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Abstract

It is a well-known fact that DHEA declines on ageing and that it is linked to ageing-related neurodegeneration,
which is characterised by gradual cognitive decline. Although DHEA is also associated with inflammation in the
periphery, the link between DHEA and neuroinflammation in this context is less clear. This review drew from
different bodies of literature to provide a more comprehensive picture of peripheral vs central endocrine shifts with
advanced age—specifically in terms of DHEA. From this, we have formulated the hypothesis that DHEA decline is
also linked to neuroinflammation and that increased localised availability of DHEA may have both therapeutic and
preventative benefit to limit neurodegeneration. We provide a comprehensive discussion of literature on the
potential for extragonadal DHEA synthesis by neuroglial cells and reflect on the feasibility of therapeutic
manipulation of localised, central DHEA synthesis.
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Background
From the recent literature, it is evident that the pro-
cesses of neuroinflammation and neurodegeneration are
inextricably linked. Given the sequestered nature of the
brain, which complicates research sample collection for
obvious reasons, many investigators seem to extrapolate
data generated from peripheral samples in attempts to
explain central events. However, as also illustrated in the
pages to follow, there is often a disconnection between
adaptation in the periphery versus those occurring cen-
trally. In our opinion, there are multiple reasons for this.
Firstly, the neuroimmune system is structurally distinct
from the peripheral system in that most immune func-
tions are mediated by cells specific to the nervous sys-
tem, such as microglia and astrocytes [1]. Incidentally,
although recent commentaries and research letters per-
taining to the identification of a lymphatic system in the
dural spaces are suggesting that the brain may be subject
to surveillance by immune cells circulating from the per-
iphery [2], not enough data exist with which to evaluate

the relative importance of these immune cells relative to
those residents in the brain. Secondly, the brain has a
preference for glucose as a substrate, as opposed to most
peripheral organs, such as the heart, which mainly derive
energy through fatty acid β-oxidation, which may affect
the outcome of adaptive—or maladaptive—metabolic re-
sponses differently in the brain to peripheral compart-
ments. Lastly, although the brain itself is subject to
glucocorticoid-mediated metabolic modulation, as in the
peripheral compartment, it is also directly affected
by—and thus adapts as result of—psychological input.
From this, it is clear that different factors come into

play centrally vs. peripherally in terms of adaptation to
stimuli. This questions the validity of treating neuroin-
flammation—especially in the context of chronic disease
aetiology—using the same strategies by which peripheral
chronic low-grade inflammation is addressed. It further
highlights the need for specific, central investigations for
the purpose of answering questions pertaining to central
physiological adaptation or maladaptation.
We have identified the hormone (also aptly referred to

as a neurosteroid) dehydroepiandrosterone (DHEA) as a
relatively under-researched hormone in the context of
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neurophysiology, despite its very clear association with a
plethora of clinical disease states. DHEA, which is pre-
dominantly synthesised in the human adrenal cortex,
also exists as a sulphated ester known as DHEAS, which
is formed when DHEA is processed by the enzyme ster-
oid sulphotransferase (SULT) [3, 4]. Of note, the major-
ity of DHEA in circulation exists as DHEAS due to it
having a stronger binding affinity for its carrier protein,
albumin [5]. DHEA is the precursor hormone to both
androgenic and estrogenic hormones and, as such, is
also synthesised to a smaller extent in human gonads. In
addition, and most relevant to the context of the current
topic, it is claimed to be synthesised de novo in the human
brain as well. In fact, DHEA concentrations in the human
brain have been shown to be higher than that in circula-
tion, while DHEAS concentrations are lower [4, 6], which
not only supports the theory of local synthesis, but also
testifies to the importance of this hormone centrally.
In the context of human health, DHEA has historically

