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Abstract

Background: Hypoxic-ischemic encephalopathy (HIE) is a serious birth complication with high incidence in both
advanced and developing countries. Children surviving from HIE often have severe long-term sequela including
cerebral palsy, epilepsy, and cognitive disabilities. The severity of HIE in infants is tightly associated with increased
IL-1B3 expression and astrocyte activation which was regulated by transient receptor potential vanilloid 1 (TRPV1), a
non-selective cation channel in the TRP family.

Methods: Neonatal hypoxic ischemia (HI) and oxygen-glucose deprivation (OGD) were used to simulate HIE in vivo
and in vitro. Primarily cultured astrocytes were used for investigating the expression of glial fibrillary acidic protein
(GFAP), IL-1B, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and activation of the
nucleotide-binding, oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3 (NLRP3)
inflammasome by using Western blot, g-PCR, and immunofluorescence. Brain atrophy, infarct size, and
neurobehavioral disorders were evaluated by Nissl staining, 2,3,5-triphenyltetrazolium chloride monohydrate (TTC)
staining and neurobehavioral tests (geotaxis reflex, cliff aversion reaction, and grip test) individually.

Results: Astrocytes were overactivated after neonatal Hl and OGD challenge. The number of activated astrocytes,
the expression level of IL-1(3, brain atrophy, and shrinking infarct size were all downregulated in TRPV1 KO mice.
TRPV1 deficiency in astrocytes attenuated the expression of GFAP and IL-13 by reducing phosphorylation of JAK2
and STAT3. Meanwhile, IL-13 release was significantly reduced in TRPV1 deficiency astrocytes by inhibiting
activation of NLRP3 inflammasome. Additionally, neonatal Hl-induced neurobehavioral disorders were significantly
improved in the TRPV1 KO mice.

Conclusions: TRPV1 promotes activation of astrocytes and release of astrocyte-derived IL-13 mainly via JAK2-STAT3
signaling and activation of the NLRP3 inflammasome. Our findings provide mechanistic insights into TRPV1-
mediated brain damage and neurobehavioral disorders caused by neonatal HI and potentially identify astrocytic
TRPV1 as a novel therapeutic target for treating HIE in the subacute stages (24 h).
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Introduction

HIE resulting from oxygen deprivation and blood flow
reduction to the brain is a common cause of brain dam-
age [1]. The mechanisms involved in the brain damage
include excitotoxicity, apoptosis, and glial overactivation
[2]. Although the importance of microglial activation in
hypoxia-induced neuroinflammation is well explored [3],
the role of astrocyte activation in this process has attracted
more attention. It has been explored that activation of as-
trocytes under pathological conditions [4], such as ische-
mic damage [5] and neuroinflammation [6—8], are closely
related to the pathogenesis of brain injury [9]. Activation
of astrocytes and subsequent increase of IL-1p release are
shown to be a key determinant of the outcome and prog-
nosis of HIE [10-12]. Astrocytes are the predominant
source of IL-1f in post-traumatic stress disorder [13] and
prion disease [14]. Active NLRP3 inflammasome, which
cleaves the pro-inflammatory cytokines IL-1f to its active
form [15], has been detected in astrocytes in several ani-
mal models of intracerebral hemorrhage, such as ische-
mia/reperfusion injury and hemorrhage transgenic
amyotrophic lateral sclerosis [16—19]. Moreover, inhibiting
the activation of NLRP3 inflammasome attenuates neo-
natal HI-induced brain injury in rats [20, 21], and systemic
neutralizing IL-1f by infusions of anti-interleukin-1f anti-
bodies reduces short-term brain injury after cerebral is-
chemia in the ovine fetus [22].

TRPV1 channel is the prototypic member of the TRP
family and displays dynamic ion selectivity for ions in-
cluding H*, Na*, Ca®*, and Mg** [23]. In the CNS,
TRPV1 participates in synaptic transmission, neurogen-
esis, and neuroinflammation [24, 25]. Recent studies
suggest that TRPV1 is functionally expressed in CNS
glial cells, especially microglia and astrocytes [26, 27]. In
astrocytes, TRPV1 activation mediates its migration,
chemotaxis, and the expression of GFAP, during stress
and injury [28]. TRPV1 activation stimulates a
JAK2-STAT3 pathway to regulate astrocyte activation,
astrocyte hypertrophy, and the expression of cytokines
such as IL-1B and IL-6 in vitro and in vivo [29-32].
TRPV1 activation participated in neonatal brain injuries
[33, 34], and overactivated astrocytes exacerbate neuro-
logical deficits [35]. These findings strongly suggest that
TRPV1 may mediate astrocytic activation and IL-1f re-
lease in HIE.

We have previously reported that TRPV1 promoted
the activation of microglia and upregulated the expres-
sion of TNE, IL-1p, IL-6, and high mobility group box 1
(HMGB1) in repetitive febrile seizure (FS) mice [36].
The main purpose of the present study was to determine
whether TRPV1 aggravated brain damages, neurological
deficits by promoting astrocytes activation, and neuroin-
flammation in a mouse model of neonatal HI. We found
that in the subacute stage (24h), TRPV1 activation
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increases the phosphorylation of JAK2 and STAT3, which
results in an increased expression of GFAP and IL-1f.
TRPV1 activation promotes the activation of the NLRP3
inflammasome, which drives the release of IL-1p. Further-
more, knocking out TRPV1 significantly improves neo-
natal HI-induced neurobehavioral disorders.

