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Abstract

Background: The aim of this study is to investigate the associations between post-stroke cognitive impairment
(PSCI) severity and reactive astrogliosis (RA) extent on normalized 18FTHK-5351 positron-emission tomography (PET)
imaging in amyloid-negative patients with first-ever stroke.

Methods: We prospectively enrolled 63 amyloid-negative patients with first-ever stroke. Neurocognitive evaluation,
MRI, "8F-THK-5351, and '®F-florbetapir PET were performed around 3 months after stroke. The '®F-THK-5351 uptake
intensity was normalized using a signal distribution template to obtain the Z-SUM scores as the RA extent in the
whole brain and cerebral hemisphere ipsilateral to stroke lesion. We evaluated stroke volume, leukoaraiosis, and
brain atrophy on MRI. We used a comprehensive neurocognitive battery to obtain composite cognitive scores, and
defined PSCI as a general cognitive function score < — 1. We analyzed the influence of Z-SUM scores on PSC
severity after adjusting for demographic, vascular, and neurodegenerative variables.

Results: Twenty-five of 63 stroke patients had PSCI. Patients with PSCI had older age, lower education, and more
severe cortical atrophy and total Z-SUM scores. Total Z-SUM scores were significantly associated with general
cognitive and executive functions at multiple regression models. Path analyses showed that stroke can exert
cognitive influence directly by stroke itself as well as indirectly through RA, including total and ipsilateral Z-SUM
scores, in patients with either right or left hemisphere stroke.

Conclusion: The patterns and intensity of '®F-THK-5351 uptake in amyloid-negative patients with first-ever stroke
were associated with PSClI manifestations, which suggests that RA presents a modulating effect in PSCI
development.
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Introduction

Post-stroke dementia (PSD) and post-stroke cognitive im-
pairment (PSCI) affect up to one-third of stroke survivors
and mostly occur within the first 6 months [1, 2]. PSD is
not a single disease entity; rather, it describes an unspecified
dementia syndrome that occurs after stroke [3]. Epidemio-
logical studies have reported PSD etiologies to be attributed
to Alzheimer’s disease (AD) or co-occurring AD and vascu-
lar dementia in 29% to 61% of patients with PSD [4]. Ac-
cording to the double-hit theory on PSCI development,
patients with stroke have different post-stroke cognitive tra-
jectories depending on their amyloid plaque burden and
neuroinflammation severity [5]. Functional and molecular
imaging has facilitated the understanding of the complex
interactions between neurodegeneration and vascular injury
in post-stroke cognitive presentations [6]. On the other
hand, stroke, like other CNS injury, will induce a cascade of
neuroinflammatory responses, and neuroinflammatory fluid
biomarkers, such as C-reactive protein, IL-8 and IL-12,
have been identified to be associated with PSCI occurrence
[7, 8]. However, there is limited human neuroimaging evi-
dence on the relationships among stroke lesions, neuroin-
flammatory severity, and PSCI [5, 9].

18F_THK-5351 is a radiotracer designed for in vivo tau
protein detection in patients with AD [10]. In addition to
tau protein binding, '®F-THK-5351 has been reported to
have an affinity for monoamine oxidase-B (MAO-B), which
might explain the off-target "*F-THK-5351 binding in the
striatum, thalamus, and brainstem [11, 12]. Furthermore,
MAO-B is largely expressed in astrocytes during the neu-
roinflammatory phenomenon of reactive astrogliosis (RA)
[13]. Previous studies have reported increased **F-THK-5351
uptake around stroke lesions, which might provide informa-
tion regarding astrocyte-related neuroinflammatory changes
[14, 15]. However, stroke-induced **F-THK-5351 uptake sig-
nals might overlap with background signals, mainly in stri-
atum and thalamus, thereby hindering the quantification of
stroke-induced  neuroinflammation on  ‘*F-THK-5351
positron-emission tomography (PET) imaging.

Firstly, we aimed to establish a signal distribution tem-
plate of '®F-THK-5351 PET imaging using healthy sub-
jects, and subsequently apply the template in patients
with stroke to diminish subcortical background signals
through statistical transformation. Thereby, stroke-
induced '®F-THK-5351 uptake could be quantified as a
neuroinflammatory imaging biomarker of RA. Secondly,
we aimed to explore the correlations between PSCI and
neuroinflammation severity on '*F-THK-5351 PET im-
aging in amyloid-negative patients with first-ever stroke.

Materials and methods

Participants

We conducted a prospective, cross-sectional study to
screen 72 patients with recent first-ever stroke (around 3
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months after onset, median 87 days with interquartile
range from 75 to 100 days) from the Department of
Neurology and Stroke Center at Linkou Chang Gung
Memorial Hospital, Taiwan, as previously described [15].
These stroke patients fulfilled the inclusion criteria: (1) a
diagnosis of ischemic or hemorrhagic stroke confirmed
on brain computed tomography (CT) or magnetic reson-
ance imaging (MRI) at stroke onset; (2) no history of old
stroke, dementia, tauopathy diseases, substantial trau-
matic brain injury, or epilepsy before the index stroke;
and (3) the Informant Questionnaire on Cognitive De-
cline (IQCODE) mean score < 3.4 obtained within 1
week after stroke onset [16]. Nine of these patients were
further excluded due to (1) failure to receive *F-THK-
5351 (n = 2) and 18F—ﬂorbetapir (n = 3) PET scanning,
(2) amyloid-positivity on '®F-florbetapir PET scanning (n
= 2), (3) recurrent stroke occurring between the index
stroke and the study screening procedure (n = 2), and
(4) persistent moderate to severe dysphasia, which was
defined as a score of > 1 point in the language score of
the National Institutes of Health Stroke Scale (NIHSS)
[17]. Finally, 63 amyloid-negative patients with recent
first-ever stroke were recruited after panel evaluation by
neurologists, neuropsychologists, neuroradiologists, and
experts in nuclear medicine. There was no significant
difference in age, education, stroke volume, and the in-
tervals from stroke onset to screening procedure be-
tween patients recruited and excluded.