been deemed to have limited importance, until low circu-
lating levels of DHEAS were associated with chronic and
age-related diseases such as diabetes, hypertension and
arthritis. [7–11]. In addition, it has since drawn much
media attention as being an “anti-ageing” supplement after
circulating levels were also reported to dramatically and
progressively decline with age [9, 12]. Most relevant to the
current context, abnormal changes in DHEA levels in
serum and cerebral spinal fluid (CSF) have also been re-
ported in the pathophysiology of neurodegenerative dis-
eases such as Alzheimer’s disease (AD), schizophrenia and
multiple sclerosis (MS), as well as neurocognitive patholo-
gies such as post-traumatic stress disorder (PTSD) (a sum-
mary of these reports is provided in Table 1). However,
much remains unknown about DHEA’s mode of action in
the human body or the reason for its age-related decline.
Therefore, and given the commonly accepted phenomenon
of accelerated ageing in many chronic disease states [13],
understanding the process of ageing and the physiological
role of DHEA in this process, may be of benefit to the
development of novel strategies in the treatment of these
enigmatic pathologies.
With this review, we provide a comprehensive sum-

mary of what is known about the role of DHEA in the

context of neurophysiology and ageing. This will be
followed by a discussion of specific topical issues, such
as the effect of sex and species, as well akowski the sites
for DHEA production. More specifically, relevant litera-
ture providing arguments for and against central, intra-
crine DHEA production is discussed in order to make
an interpretation on the likelihood of central DHEA bio-
synthesis taking place, as well as on the feasibility of
modulating central DHEA levels for therapeutic effect in
the context of ageing-related neuroinflammation and
ageing-related degeneration.

Process of ageing
Ageing is an inevitable, natural biological process charac-
terised by a progressive loss of physiological integrity
which results in impaired function and increased probabil-
ity of death. It is an extremely complex process which is
affected by a number of lifestyle and genetic factors that
may accelerate, ameliorate or even slow down the progres-
sion of ageing itself [13]. The process of ageing is com-
monly considered the main risk factor in the development
of neurodegenerative diseases such as Alzheimer’s disease
and Parkinson’s disease (PD) [14, 15]. Currently, the global
population is living longer as a result of the advances in
medicine and, consequently, such diseases are becoming
more prevalent.
Ageing itself is associated with cumulative oxidative stress,

chronic low-grade inflammation linked to age-related dys-
function of the immune system (termed immunosenes-
cence) and most notably, a decline in endocrine function
(termed endocrinosenescence) [13, 16]. The immediate sec-
tions to follow will focus primarily on immunosenescence
and endocrinosenescence—highlighting their intricately
linked aetiologies in the process of ageing itself, as well as in
age-related neurodegenerative pathologies.

Immune system maladaptation
Inflammation is an integral part of the innate immune sys-
tem: it not only acts as the first line of defence against
pathogenic attack and injury, but also serves to execute final
humoral immune effects (e.g. antibody-mediated pathogen
destruction). It is thus a normal physiological process that is
essential for the maintenance of homeostasis. An equally

Table 1 Summary of reports linking DHEA to neurodegenerative diseases and neurocognitive disorders

Disease Findings References

Alzheimer’s disease Significant decrease in serum DHEA and DHEAS levels when compared to aged-matched control patients [165–171]

Schizophrenia Data on both sides of the spectrum associate both abnormally elevated and declining levels of DHEA/DHEAS
with the disease. This opposing data could be related to the heterogeneity of the disease itself,
as well as other comorbid aetiological factors, which adds complexity to interpretation of this data.

[172–178]

Multiple Sclerosis Significantly higher CSF DHEA concentrations in relapsed patients relative to control patients with
stable neurological disease

[179]

Post-traumatic stress
disorder (PTSD)

Increased plasma DHEA and DHEAS levels when compared to unaffected control patients [180–186]
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normal consequence of the inflammation-facilitated repair
of tissues after any insult is the transient disruption of the
local cellular homeostasis of non-infected or uninjured cells.
This injury-repair cycle is efficient during youthful years, but
is affected by ageing, resulting in a relatively impaired ability
of the body to regenerate damaged tissues [13]. Systemically,
immunosenescent changes in the innate immune system are
characterised by a loss of phagocytic capacity, reduced effi-
ciency in leukocyte (neutrophil and macrophage) chemo-
taxis, reduced intracellular, but increased extracellular levels
of free radicals and an increase in production of “early” or
acutely responsive pro-inflammatory cytokines, such as
interleukin (IL)-1β, IL-6 and tumour necrosis factor
(TNF)-α [17–20], all of which contribute to a more
pro-inflammatory phenotype and which increase the burden
of tissue damage-recovery cycles. The loss in efficiency of
this process, coupled with an increased exposure to anti-
genic load and modern lifestyle associated chronic stressors,
results in the reduced ability of the body to maintain normal
immune function. This manifests as an increased risk for
malignancy, auto-immune responses, an impaired ability to
mount proper immune responses to stimuli and prolonged
inflammatory activity during acute infections [21–23].