Materials and methods

Animal models and treatments

B6.129X1-TRPV1 KO mice used in experiments were
from the Jackson Laboratory, and wild-type (WT) mice
were provided by the Hubei Province Center for Animal
Experiments. Animal experiments were approved by the
Care and Use Committee of Wuhan University Medical
School. B6.129X1-TRPV1 KO mice and wild-type mice
were both on a C57BL/6] background. Mice were grouped
randomly and kept on a 12-h light—dark cycle, in a room
maintained at 25 + 2 °C and relative humidity of 60~80%.
All mice were housed at the animal facility of the Animal
Biosafety Level III Laboratory (ABSL-III) of the Wuhan
University. The day of the birth was defined as postnatal
day zero (P0). Mice pups (n = 160) of P9 were used in this
study and randomly divided into the five groups (n = 32
each group): WT-Sham, WT-HI, WT-Capsaicin-HI (intra-
peritoneal injection of 3 mg/kg capsaicin 0.5 h before neo-
natal HI), KO-Sham, and KO-HI.

Neonatal hypoxia-ischemia model

A well-characterized model of neonatal HI was followed
as a previously described [2, 37]. P9 C57BL/6 WT and
TRPV1 KO mice of both genders (5 + 1g of body
weight, equal males, and females were chosen for each
group) were anesthetized by inhalation of isoflurane.
The sterilized skin was incised with an ophthalmology
scissor. And the right pulsating carotid artery was care-
fully separated. The upper and lower ends of the right
carotid artery were tied using 4-0 surgical suture before
cutting the artery in the middle. The skin incision was
sutured with the same surgical suture. All the above ex-
perimental surgical instruments were sterilized. After 2h
of recovery, the pups were placed in an airtight transpar-
ent chamber, and the chamber was placed into a 37°C
incubator to maintain a constant thermal environment.
The pups were maintained in 8% O, in N, for 45 min.
After the hypoxic process, the mouse pups were put
back in the cages. Successful HI model showed signifi-
cant edema in the ipsilateral hemisphere, while the sham
group (underwent anesthesia, neck incision, and suture)
did not. The mortality of this model was about 10%.

Nissl staining

We followed detailed protocols that have been previ-
ously reported [38]. Briefly, at 24 h after neonatal HI,
mice pups were perfused with phosphate-buffered saline
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(PBS) followed by 4% paraformaldehyde (PFA). The
brains were then obtained for Nissl staining following
the standard protocol.

Infarct volume measurement

The procedure has been previously described [39]. At
24 h post-HI, animals were transcardially perfused with
PBS under deep anesthesia. The brains were obtained
and sectioned into 2mm slices and then immersed in
2% 2, 3, 5-triphenyltetrazolium chloride monohydrate
(TTC) solution at 37 °C for 10 min, followed by 4% PFA
to completely fix the tissue. The infarct volume was
traced and analyzed by Image] software (version 1.41).

Primary mouse cortical astrocytes cultures

Astrocyte culture was prepared as previously described
[40]. PO mice were euthanized after being disinfected
with 75% ethanol. The brain tissue was isolated and then
put into the pre-cooled PBS. In order to obtain dissoci-
ated cells, meninges were removed and the clean cere-
bral cortex was digested in Hank’s balanced salt solution
(HBSS) containing 0.125% trypsin at 37 °C for 10 min.
Complete growth media (1x Dulbecco’s modified Eagle’s
medium (DMEM)/F12, 10% heat-inactivated fetal bovine
serum, 1% L-glutamine, and 1% penicillin/streptomycin)
were added to terminate the digestion. Gently blow
digested tissues with pap dropper and then centrifuge at
1000 rpm for 5 min. Dissociated cells were planted in
T75 flasks in glial medium and then maintain at conven-
tional cell culture incubator (37 °C, 5% CQO,) for 10-12
days. To purify astrocytes from microglia and oligoden-
drocytes, the cells in the T75 were subjected to continu-
ous shaking at 37°C (200rpm, 10h). The remaining
cells were identified by immunofluorescence staining
with anti-GFAP antibody, and approximately 95% of the
remaining cells were GFAP-positive (data not shown).

OGD progression

Oxygen-glucose deprivation (OGD) was conducted as
described previously [41]. Briefly, astrocytes were grown
in complete growth media for 9 days as monolayers in
cell culture incubator (95% O, and 5% CO, at 37°C).
And all groups of cell medium were changed to
serum-free growth medium 24 h before OGD. To initiate
OGD in vitro, the plates were washed with PBS three
times, added OGD medium (serum- and glucose-free
DMEM), and placed in a hypoxic/anoxic chamber (1%
0,3, 5% CO,, and 94% N2 at 37°C); 3.5h later, plates
were removed from the anaerobic chamber and OGD
medium was changed to complete growth medium. At
the same time, control glucose-containing cultures
remained in a regular incubator (5% CO, and 95% O,)
and the medium was changed to fresh complete growth
medium with OGD group. The supernatants and cell
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extracts were collected after OGD for the following
experiments.

Real-time PCR

Total RNA was extracted from the cortical-derived as-
trocytes of WT and TRPV1 KO mice from different
groups using TRIzol reagent (Invitrogen Life Technolo-
gies Corporation, USA) to detect the mRNA level of
IL-1pB, IL-6, TNEF, IL-10, NLRP3, an apoptosis-associated
speck-like protein containing carboxyl-terminal CARD
(ASC), and caspase-1.