The study protocol and procedure for obtaining in-
formed consent were complied with the Helsinki Declar-
ation, and were approved by the institutional review
board of Chang Gung Memorial Hospital (IRB No. 103-
7584A and 201601675A0) with the clinical trials regis-
tered to Taiwan Food and Drug Administration
(1040025953 and 1066015148) and Center of Drug
Evaluation (104IND06124 and 106IND03071). All par-
ticipants provided written informed consent.

Neurocognitive and functional evaluation

We employed a battery of neurocognitive tests, which
had been used in previous studies [15, 18, 19], to assess
a range of cognitive domains around 3 months after
stroke onset. The neurocognitive tests in each cognitive
domain were summarized in the Sup. Table 1. Of note,
the IQCODE test was done twice in the current study;
the first test was done within 1 week after stroke onset
for pre-stroke cognitive state screening as one of the in-
clusion criteria, and the second test was done around 3
months after stroke onset for PSCI severity evaluation
[20]. Depressive and anxiety symptoms were assessed by
the Neuropsychiatric Inventory (NPI) items 4 and 5, re-
spectively. The sequence of tests administration was
identical for each individual participant to minimize any
possible interference effect between testing. The
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assessment of disability states and cognitive domains
mainly consisted of memory, language, executive, and
visuospatial functions. Each raw test score was trans-
formed to a z score based on its corresponding norma-
tive data. We derived the composite scores for the four
cognitive domains (memory, visuospatial, executive, and
language functions) by averaging the z scores of the rele-
vant tests. We calculated the overall composite score for
general cognitive function by averaging the z scores of
all tests that contributed to the four cognitive domains.
PSCI was defined as the overall composite score for gen-
eral cognitive function < -1 [21, 22].

Imaging evaluation

Stroke volume evaluation

Brain CT and MRI were performed at stroke onset to as-
sess acute stroke lesions. The MRI scanning protocol in-
cluded fluid-attenuated inversion recovery (FLAIR),
diffusion-weighted imaging (DWI), and T1-weighted
(T1W) sequences. The stroke volume was delineated on
the DWI maps for ischemic stroke and on the CT im-
ages for hemorrhagic stroke using the PMOD software
(version 3.7, PMOD Technologies Ltd., Zurich,
Switzerland). We normalized stroke lesion volume ac-
cording to the head size, which was measured using the
Freesurfer software (version 6.0.0).

Brain atrophy, leukoaraiosis, and vascular burden
evaluation

Brain atrophy and leukoaraiosis were evaluated based on
the follow-up brain MRI scans performed around 3
months after stroke onset. Axial three-dimensional
T1W-MPRAGE (Magnetization Prepared RApid Gradi-
ent Echo), susceptibility-weighted imaging (SWI), and
FLAIR sequences were acquired on a Siemens 3T MRI
system as previously described [15].

We measured the cortical thickness on the T1W-
MPRAGE images using the Freesurfer software [23]. We
evaluated hippocampal atrophy using the Schelten medial
temporal lobe atrophy (MTA) score [24, 25]. We mea-
sured leukoaraiosis severity on the FLAIR sequence over
the periventricular and deep white matter areas for each
cerebral hemisphere by the Fazekas scale [26]. Periven-
tricular leukoaraiosis (PVL) was scored as follows: 0 = ab-
sence, 1 = caps or pencil-thin lining, 2 = smooth halo, or 3
= irregular leukoaraiosis extending into the deep white
matter. Further, deep white matter leukoaraiosis (DWML)
was scored as follows: 0 = absence, 1 = punctuate foci, 2 =
beginning confluence of foci, or 3 = large confluent areas.

Other imaging biomarkers for small vessel disease
were also rated by a senior neuroradiologist. Lobar and
deep cerebral microbleeds (<10 mm in diameter) were
evaluated on SWI [27]. Presence of lacunes (3—15 mm
in diameter) and cerebral microbleeds were defined as
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the presence of one or more lacunes or any cerebral
microbleed [28]. Presence of enlarged perivascular space
(< 3 mm in diameter) was counted if there was moderate
to severe (grade 2—4) perivascular space in the basal gan-
glia [28, 29].

PET image acquisition and preprocessing procedures

Both 'F-florbetapir and '®F-THK-5351 positron-
emission tomography (PET) scans were performed sep-
arately using Biograph mMR PET/magnetic resonance
(MR) and mCT PET/computed tomography (CT) scan-
ners (Siemens Medical Solutions, Malvern, PA, USA)
about 3 months after stroke onset; further, the two scans
were conducted at least 48 h apart to avoid signal inter-
ference. A 10-min PET scan of '®F-florbetapir was ac-
quired at 50 min post-injection of 384 + 13 MBq while a
10-min acquisition of *F-THK-5351 was performed at
50 min post-injection of 379 + 13 MBq. '°F-florbetapir
PET images were reconstructed using point-spread func-
tion reconstruction with 2 iterations and 21 subsets, as
well as MR-based attenuation correction and scatter and
random corrections. Further, **F-THK-5351 PET images
were reconstructed using a 3-D ordered subsets-
expectation maximization reconstruction algorithm (4 it-
erations, 24 subsets; Gaussian filter with 2 mm full width
at half maximum, zoom 3) with CT-based attenuation
correction, as well as scatter and random corrections.
The final reconstructed images were of 344 x 344 x 127
matrix size (0.834 x 834 x 1.2 mm voxel size) for *F-
florbetapir and 400 x 400 x 148 matrix size (0.68 x 0.68
x 1.5 mm voxel size) for 1®F-THK-5351.

PET data were motion-corrected, and then spatially
normalized into MNI space using MR-based spatial
normalization. Image processing was performed using
PMOD software (version 3.7; PMOD Technologies Ltd,
Zurich, Switzerland) by previously reported protocols
[30]. Then, the standardized uptake value ratio (SUVR)
image was calculated by using the cerebellar grey matter
as the reference region. Amyloid plaque positivity was
visually evaluated on '®F-florbetapir PET images [31].