Neuroinflammatory changes
As in the periphery, ageing of the brain is associated
with increasing inflammation and local oxidative
stress—also resulting in repeated tissue damage-recovery
cycles—which predisposes older individuals to develop-
ing neurodegenerative pathologies. Age-related neuroin-
flammation partly manifests as an increased reactivity of
microglia, the resident innate immune cells. In a healthy
brain, microglia are activated upon stimulation, but do
not necessarily release these pro-inflammatory media-
tors. In the aged brain however, microglia appear to not
only release pro-inflammatory mediators, but to do so in
an exaggerated and prolonged manner [24]. This appears
to be linked to the fact that microglia undergo signifi-
cant immunophenotypic and functional changes with
ageing: the activation status of microglia changes from a
quiescent to a “primed” state. This manifests as an in-
creased expression of the glial activation markers major
histocompatibility complex II (MHC II) and complement
receptor 3 (CD11b), which sensitises microglia to the exag-
gerated pro-inflammatory responses seen upon stimulation.
Animal studies have also suggested that chronic and

significant elevation of levels of pro-inflammatory cyto-
kines such as IL-1β may be linked to impaired memory
formation and long term potentiation (LTP) [24–27].
Systemically, IL-1β is released by monocytes upon rec-
ognition of a pathogen or site of injury, as well as by any
cell sustaining damage [28]. IL-1β enhances B and T cell
lymphocyte proliferation and stimulates IL-6 and TNF-α
production in many other immune cells. The systemic

elevation of circulating pro-inflammatory cytokines, par-
ticularly IL-1β, exerts a significant effect on the micro-
glial activation as well. However, in this context, the
age-related maladaptation seems to occur at different
magnitudes in the brain relative to the circulation. For
example, studies in mice have shown that stimulation of
the peripheral innate immune system with an intraperi-
toneal injection of either lipopolysaccharide (LPS) or live
E.coli bacteria resulted in a more prolonged and exagger-
ated elevation of IL-1β and IL-6 levels in aged brains
relative to those of younger mice [29, 30]. Interestingly,
the exaggerated and prolonged inflammatory response
was restricted to the brain and not paralleled with a
similar peripheral response. In addition, it was reported
that the hippocampus was more affected when com-
pared to other brain regions, such as the hypothalamus,
parietal cortex or prefrontal cortex [30]. The hippocam-
pus plays a critical role in memory formation, and con-
sequently, it is implicated in many neurodegenerative
pathologies, such as Alzheimer’s disease. These data give
credibility to the more recent suggestions that a severe in-
flammatory episode may trigger development of Alzhei-
mer’s disease [31, 32]. It also identifies the hippocampus
specifically as area of interest for preventative intervention.
However, before one can move on to interventions, it is

necessary to more fully understand the cause(s) of this ex-
aggerated neuroinflammatory outcome upon ageing. A
complexity is that the exact cause of the overactive re-
sponse in microglia from aged individuals has in fact not
been elucidated convincingly. We believe that the answer
might lie in the progressive and chronic elevation of gluco-
corticoid hormones that is also associated with ageing.

Endocrine dysfunction
The ageing hypothalamic–pituitary–adrenal axis (HPA)
Cortisol released into circulation can readily cross the
blood–brain barrier (BBB) and therefore can exert its ef-
fects both locally (in the brain) and systemically (in the
periphery), by binding to either of its two intracellular
receptors: mineralocorticoid receptor (MR) or gluco-
corticoid receptor (GR) [24]. A study in rats showed that
MRs have a significantly higher affinity for cortico-
sterone (the most abundant endogenous glucocorticoid
in rodents) than GRs; the latter is consequently only
bound by corticosterone upon complete saturation of
MRs during periods of highly elevated serum cortico-
sterone [33]. This phenomenon of preferential MR bind-
ing by the endogenous glucocorticoid cortisol (the most
abundant one in humans) is also well-documented in
humans [34]. Binding of cortisol to its receptors causes
it to translocate to the nucleus and decrease gene tran-
scription of pro-inflammatory cytokines—effectively the
body’s most important anti-inflammatory mechanism.
The brain expresses high levels of both MRs and GRs,
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with highest MR expression mainly in the hippocampus,
which has the highest of MR to GR ratio in the brain
overall [35].
To return to the context of this review, rat hippocam-