The quantity of total RNA was measured by a UV
spectrophotometer (Biochrom Ltd., UK). Next, reverse
transcription was performed using a cDNA synthesis kit
(TaKaRa Biotechnology). QPCR was performed on a
SYBR-Green premix (TransGen Biotech) according to
the manufacturer’s specification with the primers listed
in Table 1 (Sangon Biotech, Shanghai, Co., Ltd.). The
cycling parameters for the CFX96 sequence detection
system were 95 °C for 5 min; 40 cycles of 95°C for 155,
58°C for 30s, and 72°C for 20 s. The expression of tar-
get genes was normalized to the mRNA level of pB-actin
as an internal control. The AACt values of each group
were analyzed, and the mRNA expression of different
groups was normalized to 2744,

Western blot analysis

Western blotting was performed according to the manu-
facturer’s specification. The brain tissue samples and as-
trocytes were collected after neonatal HI and OGD.
Proteins were extracted by homogenizing in RIPA buffer
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) with
phenylmethanesulfonyl fluoride (PMSF) and further cen-
trifuged at 12,000 rpm at 4 °C for 10 min. The protein con-
centrations were measured using a detergent-compatible
assay (Bio-Rad, Dc protein assay). Equal amounts of pro-
tein were loaded on an SDS-PAGE gel. After electrophor-
esis and transfer to a polyvinylidene fluoride (PVDF)
membrane, the membranes were blocked by 5% skimmed
milk for 3h. The membranes were incubated with the
GFAP, JAK2, and STAT3 antibody overnight at 4 °C. De-
tails for the primary and secondary antibodies are listed in
Table 2. After incubation, the membranes were washed at
least three times with TBST (TBS containing 0.2%
Tween-20) and were then incubated for 1.5 h with second-
ary antibodies at room temperature. The membranes were
washed again with TBST three times. Finally, the reaction
was developed using a chemiluminescent reagent (ECL;
Ecl Advantage Inc., Menlo Park, California, USA) and the
bands of different proteins were detected using an imaging
densitometer (Bio-Rad, Foster City, CA, USA). The data
were analyzed using Image] software (version 1.41).
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Table 1 g-PCR primer sequences applied
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Primer Forward primer 5™-3' Reverse primer 5'-3

NLRP3 ACGAGTCCTGGTGACTTTGTAT TAGGTCCACACAGAAAGTTCTCTTA
Caspasel ATGCCGTGGAGAGAAACAAGG CCCCTGACAGGATGTCTCCA

ASC ACGAGTCCTGGTGACTTTGTAT TAGGTCCACACAGAAAGTTCTCTTA
IL-1B8 TAAAGACCTCTATGCCAACACAGT CTGACTTGGCAGAGGACAAAG

IL-6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTACTTC

TNF CCAACAAGGAGGAGAAGTTCC CTCTGCTTGGTGGTTTGCTAC

IL-10 TACTGCTAACCGACTCCTTAATGC AGAAATCGATGACAGCGCCTC
B-actin CACGATGGAGGGGCCGGACTCATC TAAAGACCTCTATGCCAACACAGT

Measurement of cytokine by enzyme-linked
immunosorbent assay (ELISA)

The amounts of IL-1B in the culture supernatants in
each group of astrocytes were measured by ELISA kit
(purchased from 4A Biotech Co., Ltd) according to the
manufacturer’s instructions. The serum samples of ani-
mals or cells from different groups were added into a
96-well plate. Then, it was incubated with the corre-
sponding primary antibody followed for 90 min at 37 °C.
After washing three times with wash buffer, the second-
ary antibody was added into the plate and incubated for
60 min at 37°C. And then the absorbance at 450 nm
(Thermo, USA) was recorded. The concentration of the
target protein was calculated according to the standard
curve and normalized to the total protein of the samples.
Assays were performed independently three times using
triplicate wells.

Cell viability assay

Cell counting kit-8 (CCK-8) assay was performed as pre-
viously described [42]. Astrocytes were seeded at a dens-
ity of 3 x 10*mL™" in 96-well plates. Cell viability was
subsequently assessed using the CCK-8 (Dojindo, Tokyo,
Japan) according to the manufacturer’s instructions. The
optical absorbance at 450 nm was detected using a plate
reader (Thermo Fisher Scientific).

Table 2 Antibodies for Western blot

Immunofluorescence

Immunofluorescence staining was used to detect GFAP
and IL-1p expression in peri-ischemic brain tissue, as-
sembly of ASC speck and NLRP3 and caspase-1 expres-
sion in astrocytes.

Mice in each group were deeply anesthetized with
10% chloral hydrate and transcardially perfused first
with PBS and then fixed in 4% paraformaldehyde solu-
tion at room temperature, dehydrated 24 h after HIL
Serial coronal sections (5-um thick with injury epicen-
ter located centrally) prepared with cryotome (Leica,
Wetzlar, Germany) were used for immunofluorescence la-
beling. Sections were incubated with 5% BSA for 30 min
at 37 °C. The tissue slices were then incubated overnight
with the anti-GFAP and anti-IL-1p antibodies. For the as-
sessment of assembly of ASC speck and NLRP3 and
caspase-1 expression in astrocytes, cells were fixed with
methanol, washed with PBS three times, and incubated at
4°C with anti-ASC, anti-NLRP3, and anti-caspase-1 anti-
bodies. On the following day, the sections and cells were
washed and subsequently incubated with secondary anti-
bodies Cy3-conjugated Goat Anti-Rabbit IgG (H + L) and
Alexa Fluor® 488 Conjugates Goat Anti-Mouse for 1h at
37 °C. Dilutions for antibodies were listed in Table 3. Im-
ages obtained using a confocal microscope (Lei-
ca-LCS-SP8-STED). And images area and intensity were
measured in Image].