Transformation of "®F-THK-5351 images to Z-Score map

We applied Z-score analysis to diminish the background sig-
nal from the subcortical regions resulting from the intrinsic
signal distribution of "*F-THK-5351 images. To calculate the
E_THK-5351 Z-score image for each subject, a dataset of
8F_THK-5351 PET SUVR images were first obtained from
22 age-matched healthy subjects to establish the "*F-THK-
5351 signal distribution template as previously described
[32—34]. These healthy subjects had (1) age > 55 years; (2)
Mini-Mental State Examination (MMSE) score > 26 points;
(3) no history of stroke, cognitive impairment, parkinsonism,
or other neurodegenerative diseases; (4) not taking anti-
inflammatory medication during the imaging period; and (5)
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negativity for amyloid plaque on '®F-florbetapir PET scan-
ning. These healthy subjects were 65.1 (6.1) years old, with
MMSE score of 28.0 (1.1) points. Ten of them were female.
To reduce the spurious uptake and registration error,
each spatially normalized '®*F-THK-5351 normal image
was smoothed using a 3D Gaussian kernel of 8 mm full
width at half maximum (FWHM). Then two normal ‘*F-
THK-5351 SUVR images of mean (u'") and standard devi-
ation (0'7) were calculated from the smoothed and
spatially normalized SUVR images of the healthy subjects.
With voxelwise comparison to the mean and standard de-
viation values obtained above, the Z-score image for each

subject with SUVR image I was finally computed as Z

P
=L}~ Through the transformation, we prominently di-

minished the background signals in the striatum and thal-
amus of patients with stroke (Fig. 1). Additionally, we built
the "®F-THK-5351 Z-maps for patients with stroke at mul-
tiple Z-score thresholds; namely, Z > 2, Z > 3, Z > 4, and Z
> 5 (Fig. 2). To investigate the correlation of stroke-
induced '®F-THK-5351 uptake with PSCI, we calculated
the Z-SUM scores at each Z-map threshold by summing
the Z-scores within the whole brain (total Z-SUM scores),
ipsilateral cerebral hemisphere (ipsilateral Z-SUM scores),
and contralateral cerebral hemisphere (contralateral Z-
SUM scores). In addition, we also calculated the Z-SUM
scores in the stroke core region and the perilesional region.
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Statistical analyses

For descriptive statistics, we performed the two-sample ¢
test, Chi-Square test, and Fisher’s exact test for group
comparisons. Further, we performed Pearson’s correl-
ation analysis to investigate the correlations of the Z-
SUM scores of '®F-THK-5351 uptake intensity with
demographic, vascular, and neurodegenerative factors.
Moreover, we analyzed the partial correlations of cogni-
tive performance with Z-SUM scores and other relevant
factors after adjusting for age and education co-
variables.

Since PSCI is associated with multiple factors, we
employed multiple regression procedures using the for-
ward selection method to determine the cognitive influ-
ence of total Z-SUM scores in three models. In model I,
we adopted age and education as confounding factors.
In model II, we added vascular factors, including NIHSS,
stroke volume, and leukoaraiosis, as explanatory vari-
ables. In model III, neurodegenerative factors were fur-
ther included. We applied 4 thresholds of **F-THK-5351
Z-score (Z > 2,7Z > 3,7 > 4, and Z > 5) in all the above
correlation and regression analyses to determine the
most sensitive cutoff level. Subsequently, we applied
path analyses to evaluate whether Z-SUM scores of '°F-
THK-5351 uptake intensity mediated the associations
between stroke volume and PSCI severity after adjusting
for age and education and mood conditions from NPI

T2 FLAIR

Normal

Stroke patient

the stroke-induced '®F-THK-5351 uptake was better visualized (h)

PETMR fusion

Fig. 1 Transforming the '8F-THK-5351 SUVR maps to '®F-THK-5351 Z-score maps. Regarding a representative healthy subject (a), off-target
binding of '®F-THK-5351 to the basal ganglia and thalamus was noted on the SUVR maps (b, c). After transforming SUVR maps to Z-score maps,
the signals in the basal ganglia and thalamus were robustly diminished (d). Regarding a patient with right hemisphere ischemic stroke (e), '8F-
THK-5351 uptake signals were increased around the stroke lesion; further, they were asymmetrically elevated in the basal ganglia and thalamus
on SUVR maps (f, g). On the Z-score map, the '®F-THK-5351 signals on the bilateral basal ganglia and thalamus were markedly suppressed and

SUVR map

Z-score > 2




Huang et al. Journal of Neuroinflammation (2020) 17:308

Page 5 of 14

T2 FLAIR DWI

Z-score >3

Z-score > 2

Fig. 2 Comparisons of '®F-THK-5351 uptake patterns among the SUVR map and Z-maps at multiple Z-score thresholds. A patient with a lacunar
infarct at the right internal capsule (a, b) shows increased 8F-THK-5351 uptake around the stroke lesion on the SUVR maps (¢, d). On the Z-maps
with sequentially increasing thresholds, the '®F-THK-5351 uptake regions gradually shrink (e-h). Furthermore, the increased '®F-THK-5351 uptake
might extend to the cerebral cortex without corresponding changes observed on the conventional FLAIR and DWI images

Z-score

Z-score > 5

Z-score >4

items (Sup. Fig. 1). Statistical analyses were performed
with SAS version 9.0 (SAS Institute Inc.,, New York,
USA), and P value < 0.05 was considered significant.