pal long-term potentiation (LTP), a correlation of synap-
tic plasticity and strength (and thus capacity for memory
formation), has been shown to be suppressed by GR ac-
tivation [36], which highlights this pathway as role player
in the pathology related to neurodegeneration, such as
Alzheimer’s disease. The hippocampus is a brain region
that is frequently highlighted in neurodegeneration re-
search. Of note, and as mentioned earlier, it is affected
more by peripheral inflammation than the rest of the
brain. Therefore, should the hippocampus be specifically
targeted in the treatment of inflammation-related neuro-
degeneration? In line with this question, how exactly do
glucocorticoids link ageing, inflammation and neurode-
generation? We put forward the following hypothesis: as
one ages, the repeated injury-repair cycles require
repeated glucocorticoid mediated anti-inflammatory
responses. Initially, the hippocampus is sensitive to
glucocorticoids due to a high expression of GR and MR
receptors. However, after numerous glucocorticoid
responses, the hippocampus downregulates receptor
expression—something which is indeed seen in acute
and chronic stress [37–40]. In fact, more than 30 years
ago, Sapolsky and colleagues reported aged rats to have
elevated basal corticosterone levels and an impaired cap-
acity for levels to return to basal after an acute stress re-
sponse [41]. This landmark paper proved to be the basis
of the glucocorticoid hypothesis, which postulated that
increasing age correlated with gradual loss of negative
feedback control resulting in the gross accumulation of
cortisol/corticosterone not only systemically, but also in
the brain [42]. The loss in negative feedback may be at-
tributed to a decrease in MR and GR expression in the
brain. For example, in cases and animal models of
neuropsychiatric diseases in which patients present with
hypercortisolemia, such as major depressive disorder
and PTSD, MR expression has been found to be down-
regulated specifically in the hippocampus [39, 43]. A
final possibility that we propose is that MR and GR acti-
vation may be insensitive to glucocorticoid binding in
aged human hippocampi. For example, it has been dem-
onstrated in human peripheral blood mononuclear cells
that in cells expressing high levels of GRs, GR affinity
for dexamethasone (a synthetic corticosteroid) is signifi-
cantly reduced when compared to individuals with per-
ipheral blood mononuclear cells (PBMCs) with lower
expression levels [44].
Given the age-related exaggerated and prolonged in-

flammatory responses discussed above, an exaggerated
anti-inflammatory counter in the form of increased gluco-
corticoid levels is probably to be expected. However, the

problem with the pro- and anti-inflammatory system
crosstalk lies in that this exaggerated response, which is
well-recorded in the ageing literature, is rendered insuffi-
cient to counter and resolve the inflammatory response by
the endocrine maladaptation discussed here.

The effect of age on the sympatho–adrenal–medullary
pathway (SAM pathway)
In parallel to its role in the HPA axis, the hypothalamus
also plays a critical role in the release of catecholamines,
such as epinephrine and norepinephrine from the adrenal
medulla, facilitated by sympathetic innervation of the me-
dulla [45]. Importantly, the context of this review is the
fact that catecholamines induce both the systemic and
localised upregulation of IL-6 synthesis, which can prompt
adrenocortical release of glucocorticoids [46–50]. In
addition, epinephrine and norepinephrine act synergistic-
ally with cortisol by upregulating glucose metabolism and
increasing cardiac output during acute periods of stress,
i.e. the “fight or flight” response.
Similar to the HPA axis, ageing also affects the SAM

pathway, mainly due to changes in the sympathetic ner-
vous system (SNS). Evidently, it appears that overall tonic
SNS activity increases with age [51]. Circulating norepin-
ephrine levels appear to increase whereas epinephrine
levels decline with age [51–55]. Whether these observa-
tions are due to impaired clearance or an increased output
by the adrenal medulla is still unknown. However, it is also
probable that the increasing circulating concentrations of
norepinephrine may in part be due to a spill over from
synaptic junctions at effector sites—which has already
been reported in at least one study [51]. Although no con-
sensus has been reached with regard to why these changes
may occur with age, it is very clear that they do occur.
When compared to the vast knowledge gathered on