Antibody Host Company Cat. no. Dilution Duration
GFAP Mouse Cell signaling #3670 1:1000 Overnight 4 °C
JAK2 Rabbit Cell signaling #3230 1:1000 Overnight 4 °C
p-JAK2 Rabbit Abcam ab32101 1:2000 Overnight 4 °C
STAT3 Rabbit Hangzhou HuaAn Biotech ET1607-38 1:1000 Overnight 4 °C
p-STAT3 Rabbit Hangzhou HuaAn Biotech ET1603-40 1:1000 Overnight 4 °C
B-actin Mouse Protein tech HRP-60008 1:10000 Overnight 4 °C
Anti-mouse IgG-HRP Goat PMK Biotech PMK-014-091 1:100000 2h RT
Anti-rabbit 1gG-HRP Goat PMK Biotech PMK-014-090 1:100000 2h RT
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Table 3 Antibodies for immunohistochemistry and fluorescence staining

Antibody Host Company Cat. no. Dilution Applied Duration
GFAP Mouse Cell signaling #3670 1:300 ICC Overnight 4 °C
Ibal Goat NOVUS NB100-1028 1:200 ICC Overnight 4 °C
NRLP3 Rabbit NOVUS NBP2-12446 1:50 ICC Overnight 4 °C
ASC Mouse Santa Cruz Bio. SC-271054 1:50 ICC Overnight 4 °C
Caspase-1 Mouse Santa Cruz Bio. SC-398715 1:50 ICC Overnight 4 °C
-1 Rabbit Bio-Swamp PAB30679 1:50 ICC Overnight 4 °C
Anti-rabbit 1gG-Cy3 Goat Protein tech SA00009-2 1:50 ICC 1h37°C
Anti-mouse 1gG-488 Goat EarthOx £032210-01 1:200 ICC 1h37°C

DAPI Beyotime C1002 1;2000 ICCIHC 1 min RT

Morphological assessment

The morphological assessment of astrocytes after OGD
was performed according to M. Neal [43]. Briefly, 20 x
images (Olympus U-HGLGPS) were imported into Ima-
geJ for morphological analysis. The glial processes could
be analyzed using an Image] plugin named Analyze Skel-
eton [44]. The image was converted to binary and then
skeletonized in Image] software, and then, the skeleton-
ized image was put into the Analyze Skeleton plugin to
get detailed information about the branch length of each
cell. Cell soma size was measured by freehand selection
outlining each cell soma and then selecting the “area”
analyzes to measure. At least three fields were used for
each section, and then, three biological replicates were
used for each experiment. At least 20 cells were mea-
sured for each of the morphology assessments.

Neurobehavioral testing

Cliff aversion reaction, Geotaxis reflex and Grip test
were respectively assessed at 1day (P10), 3 days (P12),
and 7 days (P16) after neonatal HI. All of the above ex-
periments were observed by at least two uninformed la-
boratory workers, and all groups of animals maintained
the same test method.

Cliff aversion reaction was used to assess the ability of
rodents’ respond to adverse environments [45]. Put two
planks together and the board was 30cm above the
ground. The head and front upper limbs of the mouse
were on the first plank, the rest of the body was on the
second plank, and all the mice were placed in this pos-
ition. When the mouse relaxed, the first plank was
quickly lowered so that the bilateral forelimbs of the
mouse were suddenly suspended. After a short delay, the
mouse can return to the second plank. The time re-
quired for the mouse to withdraw the forelimb was ex-
amined. Each mouse was tested three times. If the
forelimbs were not withdrawn for more than 60s, it
would be recorded as 60s. Grip test was used to assess
the performance and tolerance of mice [46]. The bilat-
eral forelimbs of the mice were grasped on a metal wire

(1.5 mm in diameter), the metal rope was 50 cm from
the ground, and the ground was covered with cork. Rec-
ord the time from the mouse holding the metal rope to
releasing the metal rope and test each mouse three
times.

Geotaxis reflex was considered to diagnose the func-
tion of vestibular and proprioception of mice [47]. A
wooden board was placed at an angle of 45°, and then,
the mouse was placed at the middle of the wood heading
toward the lower end of the wood. The time required
for the mouse to turn 180° toward the upper end of the
board was recorded. One mouse was tested three times.
If the time was more than 60s, it would be regarded as
the maximum value of 60 s.

Experimental design and statistical analysis

Prism 7 (RRID: SCR_002798) software was used to
analyze data and form the graphs in this work (including
which tests were performed, exact P values, and sample
sizes). Simply, one-way ANOVA with a test for linear
trend, Tukey test was used as appropriate to analyze
parametric statistics. At least three independent experi-
ments were applied to collect effective data. Bias was
avoided by making sure that assessor was blinded to col-
lecting and analyzing data. P < 0.05 was considered sig-
nificant. Average values represent the mean + SEM. In
the quantitative analysis of Fig. 5e—g, the number of ani-
mals used in neurobehavioral testing was indicated in
figure legends. ‘P represents the significance compared
to sham or control. “P represents the significance com-
pared to WT-HI or WT-OGD.