Results

We enrolled 63 amyloid-negative, right-handed patients
around 3 months after the first-ever index stroke (me-
dian 86 days with interquartile range from 73 to 98
days), and 25 of them had PSCI. Patients with PSCI had
older age, lower education, and more severe cortical at-
rophy (Table 1), and also had moderate higher stroke
volume, NIHSS, DWML, and MTA scores. Further,
there was a moderate to significant difference in the
whole brain **F-THK-5351 uptake intensity between pa-
tients with and without PSCI at multiple threshold
levels, including total Z-SUM-2 (Z > 2), Z-SUM-3 (Z >
3), and Z-SUM-4 (Z > 4) scores, but not total Z-SUM-5
(Z > 5) score. Besides, there was no difference in the
presence of enlarged perivascular space, cerebral micro-
bleeds, and lacunes between patients with and without
PSCI. In addition, there was no difference in Z-SUM
scores in terms of hypertension, diabetes mellitus, dys-
lipidemia, and current stroke habit for stroke patients
and healthy subjects (Sup. Table 2).

Associations of '8F-THK-5351 uptake intensity with stroke
features and cognition

While the total Z-SUM scores of *F-THK-5351 uptake
intensity significantly increased with stroke volume at all
thresholds, there was no correlation of total Z-SUM
scores with age, education, NIHSS, leukoaraiosis,

enlarged perivascular space, cerebral microbleeds,
lacunes, brain atrophy factors, and days from stroke on-
set at most of the Z-score thresholds (Sup. Table 3). The
total Z-SUM scores were also significantly correlated
with the Montreal Cognitive Assessment (MoCA), In-
strumental Activities of Daily Living (IADL), Informant
Questionnaire on Cognitive Decline in the Elderly
(IQCODE), sum of boxes of Clinical Dementia Rating
(CDR-SOB), as well as general cognitive, visuospatial, ex-
ecutive, and language functions, at multiple threshold
levels (Table 2). Moreover, there were significant corre-
lations of most cognitive results with other demographic,
vascular, and neurodegenerative factors.

8E_THK-5351 Z-SUM scores were further calculated
in the stroke core and perilesional regions (Table 3).
The Z-SUM scores of stroke core and perilesional re-
gions were both correlated with stroke volume, but not
with NIHSS. Furthermore, the cognitive performance
was associated with the perilesional Z-SUM scores ra-
ther than the stroke core Z-SUM scores after age and
education adjustment.

Given the complex associations among demographic
data, vascular imaging findings, brain atrophy, and cogni-
tion, we built three multiple linear regression models to
decipher the influence of '*F-THK-5351 uptake intensity
on post-stroke cognitive performance. In model I, age and
education were taken as the co-variables (Sup. Table 4).
Vascular factors, including NIHSS, stroke volume, and
leukoaraiosis, were added as explanatory variables in
model II (Sup. Table 5); neurodegenerative factors were
further included in model III (Sup. Table 6). Among the
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Table 1 Clinical characteristics of patients with and without post-stroke cognitive impairment
Characteristics Mean (SD)
Without PSCI (n = 38) With PSCI (n = 25) P value
Age, year 61.1(7.1) 684 (94) <001
Education, year 104 (3.1) 7.5 (4.6) <001
Male, No. (%) 31 (82) 16 (64) 0.12
APOE €4 carrier, No. (%) 4(11) 3(12) 1.00°
Days between stroke onset and cognition evaluation 1024 (29.7) 1016 (21.0) 091
Days between stroke onset and '8F-THK-5351 scanning 928 (14.8) 1044 (24.4) 004
Days between stroke onset and 18F—ﬂorbetapir scanning 1004 (31.6) 101.2 (284) 0.92
Common vascular risk factors
Hypertension, No. (%) 31 (82) 24 (96) 0.13°
Diabetes mellitus, No. (%) 14 (37) 6 (24) 0.28
Dyslipidemia, No. (%) 32 (84) 17 (68) 013
Gout, No. (%) 7 (18) 3(12) 0.72°
PVL score 04 (0.8) 0.8 (1.1) 0.13
DWML score 26 (1.3) 32(1.2) 0.08
Enlarged perivascular space, No. (%) 11 (29) 8 (32) 0.80
Lobar microbleed, No. (%) 6 (16) 6 (24) 0.52°
Deep microbleed, No. (%) 6 (16) 2 (8) 046"
Lacune, No. (%) 10 (26) 4 (16) 0.34
Stroke features
NIHSS 1.5(1.3) 24 (23) 0.06
Ischemic stroke, No. (%) 35(92) 23 (92) 1.00°
Left hemisphere stroke, No. (%) 17 (45) 15 (60) 024
Supratentorial stroke lesion, No. (%) 35 (92) 23 (92) 1.00°
Stroke volume, % 3.39E-6 (445E-6) 6.18E-6 (6.57E-6) 0.07
MTA score 0.8 (1.0) 13 (1.3) 0.09
Cortical thickness, mm 244 (0.08) 237 (0.10) 0.01
Total Z-SUM score at different Z levels
Total Z-SUM-2, Z > 2 86763 (96363) 136773 (126302) 0.09
Total Z-SUM-3,Z > 3 43536 (58763) 82344 (82885) 0.03
Total Z-SUM-4, Z > 4 25822 (40406) 50558 (53591) 0.04
Total Z-SUM-5, Z > 5 17404 (31432) 31059 (34631) 0.11

APOE &4 apolipoprotein E €4, DWML deep white matter leukoaraiosis, MTA medial temporal atrophy, NIHSS National Institutes of Health Stroke Scale, PSC/ post-

stroke cognitive impairment, PVL periventricular leukoaraiosis, Z-SUM sum of '8F-THK-5351 uptake intensity Z scores

Unless otherwise indicated, data are expressed as mean (SD)
?Analyzed by Fisher's exact test

three models, there was a similar trend of associations be-
tween total Z-SUM scores of **F-THK-5351 and cognitive
performance, especially for IADL, IQCODE, general cog-
nitive and executive functions, and the total Z-SUM-4
score was most sensitive to cognitive changes (Fig. 3).

