deficiency of Mer in a subset of
myocardial monocytes suppresses the removal of dying
cardiac cells, delays inflammation resolution, and re-
duces systolic performance after myocardial infarction
[69]. Proteolytic cleavage of macrophage Mer reduces
efferocytosis and inhibits plaque resolution in athero-
sclerosis [70]. In contrast, in fat-fed low-density lipopro-
tein receptor-deficient mice whose myeloid cells
expressing a cleavage-resistant variant of Mer, higher

Fig. 9 The proposed mechanism of Mer in regulating microglial/macrophage M1/M2 polarization and neuroinflammation following TBI. In the
setting of TBI, Mer is upregulated and exerts protective effects via modulating microglial/macrophage M1/M2 polarization and neuroinflammation
after injury. Specifically, activation of Mer signaling facilitates STAT1-mediated SOCS expression, which increases microglial/macrophage M2-like
polarization while decreases M1-like polarization following TBI. In contrast, inhibition of Mer by siRNA markedly suppresses STAT1/SOCS signaling,
thus decreasing microglial/macrophage M2-like polarization while increasing M1-like polarization after TBI
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expression of Mer in macrophage contributes to im-
proved efferocytosis, smaller necrotic cores, thicker fi-
brous caps, and increased ratios of pro-resolving versus
pro-inflammatory lipid mediators in the atherosclerotic
lesions [70]. These findings indicate Mer plays a promin-
ent role in the resolution of inflammation through mul-
tiple approaches. Furthermore, previous studies have
demonstrated that TAM receptors play complex roles in
modulating neuronal migration and neurogenesis, syn-
aptic plasticity, microglial activation and efferocytosis,
and peripheral nerve repair [71, 72], resulting in potential
interests in neuroinflammatory and neurodegenerative
diseases such as Alzheimer’s disease [73], Parkinson’s dis-
ease [29], and multiple sclerosis [74]. Our study added
new knowledge about the role of this pathway in TBI and
shows that Mer is upregulated acutely in the injured cor-
tex after injury, which exerts an effect on microglial/
macrophage polarization towards an M2-like phenotype
after TBI. And proper stimulation of Mer signaling by its
recombinant ligands such as PS can regulate microglial/
macrophage activities and neuroinflammatory responses
after TBI, which contributes to alleviation of secondary
brain damage and sensorimotor impairments after injury.
On the other hand, due to the complex and multiscale na-
ture of secondary injury cascades following TBI, therapies
designed to target multiple mechanisms of this disease will
likely be needed [75]. Thus, molecular targets like Mer,
which can regulate multiple cellular processes, may be tar-
geted for therapy in TBI and deserve further investigation.
Noteworthily, some limitations in this study should

not be ignored. First, the available molecular markers
are not specific enough to sufficiently distinguish
microglia from other closely related myeloid subsets,
particularly monocyte-derived macrophages [64]. It is
true that portions of peripheral macrophages can infil-
trate into the injured brain after TBI [76, 77]. Thus, the
impact of Mer-mediated regulation of inflammatory re-
sponses in microglia and infiltrating macrophages fol-
lowing TBI was not distinctively evaluated during the
result interpretation, and it is possible that infiltrating
macrophages could be driving some of the effects. In
fact, the crucial roles of peripheral infiltrated myeloid
cells in TBI neuropathology have been investigated [12,
78–80]. As an example, Morganti et al. reported that
TBI induces a robust response involving the recruitment
and accumulation of peripheral CCR2+ macrophages
into the injured brain parenchyma, which significantly
contributes to neuroinflammatory sequelae and cognitive
dysfunction after injury [12]. By contrast, targeting the
subset of CCR2+ macrophages with a selective antagon-
ist CCX872 heavily reduces the accumulation of these
cells, decreases their inflammatory and neurotoxic pro-
files, and ameliorates hippocampal-related cognitive dys-
function after TBI [12]. Interestingly, it demonstrated

that age can exaggerate the recruitment of peripheral
CCR2+ macrophages to the injured parenchyma after
TBI, which exerts a non-redundant and contributing
role to TBI-induced neuroinflammation in the aged
brain [78, 79]. Moreover, it reported that peripherally
derived myeloid cells (CD45hiCD11b+) play an important
role in initiating acute neuroinflammatory responses in
the injured brain after TBI, which are sexually dimorphic
and exaggerated in males compared to female mice [81].
Noteworthily, the relative contributions of resident
microglia and infiltrating peripheral myeloid cells to TBI
pathology were not adequately discriminated in a num-
ber of experimental studies, which should be largely ex-
amined in future research [81]. Also, we used whole
cortical samples but not isolated microglia/macrophages
from sham and CCI mice for mRNA analysis of dynamic
changes, and those tested factors can partially be pro-
duced by other cells such as neurons and astrocytes
within the contused cortex. Thus, in order to demon-
strate the selective upregulation of M1/M2-like markers
in microglia/macrophages, isolation of these cells from
the sham-injured and TBI brain for flow cytometry and
image analyses will be favorable in future studies.
Additionally, several studies reported that sex