Results

TRPV1 deficiency prevents the upregulation of GFAP
expression induced by neonatal HI

To determine whether TRPV1 mediates astrocyte activa-
tion following neonatal HI insult, the expression of GFAP
were investigated after neonatal HI in both TRPV1 KO
mice and congenic WT C57BL/6 mice. Immunofluores-
cence staining revealed significantly stronger labeling of
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GFAP in the ipsilateral hippocampus at 12 h, 24h, and 48  that HI insult significantly increases the number of acti-
h after neonatal HI compared to the sham group (Fig. 1a  vated astrocytes in the hippocampus.

and Additional file 1: Figure S1A), and its expression satu- On the other hand, immunofluorescence (Fig. 1f~h) and
rated at 24 h (Fig. 1b, c). The labeling of Ibal increased at  Western blot results (Fig. 1i, j) showed that the neonatal
6h, 12 h, and 24 h (Additional file 1: Figure S1A). Western =~ HI-induced increase of GFAP expression was significantly
blot results (Fig. 1d, e) showed that GFAP protein level reduced at 24h in the TRPV1 KO mice compared with
was gradually upregulated at 12h, 24h, and 48h after WT mice. Consistent with the genetic ablation result, sys-
neonatal HI compared with the sham group, suggesting temic desensitization of TRPV1 (intraperitoneal injection

A Sham

HI(12hr) HI(24hr)

HI(48hr)

DAPI/GFAP

D_ E
(SR HI
‘@ .5 2.0 oot Al AOTe
w5 Sham 12hr 24hr 48hr
£ S GFAP % S &8 88 54KD
5 EI.O B-actin W = W & 42KD
3
& m0.5]
= O
- 04 B >~ 0-
Sham 12hr 24hr 48hr Sham 12hr24hr48hr 0~ Sham 12hr 24hr 48hr
HI HI HI
F WT TRPV1+ G H
I H H g S1s I H H
+Cap Sham HI Sham HI +Cap Sham HI
WT TRPV1* TRPV1*-

I J

o 2.5

S

2520

231.5 _Sham__ HI
A 5o Cap - = = = &
§ ® % 1.0 TRPVI1 +/+ /- +/+ +/+ /-
g 560.5 H GFAP % == @ &« » 54KD
= g B-actin == == = — — 42KD
E . OSham HI +Cap Sham HI

TRPV1"

Fig. 1 Knocking out TRPV1 inhibited GFAP expression in hypoxia-ischemia brain tissue. a After HI, GFAP expression was upregulated at 12 h, 24 h,
and 48 h. GFAP expression levels by immunofluorescence were examined in the ipsilateral hemisphere sections from sham and HI groups. Scale
bar = 100 um. b, ¢ Immunofluorescence intensity and cluster size of GFAP in the ipsilateral hemisphere hippocampus significantly increased in HI
brain compared to sham brain. n = 6 for each group. d, e Western blot revealed upregulated expression of GFAP at 12 h, 24 h, and 48 h. GFAP
expression levels were examined in ipsilateral hemisphere sections from Sham and HI. Quantification of independent blots. n = 5 for each group.
f Knocking out TRPV1 or pretreating capsaicin reduced the upregulation of GFAP as shown by immunofluorescence at 24 h. Scale bar = 100 um.
g, h Knocking out TRPV1 or pretreating capsaicin reduced immunofluorescence intensity and cluster size of GFAP compared to HI group. n = 6
for each group. i, j Western blot revealed that knocking out TRPV1 or pretreating capsaicin reduced GFAP upregulation compared to HI group.
Quantification of independent blots. n = 5 for each group. Cap, 3 mg/kg capsaicin. Average values represent the mean + SEM. *P < 0.05, **P < 0.01,
®P < 0001 versus sham (Tukey's test after one-way ANOVA). *P < 0,001 versus WT-HI (Tukey's test after one-way ANOVA)
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of 3 mg/kg capsaicin 0.5 h before neonatal HI) significantly
reduced the increase of GFAP expression caused by neo-
natal HI in WT mice [48—50]. Knocking out TRPV1 mildly
reduced Ibal® cell, while intensely reduced GFAP" cell in
the ipsilateral hemisphere hippocampus (Additional file 1:
Figure S1). Taken together, these results suggest that either
genetic ablation of TRPV1 or systemic desensitization of
TRPV1 effectively suppress the upregulation of GFAP ex-
pression induced by neonatal HI, highlighting the import-
ance of TRPV1 in neonatal HI-induced astrocyte activation.

Activation of astrocytes and increased expression of
inflammatory cytokines induced by OGD are TRPV1-
dependent
To explore the role of TRPV1 on HI-induced activation
of astrocytes in vitro, hippocampal astrocytes were iso-
lated and cultured to undergo OGD. Either TRPV1 defi-
ciency or capsaicin-induced TRPV1 desensitization,
pretreating with capsaicin (10 uM) 0.5h before OGD,
prevented astrocytes from cellular edema (Fig. 2a, b), re-
duction of branch processes (Fig. 2a, c), and cell death
(Fig. 2d) at 24 h after OGD. In addition, the upregulation
of GFAP reduced in TRPV1 deficiency astrocytes and
WT capsaicin pretreatment astrocytes (Fig. 2e, f).
Activated astrocytes release several cytokines in neuro-
logical diseases [9]. OGD challenge significantly in-
creased IL-1pB (Fig. 2g), IL-6 (Fig. 2h), and TNF (Fig. 2i)
mRNA expression level, which was inhibited by genetic
ablation and capsaicin-induced desensitization of TRPV1
(Fig. 2g—i). Of note, although the expression level of the
anti-inflammatory cytokine (IL-10) increased after OGD,
genetic ablation and capsaicin-induced desensitization of
TRPV1 only slightly inhibited the upregulation (Fig. 2j).
These results suggested that TRPV1 is required for astro-
cyte activation, morphological change, and the expression
of pro-inflammatory cytokines, especially IL-13 and IL-6
in vitro.