Stroke lesion side stratification

To investigate the influence of stroke lesion side on
PSCI, we excluded 5 patients with infratentorial
stroke lesions from the analyses. The correlation

coefficients of stroke volume with ipsilateral Z-SUM-2
to Z-SUM-5 scores were 0.48, 0.54, 0.56, and 0.54 (Ps
< 0.01), while the correlation coefficients of stroke
volume with contralateral Z-SUM-2 to Z-SUM-5
scores were 0.23 (P = 0.08), 0.26 (P = 0.04), 0.23 (P =
0.08), and 0.19 (P = 0.16). Moreover, the correlation
coefficients between ipsilateral and contralateral hemi-
sphere Z-SUM scores were 0.64 (P < 0.01), 0.39 (P <
0.01), 0.13 (P = 0.35), and 0.02 (P = 0.90) for Z
thresholds from 2 to 5.
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Table 2 Factors associated with cognitive performance
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"8F-THK-5351 uptake intensity Demographic Vascular factors Neurodegenerative
factors factors
Total Z- Total Z- Total Z- Total Z- Age, Education, NIHSS Stroke PVL DWML MTA Cortical
SUM-2 SUM-3 SUM-4 SUM-5 year vyear volume, score  score score thickness,
% mm
MoCA -026* —-029* —-028 —-022 - 0.59%** - —-0.23t -023 —-032"t —-011 055%*t
0.42%** 0.55***+
NPI 0.21 021 021 0.17 0.08 -0.16 0.58%*t 0.28*t 0.06 0.19 -010 -032t
Depressive 0.07 0.05 0.04 0.01 0.06 —0.11 0.62***t 0.19 0.25 0.22 -006 -024
symptoms®
Anxiety® -0.10 -0.13 -0.13 -0.13 0.12 -031* 0.28* -0.10 0.13 -003 013 -020
IADL 037**t 041"t 039"t  031*t 031* =047 0.58***+ 0.29*+ 0.12 0.19 0.03 — 0.44%**
IQCODE® 042%**t  042%**t  037**t  0.29*t 0.34** —-0.25 042%%*F  04**t 0.24 043**t 019 —0.35%
CDR-SOB 0.31* 036**t  035**t  0.27*f 0.35**  —032* 0.57%%F 0.29%t 0.18 0.23 0.03 —045%%*+
Composite cognitive z score
General -028* - - - - 0.57%** - —-031% -024 -029* -0.15 039*
cognitive 036**+ 038t 034"t 026* 043***
function
Memory -0.11 -0.16 -0.18 —-0.15 - 0.36** - -0.14 - -027% -018 036*
function 0.35** 0.37%*F 0.38%*+
Visuospatial -028* —-028% —-027* —-023 - 0.21 -0.25 —0.241 -009 -026* 032t 026"
function 0.30*
Executive - - - - -009 039* - - 036"t -006 -021 —-0.10 032**
function 034t 0447t 045t  043%*+ 0.471%%%
Language -0.23 —-029% —-032%% -031*t -012 0.66"* —-025 —0.28%t -009 -022t -014 024
function

CDR clinical dementia rating, DWML deep white matter leukoaraiosis, IADL instrumental activities of daily living, IQCODE informant questionnaire on cognitive
decline in the elderly, MoCA Montreal cognitive assessment, MTA medial temporal atrophy, NIHSS National Institutes of Health Stroke Scale, NPI neuropsychiatric
inventory, PVL periventricular leukoaraiosis, SOB sum of boxes, Z-SUM sum of '8F-THK-5351 uptake intensity Z scores

*P < 0.05; **P < 0.01; ***P < 0.001; tP < 0.05 after adjustment for age and education

®Evaluated by the NPI depression item 4
PEvaluated by the NPI anxiety item 5
CPerformed around 3 months after stroke

We further stratified patients into left- and right-
hemispheric stroke. There was no significant difference
in the demographic data, imaging findings, and cognitive
results between patients with right- and left-hemispheric
stroke (Sup. Table 7). The total Z-SUM scores were sig-
nificantly correlated with CDR-SOB, general cognitive
function, and each cognitive domain function in patients
with left-hemispheric stroke and with executive function
in patients with right-hemispheric stroke after adjust-
ment for age and education. Furthermore, cognitive per-
formance was more prominently correlated with the
ipsilateral Z-SUM scores (Table 4), but not with the
contralateral Z-SUM scores (Sup. Table 8). With regard
to stroke volume, it was correlated with general cogni-
tive and language functions in patients with left-
hemispheric stroke, and with IQCODE, CDR-SOB, and
general cognitive and executive functions in patients
with right-hemispheric stroke.

We conducted path analyses to explore the mediation
effects of Z-SUM scores on the associations between
stroke volume and PSCI severity after adjusting for age,

education, and depressive symptoms (Fig. 4) and anxiety
(Sup. Fig. 2) covariables (Sup. Table 9). We adopted the
Z-SUM-4 score as the mediator because it was most
sensitive to cognitive changes based on the above regres-
sion model results. We selected cognitive tests both cor-
related with stroke volume and Z-SUM-4 scores as the
endogenous variables. Path analyses showed that stroke
volume had significant direct effects on the total and ip-
silateral Z-SUM-4 scores in patients with either left or
right hemisphere stroke. In addition to the direct cogni-
tive influence from stroke volume, ipsilateral Z-SUM-4
scores also significantly mediated the associations be-
tween stroke volume and language function in patients
with left-hemispheric stroke and between stroke volume
and executive function in patients with right-
hemispheric stroke, respectively.