difference underlies variations of microglial/macrophage
activation and sexually dimorphic neuroinflammatory
responses following TBI [82, 83], while other studies
indicated that sex manipulation does not affect
inflammatory responses and brain injury after TBI [84].
Of note, a vast majority of preclinical studies have been
conducted just using male animals to look at the
inflammatory responses to TBI, while increasing
evidence indicates that sex differences may have
important implications for TBI outcome and potential
therapeutic development [85]. Contrary to our
expectations, we failed to detect any differences in
behavioral tests between male and female mice after TBI
in the preliminary study, based on the mNSS score, foot-
fault test, and rotarod test. The small animal numbers
used in the current study as well as potentially inad-
equate sensitivity of these behavioral tests may underlie
the negative results, which still needs in-depth investiga-
tion in further research. Besides, we did not find any dif-
ference in the levels of Mer protein and mRNA
expression in the perilesional cortex between male and
female mice on day 3 after TBI. Also, Hilliard et al. ex-
amined the effect of male-female differences on the ex-
pression of Mer in the human blood samples and found
that no significant difference in Mer expression was
reached between female and male subjects [86]. To date,
information regarding sexual dimorphism in Mer ex-
pression is still scarce and has yet to be explored. But it
should not ignore the sex difference between males and
females, which would be an important biological variable
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in CNS injury and disease [83, 87]. And sexual dimorph-
ism in sex hormone levels (e.g., estrogen, progesterone,
and testosterone), microglial/macrophage properties,
and neuroinflammatory responses may contribute to the
differences between the two sexes after TBI [44, 88].
Thus, more studies are required to decipher how sex dif-
ferences affect microglial/macrophage activities, neuro-
inflammation, and neurofunctional outcomes after TBI.
And more data are certainly warranted before any defin-
ite conclusion about the relationship among sex, sex
hormones, and microglia/macrophages after TBI can be
drawn [44].

Conclusions
In conclusion, our study demonstrated that Mer is
upregulated and exerts beneficial effects in the acute
stage of TBI via modulating microglial/macrophage M1/
M2 polarization. Inhibition of Mer markedly decreases
microglial/macrophage M2-like polarization while in-
creases M1-like polarization, which contributes to the
aggravation of secondary brain damage and exaggeration
of sensorimotor deficits after TBI.
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Additional file 1: Supplementary Figure 1. (A-B) The controlled
cortical impact (CCI) model of TBI and experimental parameters in mice.
(C) A schematic map showing the location of TBI in mice. The center of
impact was located at 2 mm medial-lateral (ML) and -2 mm anterior-
posterior (AP) to bregma. (D-E) The intracerebroventricular (i.c.v) injection
and experimental parameters in mice. (F) A schematic map showing co-
ordinates of i.c.v. injection in mice. The stereotaxic coordinates are 1 mm
ML and -0.25 mm AP to bregma, and 2.5 mm dorsoventral (DV) below
the skull. LV: lateral ventricle.

Additional file 2: Supplementary Figure 2. Experimental design and
animal groups. (A) Western blot (WB) and Real-Time Polymerase Chain
Reaction (RT-PCR) were performed to evaluate the expression profiles of
Mer and M1/M2 polarization markers at different time points after TBI (in-
cluding 3 h, 12 h, 1 d, 3 d, and 7 d), as well as in the sham group; Be-
sides, immunofluorescence was performed on day 3 after injury. (B) An
in vivo knockdown of Mer siRNA was adopted to evaluate the role of Mer
in regulating microglial/macrophage M1/M2 polarization after TBI. Mice
were randomly distributed into sham, TBI + Vehicle, TBI + Control siRNA,
and TBI + Mer siRNA groups. Intracerebroventricular injection (i.c.v.) of
siRNA was performed 1 d before and 10 min after TBI. The neurobehav-
ioral functions were assessed before as well as 1, 3, 7 d after TBI. The
peri-injured cerebral cortex from each group and the equivalent area in
the sham-operated mice was collected for RT-PCR, WB, and immunohis-
tochemistry analysis at 3 d after TBI. Also, contusion volume, brain edema,
neuronal damage and degeneration were measured at 3 d after injury.
(C) To evaluate the effect of PS on regulating STAT1/SOCSs pathway after
TBI, mice were randomly distributed into Sham, TBI + Vehicle, and TBI +
recombinant protein S (PS) groups. PS (0.2 mg/kg) was administered via
the tail vein at 1 h, 1 d, and 2 d after the CCI. WB, RT-PCR, MACS, neur-
onal damage and degeneration, brain edema, and neurobehavioral as-
sessments were conducted on day 3 post-injury. (D) Mice were randomly
distributed into TBI + Vehicle, TBI + PS + Control siRNA, and TBI + PS +
Mer siRNA groups. Mer siRNA (i.c.v.) was administrated 1 d before and 10
min after TBI, and PS was administered via the tail vein at 1 h, 1 d, and 2

d after the injury. WB and neurobehavioral assessments were conducted
on day 3 post-injury.