Activation of JAK2-STAT3 signaling in astrocytes is
required for OGD-induced TRPV1-dependent expression
of IL-18

TRPV1 activation has been shown to exacerbate neuro-in-
flammatory actions by activating pro-inflammatory STAT3
signaling [29]. Thus, Western blot was used to confirm
whether TRPV1 activated JAK2-STAT3 signaling at 24h
after OGD. Western blot results showed that phosphoryl-
ation of STAT3 and JAK2 were significantly increased after
OGD, which was reversed by either genetic ablation or
capsaicin-induced desensitization of TRPV1 (Fig. 3a—c), indi-
cating the critical role of TRPV1 on the phosphorylation of
JAK2 and STATS3. Next, we used Stattic, a specific inhibitor
of STAT3 phosphorylation, to investigate whether pharmaco-
logical inhibition of STAT3 phosphorylation attenuates or
abolishes TRPV1-induced increase of GFAP expression.
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Indeed, treating WT astrocytes with Stattic (5 M) during
OGD challenge significantly reduced the expression of
GFAP. In marked contrast, Stattic did not inhibit the expres-
sion of GFAP in TRPV1 deficiency astrocytes (Fig. 3d—f).

Recent studies have shown that JAK2-STAT3 signaling
was vital for the expression of IL-1 in both resident mac-
rophages [51] and CNS microglia [32], and expression of
IL-1P has been used to predict the severity of HIE in in-
fants [12]. Therefore, we next verified the role of
TRPV1-activated JAK2-STAT3 signaling in OGD-induced
IL-1P upregulation in astrocytes. As shown in Fig. 3g, h,
mRNA transcripts and protein level of IL-1 were down-
regulated by inhibiting the phosphorylation of STAT3 in
WT astrocytes and Stattic did not inhibit the expression of
IL-1B in TRPV1 deficiency astrocytes. These results sug-
gested that TRPV1 promoted the activation of astrocytes
and the expression of IL-1B via JAK2-STAT3 signaling
after OGD challenge.

Activation of NLRP3 inflammasome in astrocytes is required
for OGD-induced TRPV1-dependent release of IL-18
The activation of NLRP3 inflammasome was critical for
IL-1P release in multiple sclerosis (MS), stroke, and Alz-
heimer’s disease [52]. Following OGD challenge, the levels
of mRNA transcripts of NLRP3 inflammasome compo-
nents (NLRP3, ASC, and caspase-1) increased and the
increasing was attenuated by genetic ablation and
capsaicin-induced desensitization of TRPV1 (Fig. 4a—c).
ASC is a key adaptor of several inflammasomes including
NLRP3 and AIM2, and their activation is reflected by ASC
speck assembly or oligomerization [53]. The confocal im-
aging is used to measure the assembly of ASC speck indi-
cated by the white arrow (Fig. 4d). Upon NLRP3 activation
by OGD challenge the dispersed ASC condenses into a large
speck in astrocytes, genetic ablation or capsaicin-induced
desensitization of TRPV1 reduced ASC oligomerization (Fig.
4d, e). Immunofluorescent staining showed increased inten-
sity (Fig. 4f-h) and co-localization (Fig. 4i) of NRLP3 and
caspase-1 after OGD, which were reduced by either genetic
ablation of TRPV1 or capsaicin-induced desensitization of
TRPV1, suggesting that TRPV1 mediates the release of
IL-1B following OGD challenge by activation of NLRP3
inflammasome in astrocytes.

Brain damage and neurobehavioral disorders induced by
neonatal HI are reduced in TRPV1 KO mice

IL-1B is the key mediator of neuroinflammation in the
CNS [54], and the upper results show that TRPV1 is crit-
ical to astrocyte activation and release of astrocyte-derived
inflammatory cytokines. To investigate whether the
TRPV1-dependent inflammatory response could be trans-
lated into brain damage in vivo, we examined brain dam-
age 24 h after neonatal HI in TRPV1 KO mice or WT
mice subjected to capsaicin pretreatment. As shown in
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(See figure on previous page.)