Discussion

PSCI is usually presented in patients 3 to 6 months after
stroke onset. A previous study suggested that neuroin-
flammation plays a role in the modulation of post-stroke



Huang et al. Journal of Neuroinflammation (2020) 17:308 Page 8 of 14

Table 3 Correlations of Z-SUM scores of the stroke core and perilesional regions with stroke severity, stroke volume, and cognitive
performance

Stroke core regions Perilesional regions
Z-SUM-2 Z-SUM-3 Z-SUM-4 Z-SUM-5 Z-SUM-2 Z-SUM-3 Z-SUM-4 Z-SUM-5
NIHSS 0.18 0.17 0.14 0.10 022 024 0.19 0.14
Stroke volume, % 0.73%%*+ 0.69%**+ 0.63%**+ 0.56***t 0.471%%% 0.51%%% 0.55%**+ 0.54%%*+
MoCA -013 -0.12 -0.09 -0.05 —0.26* - 029* —-029* —-0.24
NPI 0.14 0.12 0.09 0.05 0.20 0.21 022 0.19
Depressive symptoms® 0.05 0.04 0.00 —0.04 0.07 0.05 0.04 0.02
Anxiety® -0.10 -0.10 -0.10 -0.10 —-0.09 -0.13 -013 -0.13
IADL 0.19 0.18 0.15 0.12 0.37**t 0.41%%*+ 0471%*t 0.33%*t
IQCODE" 0.14 0.1 0.07 0.02 0.42%%%+ 0.44%%*+ 0.40%*t 0.33%*F
CDR-SOB 0.15 0.13 0.11 0.08 031* 0.37%*+ 0.37**t 0.29%t
Composite cognitive z score
General cognitive function —-0.26* -0.25* -023 =021 -0.27* —0.35"%F —0.38"*F —0.35%*F
Memory function -0.12 -0.1 -0.10 -0.09 -0.11 -0.16 -0.18 -0.15
Visuospatial function -0.18 -0.18 -0.17 -0.16 —0.28* —0.28* -027*% -023
Executive function —0.28% —027*% -0.25 -0.21 — 033t —043%%*t —046***t — 044***t
Language function -031* -031* -0.30* -027* -022 —0.28* —-031*F —0.30*t

CDR clinical dementia rating, JADL instrumental activities of daily living, IQCODE informant questionnaire on cognitive decline in the elderly, MoCA Montreal
cognitive assessment, NIHSS National Institutes of Health Stroke Scale, NPI neuropsychiatric inventory, SOB sum of boxes, Z-SUM sum of '8F-THK-5351 uptake
intensity Z scores

*P < 0.05; **P < 0.01; ***P < 0.001; tP < 0.05 after adjustment for age and education

Evaluated by the NPI depression item 4

PEvaluated by the NPI anxiety item 5

“Performed around 3 months after stroke
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Fig. 3 The correlations of cognitive results with total Z-SUM-4 scores, the normalized '®F-THK-5351 uptake intensity. The total Z-SUM-4 score was
significantly correlated with Instrumental Activities of Daily Living (IADL) score (a), Informant Questionnaire on Cognitive Decline in the Elderly
(IQCODE) score (b), general cognitive function (c), and executive function performance (d)
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Table 4 Correlations of Z-SUM scores with cognitive performance in patients with left and right hemisphere stroke
MoCA IADL IQCODE® CDR- General cognitive Memory Visuospatial Executive Language
SOB function function function
Patients with left hemisphere stroke (n = 30)
Stroke volume, —024 0.25 033 0.13 - 036t —-0.15 -0.19 -034 —0.56*
%
Total Z-SUM-2 —-041* 046* 040* 045*t —048*t —-038 —041*t —040* —042%
Total Z-SUM-3 — 048*t 0.34 0.49%+ —0.54*t —-039*t —036t —049*t —0.51%F
0.44*+
Total Z-SUM-4  — 041* 024 046*t —0.52%t -036t —-030t —048%t —0.52%F
041%t
Total Z-SUM-5 -032t 032 0.16 0.36*t —044%t -029t -020 —043% —048*t
Ipsilateral Z- — 0.55*t 041*t 0.55*t —0.57*t — 042t  —046*t - 050t - 052t
SUM-2 0.57*F
Ipsilateral Z- - 0.54*t 034 0.55*t —0.59%t - 040t —040*t —0.55% —0.56%t
SUM-3 0.56*t
Ipsilateral Z- - 047*t 0.25 0.50*t —0.55% -036t —-032t —0.53% —0.56%t
SUM-4 0.51*t
Ipsilateral Z- - 037*t 0.15 0.39*t —047*t -028t —-022t —047*t —0.52*F
SUM-5 040*t
Patients with Right Hemisphere Stroke (n= 28)
Stroke volume, —027 030 043*t 041*t -033t —-0.20 —-037 —044*t 0.01
%
Total Z-SUM-2 -0.14 023 0.39% 0.20 -0.09 0.08 -0.17 -027 —-0.05
Total Z-SUM-3 -0.15 029 0.45* 0.25 -0.19 0.01 —-0.20 —-0.38% —-0.07
Total Z-SUM-4 -013 032 0.46* 0.26 -022 —-0.01 —-0.24 —042%t —-0.08
Total Z-SUM-5 —-007 026 0.38% 0.18 -0.21 0.00 —-0.28 —041%f —-0.07
Ipsilateral Z- -016 028 043* 0.19 -0.16 0.06 —-0.25 - 037t —0.08
SUM-2
Ipsilateral Z- -0.16 032 047* 0.24 -022 0.00 —0.25 —044%t —0.09
SUM-3
Ipsilateral Z- -013 033 046* 0.26 -0.23 —-0.02 —0.25 —044*t —-0.08
SUM-4
Ipsilateral Z- -007 026 0.39% 0.18 -0.21 0.00 —-0.28 —-0471%t —-0.07
SUM-5

CDR clinical dementia rating, IADL instrumental activities of daily living, IQCODE informant questionnaire on cognitive decline in the elderly, MoCA Montreal
cognitive assessment, NIHSS National Institutes of Health Stroke Scale, NP/ neuropsychiatric inventory, SOB sum of boxes, Z-SUM sum of '8F-THK-5351 uptake

intensity Z scores
*P < 0.05; T P < 0.05 after adjustment for age and education
@Performed around 3 months after stroke

cognitive performance [35]. In this study, we built an
"8F.THK-5351 PET imaging template using data ob-
tained from amyloid-negative healthy subjects to dimin-
ish background signals in the basal ganglia, thalamus,
and brainstem. We enrolled amyloid-negative patients
with first-ever stroke to investigate the RA extent, which
was defined as the Z-SUM scores on *F-THK-5351
PET imaging. Patients with PSCI had higher total Z-
SUM scores of '®F-THK-5351 uptake intensity than
those without PSCI. The total and ipsilateral Z-SUM
scores were also associated with the patterns of post-
stroke cognitive performance. Furthermore, path ana-
lyses indicated that the influence of stroke events on
PSCI resulted from stroke volume itself as well as the

RA extent indicated as the Z-SUM scores. This is the
first study to demonstrate the associations between PSCI
and RA extent on '®F-THK-5351 PET imaging.