Additional file 3: Supplementary Figure 3. (A) Low-magnification im-
ages indicate the region of interest for immunofluorescent staining of
CD16/32 or CD206 (red), Iba-1 (Green) and DAPI (blue) in the ipsilateral
cortex from the sham, TBI + Vehicle, TBI + Control siRNA and TBI+Mer
siRNA groups on day 3 post-injury, respectively. (B) Low-magnification
images indicate the region of interest for Nissl staining in the ipsilateral
cortex from the sham, TBI + Vehicle, TBI + Control siRNA and TBI+Mer
siRNA groups on day 3 post-injury, respectively. (C) Low-magnification
images indicate the region of interest for Fluoro-Jade B (FJB) staining in
the ipsilateral cortex from the sham, TBI + Vehicle, TBI + Control siRNA
and TBI+Mer siRNA groups on day 3 post-injury, respectively. In A-C, the
red dotted area indicates contusion region. * indicates region of interest.
Scale bar = 1 mm.

Additional file 4: Supplementary Figure 4. (A) Modified neurological
severity scores (mNSS), (B) foot-fault test, and (C) rotarod test were per-
formed before and 1, 3, and 7 d after TBI. n = 8 mice per group. (D) Rep-
resentative immunoblots and quantification showing the expression level
of Mer protein in the injured cortex at 3 d after TBI or the equivalent area
of the sham-operated brains. Data are expressed as fold change com-
pared to sham-operated controls. n = 6 mice per group. M: male; F: fe-
male. (E) Quantitative RT-PCR was used to assess the mRNA expression
level of Mer in the injured cortex at 3 d after TBI or the equivalent area of
the sham-operated brains. Data are expressed as fold change compared
to sham-operated controls. n = 6 mice per group. In A-E, data are pre-
sented as mean ± SD; ***, p < 0.001; ns, non-significant, p > 0.05. two-
way ANOVA followed by Bonferroni’s post-hoc tests.

Additional file 5: Supplementary Figure 5. (A) Fluorescence intensity
quantification of Mer expression in CD16/32- and CD206- positive cells in
the impacted ipsilateral cortical area at 3 d after TBI. n = 6 per group. (B-
G) Quantitative RT-PCR analysis showing mRNA expression of CD16 (B),
CD32 (C), iNOS (D), CD206 (E), Arg-1 (F), IL-10 (G) in the injured cortex
at 3 d post-TBI. GAPDH: loading control. Data are expressed as fold
change compared to the sham group; n = 6 mice per group. In A, data
are presented as Mean ± SD; ***, p < 0.001 by Student’s t-test. In B-G,
data are presented as Mean ± SD; ***, p < 0.001. one-way ANOVA
followed by Bonferroni’s post-hoc tests.

Additional file 6: Supplementary Figure 6. (A) Cerebral edema was
measured by brain water content. Quantification analysis showing TBI
increased brain edema in the ipsilateral hemisphere on day 3 after TBI,
which is significantly alleviated after PS treatment. n = 8 mice per group.
(B) Representative images of Nissl staining in the ipsilateral cortex from
the sham, TBI + Vehicle (TBI + V), TBI + protein S (TBI + PS) groups,
respectively. (C) Quantification analysis showing TBI caused a significant
decrease in the number of Nissl-positive cells in the ipsilateral cortex at 3
d post-TBI, and PS application significantly increased the number of Nissl-
positive cells in the injured cortex after TBI. n = 6 mice per group. Scale
bar = 20 μm. (D) Representative images of Fluoro-Jade B (FJB) staining in
the ipsilateral cortex from the sham, TBI + V, TBI + PS groups, respectively.
(E) Quantification analysis showing TBI caused a significant increase in
the number of FJB-positive cells in the ipsilateral cortex at 3 d post-TBI,
and PS application significantly decreased the number of FJB-positive
cells in the injured cortex after TBI. n = 6 mice per group. Scale bar = 15
μm. In A, C, E, data are presented as Mean ± SD; **, p < 0.01; ***, p <
0.001. one-way ANOVA followed by Bonferroni’s post-hoc tests.
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