Fig. 4 Knocking out TRPV1 attenuates the formation of NLRP3 inflammasome. a-c The graphical representation of the fold changes of NLRP3, ASC, and
caspase-1. Knocking out TRPV1 or pretreating with capsaicin reduced the upregulation of NLRP3, ASC, and caspase-1 compared to OGD group. n = 5 for
each group. d Confocal images showed ASC specks increased after OGD, and knocking out TRPV1 or pretreating with capsaicin inhibited the increase of
ASC specks compared to OGD group. White arrows indicate ASC specks and the scale bar = 10 um, scale bar = 1 um for the enlarged image. e ASC speck
positive astrocytes percentage was determined in 10 fields/well and divided by the number of cells counterstained with DAPI. n = 4 for each group. f
Confocal images showed that NLRP3 and caspase-1 were increased after OGD, and knocking out TRPV1 or pretreating with capsaicin inhibited their
upregulation compared to OGD group. Scale bar = 10 um. g, h The intensity of NLRP3 and caspase-1 fluorescence was determined in 10 fields/well and
divided by the number of cells counterstained with DAPI. n = 4 for each group. i Pearson’s correlation coefficient is shown in the graph from the analysis
of independent experiments. n = 4 for each group. Cap, 10 UM capsaicin. Average values represent the mean + SEM. **P < 001, **P < 0.001 versus
control (Tukey's test after one-way ANOVA). *P < 005, *P < 001 versus WT-OGD (Tukey's test after one-way ANOVA)
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Fig. 5 Knocking out TRPV1 reduced infarct volume, brain atrophy, and neurobehavioral loss. a Representative TTC stained coronal brain sections
from the sham, HI, and capsaicin treatment groups with different injection times as shown, n = 7-8 for each group. b Quantitative analysis of the
infarct volume revealed that knocking out TRPV1 or pretreating with capsaicin reduced the infarct volume. ¢ Whole brain Niss| staining from the
sham, HI, and capsaicin treatment groups are shown. n = 8 for each group. d Quantitative analysis of brain atrophy in which knocking out TRPV1
or pretreating with capsaicin produced reduction the infarct volume. n = 8 for each group. e Confocal images showed knocking out TRPV1
inhibited the increase of IL-1(3-positive astrocytes compared to HI group in the ipsilateral hemisphere. White arrows indicate IL-13-positive
astrocytes and the scale bar = 100 um, scale bar = 50 um for the enlarged image. f IL-13-positive astrocytes percentage was determined in 10
fields/section and divided by the number of cells counterstained with DAPI. n = 4 for each group. g The geotaxis reflex results at 1, 3, and 7 days,
showing the time that pups took to turn around. n = 9-14 for each group. h The cliff aversion reaction results at 1, 3, and 7 days, demonstrating
the time that pups took to turn their head at the cliff. n = 9-14 for each group. i The grip test results at 1, 3, and 7 days, showing the time that pups were
able to hold onto a horizontal bar. n = 9-14 for each group. Cap, 3 mg/kg capsaicin. Average values represent the mean + SEM. *P < 0.05, **P < 001
versus control (Tukey's test after one-way ANOVA). P < 005, P < 0001 versus WT-HI (Tukey's test after one-way ANOVA)
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Fig. 5a, b, the TTC-negative area in the ipsilateral hemi-
sphere was significantly decreased in TRPV1 KO mice
and WT mice pretreated with capsaicin (intraperitoneal
injection 3 mg/kg 0.5h before neonatal HI). In marked
contrast, post-treating with capsaicin (3 mg/kg, adminis-
tered 5 min after neonatal HI) did not effectively reduce
the TTC-negative area in WT mice (Fig. 5a, b). Next, we
used whole-brain Nissl staining to determine the role of
TRPV1 in brain atrophy 24 h post neonatal HI (Fig. 5¢, d).
Neonatal HI produced marked brain atrophy compared
with the ipsilateral side of the sham group. Brain atrophy
in either TRPV1 KO mice or WT capsaicin pre-treatment
mice is significantly reduced. Immunofluorescence
showed that the number of IL-1B-positive astrocytes in
the ipsilateral hemisphere hippocampus (indicated by the
white arrow) decreased in TRPV1 KO mice compared
with WT mice after neonatal HI (Fig. 5e, f).

To investigate whether TRPV1 is involved in neonatal
HI-induced neurobehavioral disorders, three different
neurobehavioral tests including cliff aversion reaction
(Fig. 5g), grip test (Fig. 5h) and geotaxis reflex (Fig. 5i)
were used. Neonatal HI significantly prolonged the time
for WT pups to turn around in the cliff aversion reac-
tion, reduced the holding time in the grip test, and in-
creased the head-turning time in the geotaxis reflex at
days 1, 3, and 7 compared with the sham group, which
was recovered in TRPV1 KO and WT capsaicin pre-
treatment mice. These results suggest that TRPV1 con-
tributes to brain atrophy, infarct size, and loss of reflexes
and motor ability caused by neonatal HI.

Discussion

Both astrocytes and microglia were activated after injury
by pro-inflammatory mediators, cytokines, and ROS that
are secreted by injured neurons and glial cells [55]. The
role of microglia in HIE was well established and micro-
glial activation and aggregation had become one of the
hallmarks for HIE in human infants [3, 56—58]. Notably,
astrocytes are also involved in the pathogenesis of
neurological diseases and sterile inflammatory responses
[4, 9, 59] and the role of astrocytes in CNS inflammatory
was controversial (both detrimental and beneficial) in
brain ischemia [3]. Early studies have extensively focused
on the protective effects of astrocytes, such as the isola-
tion of the damaged area from the rest of the CNS tissue
and reconstruction of the compromised blood-brain bar-
rier [60, 61]. Recent studies, however, demonstrated that
astrocytes have a detrimental role in response to ische-
mic stress [4, 10, 62—64].

Ion channels (kv4.1, kvl.3, TRPV1, TRPM7, NKCC]l...)
and intracellular ion homeostasis (K*, Na*, Ca**, and CI")
are critical for glia proper functions in CNS [65-67]. TRPV1
that is mainly permeable to Ca®" naturally expresses in the
endomembrane system of microglia and astrocytes which
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plays important roles in astrocyte and microglial activation
[68—70]. It has been proved that overactivated TRPV1 in-
crease NADPH oxidase-mediated reactive oxygen species
(ROS) generation [71, 72], mitochondrial disruption [73] in
microglia, and microglia-induced inflammation [74]. TRPV1
also accelerate astrocyte and microglial migration and
chemotaxis during stress by directly interacting with cyto-
skeletal elements [75, 76]. The role of TRPV1 in microglia is
well explored [26], while its distinctive function in astrocyte
is not fully understood in a variety of neuroimmune diseases.

In the present study, we showed that during the sub-
acute phase of HI (24 h), astrocyte and microglia were
overactivated and microglia activation is about 3 h earl-
ier than astrocyte. This may because microglia acting as
the constant sensors of changes in the CNS microenvir-
onment is more sensitive to insults [77]. TRPV1, which
is activated after ischemia [78] intensely mediate astro-
cyte activation compared to microglia, increases IL-1B
release and exacerbates ischemia-induced brain damage
(brain atrophy, infarct size, and neurobehavioral loss).
TRPV1 is required for the phosphorylation of JAK2 and
STAT3 which promotes the transcription of GFAP and
IL-1B. TRPV1 function is critical for the activation of
NLRP3 inflammasome which promotes the cleavage of
pro-IL-1f (Fig. 6). Our studies reveal a previously unknown
function of astrocytic TRPV1 and potentially identify a crit-
ical target for the treatment of CNS inflammation.