We observed increased '*F-THK-5351 uptake intensity
on Z-maps around the stroke lesion, which faded with
distance away from the lesion core. This uptake distribu-
tion pattern could mimic the scar-like structures result-
ing from the proliferation and migration of reactive
astrocytes in the ischemic penumbra [36, 37]. These
scar-forming astrocytes have been reported to separate
nonfunctional, nonneural lesion core tissue from imme-
diately surrounding and potentially functional neural tis-
sue [13]. Although astrocytes may produce scaffolding
proteins to guide neuron growth [38], astrocyte scars
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Fig. 4 Path analyses of stroke effects on cognition via total or ipsilateral Z-SUM-4 scores after age, education and depressive symptoms
adjustment. Stroke volume contributes significantly to cognitive function as well as total and ipsilateral Z-SUM-4 scores in patients with either left-
hemispheric (a, b) or right-hemispheric (c, d) stroke. Further, ipsilateral Z-SUM-4 scores can partly mediate language influence from stroke volume
in patients with left-hemispheric stroke (b). Likewise, total and ipsilateral Z-SUM-4 scores can partly mediate executive influence from stroke
volume in patients with right-hemispheric stroke (c, d)

have been widely regarded as a major impediment to
axon regeneration after CNS injury [39]. In addition, dis-
rupted glioneuronal interaction can cause synaptic dys-
function and cognitive impairment [40].

The cognitive influence from stroke lesions not only
results from the focal factors, such as stroke volume and
location, but also can be attributed to the perilesional
and remote effects of these lesions [41]. Previous diffu-
sion tensor imaging studies have reported that changes
in perilesional and remote areas had a greater influence
on cognitive manifestations than the stroke lesion core
itself [42, 43]. Similarly in our study, the perilesional Z-
SUM scores rather than the stroke core Z-SUM scores
were associated with cognitive performance. In addition,
we also stratified the Z-SUM scores into total, ipsilateral,
and contralateral scores, and we found ipsilateral Z-
SUM scores tended to have more correlation with cogni-
tive performance than total Z-SUM scores. Future
multi-modality imaging studies could employ in vivo RA
visualization on PET images to investigate the neuroin-
flammation influence on perilesional and remote areas
via structural and functional connectivity analyses, which
might help understand the pathophysiological bases of
PSCI [41].

In our study, we applied the Z-map method to con-
trast the stroke-induced RA extent on '*F-THK-5351
PET imaging, which may mimic the inflammatory pen-
umbra [44, 45]. As inflammation is a common reaction
to miscellaneous physical conditions, applying a

threshold to acquire the Z-SUM scores would help to fil-
ter out signals not induced by stroke lesion. We found
the Z-SUM-4 scores (with values at least 4 standard de-
viations higher than the mean at each voxel) were more
sensitive to PSCI severity.

Post-stroke neuroinflammation is a diffuse process. In
our study, we explored the associations of bilateral hemi-
sphere RA with stroke volume and cognition. We found
that stroke volume was significantly correlated with ipsi-
lateral Z-SUM scores, but its correlations with contralat-
eral Z-SUM scores were relatively minor at multiple Z
thresholds (Z > 2, Z > 3, and Z > 4). Further, the correla-
tions between bilateral cerebral hemispheric Z-SUM-2
and Z-SUM-3 scores were significant. Besides, we also
found the contralateral Z-SUM scores of stroke patients
were higher than the average Z-SUM scores of bilateral
cerebral hemispheres of the 22 healthy controls (at Z >
2, Z > 3, and Z > 4 thresholds; Sup. Table 10). However,
the Z-SUM scores in the contralateral hemisphere were
not associated with cognitive performance. These find-
ings suggest that post-stroke neuroinflammation is a dif-
fuse process, which is more prominent in the ipsilateral
hemisphere and minor in the contralateral hemisphere.

8F_THK-5351 has the alternative affinity for
monoamine oxidase-B (MAO-B), and MAO-B is largely
expressed in astrocytes in response to CNS damage [12,
13]. We took the advantage of such characteristics to ex-
plore RA presentations in first-ever stroke patients. In
our study, we adopted several major steps to decrease
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the possibility of cross-binding of **F-THK-5351 to tau
protein. Firstly, we included amyloid-negative first-ever
stroke patients to decrease the possibility of co-existing
AD. Secondly, we recruited stroke patients without med-
ical history and imaging results suggestive of tauopathy,
including AD, progressive supranuclear palsy, corticoba-
sal degeneration, and fronto-temporal dementia, and the
patient recruitment was evaluated after consensus by a
multidiscipline team. Furthermore, as tau protein has
been reported as a marker of axonal injury, ischemic
stroke may induce a transient tau protein increase in hu-
man CSF, with a peak 1 week after stroke onset and a
normalization after 3 months [46, 47]. In our study, we
recruited patients around 3 months after stroke to de-
crease the acute stroke-related effect on tau protein for-
mation. Although the transformed '|F-THK-5351
uptake values may be more relevant to stroke-induced
RA and appear correlated with PSCI after these proce-
dures, the actual accuracy and sensitivity of '®F-THK-
5351 to RA in stroke patients need to be clarified in
future studies. Further pathological and neuroimaging
investigations could provide more direct evidence on the
interaction between stroke-induced RA and PSCI.