Injured cortex becomes hypertrophic in many types of
CNS disorders such as stroke and neurotrauma, which is
often accompanied with the upregulation of GFAP in as-
trocytes [9]. As expected, we found that GFAP expression
increased in a time-dependent manner after neonatal HI,
which is mediated by TRPV1 as either genetic ablation or
capsaicin-induced systemic desensitization of TRPV1
inhibited the upregulation of GFAP. In vitro studies fur-
ther confirmed that TRPV1 directly regulates the function
of astrocytes in a cell autonomous manner without the re-
quirement of neurons or microglia, since inhibition of
TRPV1 function prevented astrocytes from cellular
edema, reduction of branch processes, cell death, and ex-
cessive activation caused by OGD challenge.

The role of activated astrocytes has been reported in
the sterile inflammatory response and the release of
several cytokines, such as IL-1f, IL-6, and TNF [79] in
middle cerebral artery occlusion (MCAQO). Our previ-
ous work demonstrated that TRPV1 activation pro-
motes the expression of TNEF, IL-1pB, IL-6, and high
mobility group box 1 (HMGBI) in repetitive febrile
seizure (FS) mice [36]. Consistent with these observa-
tions, we found that TRPV1 is required for OGD-in-
duced upregulation of IL-1f3, IL-6, and TNF in
astrocytes. Interestingly, IL-10 mRNA transcript was
slightly increased in a TRPV1-dependent manner after
neonatal HI, which might be caused by a negative
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feedback from the astrocytes induced by severe inflam- IL-1f in umbilical and peripheral blood is noteworthy
matory responses [80, 81]. upregulated in children suffered from HIE, and its ex-
How does TRPV1 mediate astrocyte activation and up-  pression level corresponds to the grades and adverse
regulation of pro-inflammatory cytokines? Previous re- outcomes of HIE [83]. The release of IL-13 depends on
searches demonstrated that the JAK2-STAT3 pathway is  the activation of NLRP3 inflammasome which cleaves
involved in the activation of astrocytes and the expres- the pro-inflammatory cytokines IL-1f to its active form
sion of cytokines both in vivo and in vitro [30-32]. by mediating the activation of caspase-1 [15, 84, 85]. It
Moreover, in inflammatory signaling cascades in the has been proved that, in other disease models such as
brain, TRPV1 has been shown to exacerbate neuro-in- intracerebral hemorrhage model, ischemia/reperfusion
flammatory actions by activating pro-inflammatory injury model, and hemorrhage transgenic amyotrophic
STATS3 signaling [29]. Inhibition STAT3 phosphorylation  lateral sclerosis model, NLRP3 inflammasome is acti-
via JAK2-blockade reduces neonatal HI-induced neuro-  vated in astrocytes [16—19]. In the present study, the ac-
inflammation and tissue loss [82]. Consistent with these tivation of NLRP3 inflammasome followed by IL-1f
studies, we found that TRPV1 promoted the phosphoryl-  releasing increased after OGD challenge. And inhibition
ation of JAK2 and STAT3 induced by OGD challenge. of TRPV1 blocked this modification, suggesting that
Moreover, a specific inhibitor of STAT3 (Stattic) signifi- TRPV1 drives the release of IL-1p by stimulating the acti-
cantly reduced the expression of GFAP and IL-1p fol-  vation of NLRP3 inflammasome after OGD in astrocytes.
lowing OGD challenge in a TRPV1-dependent manner. In vivo, hampered TRPV1 function significantly re-
These results suggest that TRPV1 mediates the activa- duced brain atrophy, infarct size, and the number of
tion of astrocytes and the expression of IL-1p via the IL-1B-positive astrocytes in the hippocampus. Addition-
JAK2/STAT3 pathway. ally, the recovery of neurobehavioral disorders indicated
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by three independent neurobehavioral developmental
tests (the geotaxis reflex, cliff aversion reaction, and grip
test) after neonatal HI was potentiated in TRPV1 KO
mice. Our results suggest that astrocytic TRPV1 is re-
quired for the exacerbation of the brain damage and
neurobehavioral disorders after neonatal HI. Of note,
since. TRPV1 do express by microglia/macrophages,
neuron [78], and neutrophils [86], these types of cells
might contribute to the detrimental effects mediated by
TRPV1 independently or cooperatively in HIE. Future
studies using cell-specific TRPV1 knockdown/knockout
mice needed to confirm this possibility.

Conclusion

TRPV1 promotes activation of astrocytes and release of
astrocyte-derived IL-1p mainly via JAK2-STAT3 signaling
and activation of the NLRP3 inflammasome. Our findings
provide mechanistic insights into TRPV1-mediated brain
damage and neurobehavioral disorders caused by neonatal
HI and potentially identify astrocytic TRPV1 as a novel
therapeutic target for treating HIE in the subacute stages
(24h).

Additional file

Additional file 1: Knocking out TRPV1-reduced GFAP and Iba-1-positive
cell in hypoxia-ischemia brain tissue. (A) GFAP and Iba-1-positive cell were
examined in the ipsilateral hemisphere sections from Sham and HI groups.
Scale bar = 100 um. (B, C) The number of GFAP and Iba-1-positive cell in the
ipsilateral hemisphere hippocampus. n = 6 for each group. Average values
represent the mean + SEM. *P < 0.05, **P < 001, ***P < 0.001 (Tukey's test
after one-way ANOVA and two-way ANOVA). (TIF 8629 kb)
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