Both acute ischemic stroke and hemorrhagic stroke
are associated with glial toxicity and cell injury, but with
different spatio-temporal neuroinflammatory processes
and mechanisms [48, 49]. Although astrocytes have dif-
ferential roles in the recovery patterns of ischemic and
hemorrhagic stroke, the long-term GFAP-positive astro-
cytic plasticity could be similar after both ischemic and
hemorrhagic stroke [50, 51]. In our sub-analyses, the as-
sociations between Z-SUM scores and PSCI presenta-
tions were significant in ischemic patients, and the
trends were similar to the results of the pooled popula-
tion (Sup. Table 11). The sample size of patients with
hemorrhagic stroke (n = 5) was insufficient to investigate
such associations. As there was no difference in clinical
characteristics, stroke volume, and Z-SUM scores be-
tween patients with ischemic and hemorrhagic stroke,
we pooled these two types of patients together to ex-
plore the influence of RA on PSCI (Sup. Table 12). How-
ever, RA response to ischemic and hemorrhagic stroke
may be dynamic and versatile in the recovery process,
and further longitudinal studies are warranted to investi-
gate the RA influence on PSCI presentations in different
stroke subtypes.

Patients with stroke are more susceptible to attention,
spatial ability, language, and executive function impair-
ments rather than memory problem [21]. These findings
were in line with our study result that stroke volume
and total Z-SUM scores of '*F-THK-5351 were corre-
lated with most of cognitive results, but not with mem-
ory performance (Table 2). Education attainment is
associated with PSCI severity, and we have taken
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education into account when investigating the associa-
tions between RA extent and PSCI performance in the
correlation, regression, and path analyses. Other risk fac-
tors, such as age, stroke volume, as well as hippocampal
and cortical atrophy, are associated with the incidence of
PSCI [1-4, 52]. Similar findings were also noted in our
study. After adjusting for confounding factors in the
multiple regression analyses, the total Z-SUM scores
were still correlated with IADL, IQCODE, and the gen-
eral cognitive and executive functions in most models.

Both PSCI and post-stroke depression are associated
with late worsening of disability, and an immunological
hypothesis is one of the mechanisms of these two stroke
sequelae [51]. Besides, post-stroke depression could also
be a potential source of PSCL In our study, there was no
difference in depressive symptoms and anxiety between
patients with and without PSCI, and the influence of RA
extent on cognitive performance remained significant
after adjusting for these mood conditions in path ana-
lyses. As the etiology of post-stroke depression remains
controversial, further studies are necessary to investigate
the associations between neuroimaging and fluid inflam-
matory biomarkers associated with post-stroke depres-
sion [53].

Left-hemispheric stroke is reported as an important risk
factor for PSCI [54]. Similar findings were noted in our
study that patients with left hemisphere stroke tended to
score lower in each cognitive domain battery than patients
with right hemisphere stroke (Sup. Table 7). When focus-
ing on the cognitive influence of stroke-induced RA on
specific cerebral hemisphere, ipsilateral Z-SUM scores
were correlated with most cognitive results in patients
with left hemisphere stroke, while ipsilateral Z-SUM
scores were correlated with IQCODE and executive func-
tion in patients with right hemisphere stroke (Table 4).
Furthermore, under path analyses, PSCI severity could be
attributed to stroke lesion volume directly as well as
stroke-induced inflammation indirectly in patients with
right or left hemisphere stroke, suggesting that stroke-
induced RA may have a modulating effect on PSCI occur-
rence (Sup. Table 9).

Currently, other radioligands targeting the neuroin-
flammatory process are under development. Microglia
can be imaged using the ''C-PK11195 and “'C-PBR28
radiotracers, which have a high affinity for the 18-kDa
translocator protein found in the mitochondria of micro-
glia. Post-stroke microglia activation has been investi-
gated using ''C-PK11195 PET imaging, but there is
limited literature on the relationship between C-
PK11195 findings and PSCI [9, 55]. In contrast, the Heo
deuterium-L-deprenyl (*'C-DED) and '®F-SMBT-1
radiotracers are designed to bind to MAO-B in astro-
cytes [5]. The utility of **C-DED radiotracer is limited
by the short half-life of carbon-11 and their suboptimal
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binding specificity [56]. The "®F-SMBT-1 radiotracer is a
derivative of the '®F-THK-5351 compound, and has
shown high specificity to astrogliosis in an animal study
recently [57]. The application of *F-SMBT-1 PET in
stroke patients may further substantiate the role of RA
in PSCI occurrence.

This study had several limitations. First, although '°F-
THK-5351 can be used to quantify the RA extent in pa-
tients with stroke through the Z-map transformation
method, there is still a need to validate the optimal Z-
score threshold for demonstrating the RA extent. Our
preliminary findings indicated that the Z-score >4
threshold was most sensitive to PSCI manifestations.
Second, '"F-THK-5351 has a dual binding affinity to
both tau protein and MAO-B, and such characteristic
could limit the general applicability of "*F-THK-5351 in
patients with stroke for neuroinflammation evaluation.
Since our main interest was to explore the relationships
between PSCI and neuroinflammation on '*F-THK-5351
PET imaging, we only enrolled amyloid-negative stroke
patients without tauopathy presentations to reduce the
possibility of '*F-THK-5351 binding to tau protein. The
development of novel radiotracers specific to RA would
be helpful to determine the cognitive impacts of stroke-
related RA. Third, "*F-THK-5351 PET was performed
about 3 months after stroke in our study. As neuroin-
flammation effects on tissue remodeling are dynamic
after neuronal injury, the RA presentations on *F-THK-
5351 PET imaging in acute stroke stage are yet to be de-
termined [13]. Finally, this was a cross-sectional study
with relatively small sample size. Future long-term
follow-up studies should further investigate the dynamic
relationships between RA and PSCI manifestations.

Conclusion

Stroke-induced '®F-THK-5351 uptake signals could re-
flect the RA extent in amyloid-negative patients with
first-ever stroke. Besides the cognitive effect from stroke
lesion itself, stroke-induced neuroinflammation as mea-
sured by the total and ipsilateral Z-SUM scores of '*F-
THK-5351 PET imaging could further contribute to
PSCI presentations.
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