the effects of age on cortisol and the HPA axis, relatively
little is known about the SAM pathway and even less so
about its effects on the inflammatory process. However,
hormones in the SAM pathway have demonstrated im-
mune modulating behaviour. For example, epinephrine
has been shown to potently inhibit LPS-stimulated human
monocytes from synthesising pro-inflammatory cytokines,
such as TNF-α and IL-12, as well as to stimulate the syn-
thesis of the anti-inflammatory cytokine, IL-10 [56]. On
the other hand, in the brain, norepinephrine may have a
pro-inflammatory effect in the hypothalamus. For ex-
ample, norepinephrine was shown to play a critical role in
foot shock stress-induced hippocampal and splenic pro-
duction of IL-1β [48]. Pre-treatment with the selective
beta-adrenergic receptor antagonist, propranolol, abro-
gated the IL-1β response. Furthermore, when animals
were treated with the microglial inhibitor, minocycline,
upregulation of IL-1β was completely inhibited in the
hypothalamus, but not the spleen [48]. These results are
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extremely relevant in the context of ageing, since it is
known that microglia play a critical role in age-related
neuroinflammation and the fact that noradrenaline levels
increase with age.

The effect of ageing on sex hormones
The HPA and SAM pathways are not the only endocrine
systems affected by ageing. It is commonly known that
the most evident effects of ageing occur through a
decline in sex hormone production. With regard to a
decline in androgen production and the synthesis path-
ways involved, the female menopause is probably best
characterised—in particular, the complete cessation of
oestrogen production by the ovaries [57]. Thus, after
menopause, DHEA becomes the major androgenic
hormone in the female circulation. Interestingly, a recent
review suggested that in aged individuals,
DHEA—although not able to facilitate ovarian oestrogen
production—may be able to serve as precursor for
tissue-specific oestrogen synthesis through intracrine
mechanisms [57]. According to this theory, oestrogen
would be synthesised in low concentrations at tissue
level (in any tissue where all the required steroidogenic
enzymes are present), where it would act in para- or
autocrine fashion, with little or no clearance into circula-
tion. Similarly, in males, extragonadal male androgen
production has also been demonstrated in peripheral tis-
sue [58]. With this in mind, a decline in adrenal DHEA
production with advancing age would therefore not only
have implications for reproduction, but also potentially
for other detrimental effects related to a decrease in
extragonadal oestrogen or testosterone production at
peripheral tissue level.
The decline of DHEA with ageing has been well-estab-

lished. Peak DHEA levels have been reported to occur
slightly earlier in life for females when compared to
males (15–19 vs. 20–24 years) [12], after which it stead-
ily declines, reaching levels of ≈20% of peak levels after
age 70 [59]. Epidemiological studies have correlated
DHEA levels to longevity in both humans and
non-human models [60, 61], while the decline of DHEA
has been linked to a number of ageing-associated
characteristics, including immunosenescence, cognitive
decline, osteopenia and sarcopenia [59].
From what has already been discussed, it is clear that

ageing is linked to several adaptations/maladaptations in
the endocrine system. What will become equally clear
from the literature to follow is the relative absence of
directly relevant data on DHEA, its involvement in these
processes and thus the effects its decline might have.
From studies conducted in contexts other than ageing, it
will become clear that DHEA has a significant role to
play. We discuss these potential roles below.

DHEA—the magic bullet?
Pre-clinical evidence suggesting neuroprotective effects
of DHEA
Since the turn of the century, several papers suggesting
beneficial effects after DHEA supplementation, in the
context of neuroprotection, have been published—we
have summarised findings illustrating the variety of
models used in Table 2. Reported benefits include
modulation of neurogenesis, neuronal function, metabol-
ism and longevity. However, a significant limitation to
available information is that the majority of these effects
have only been illustrated in in vitro and animal studies.
It is clear that DHEA is neuroprotective within these vari-

ous disease model contexts, but how is DHEA relevant to in-
flammation—and in particular to neuroinflammation-related
neurodegeneration?

Direct and indirect evidence for neuroprotective anti-
inflammatory effects of DHEA
To the best of the authors’ knowledge, very little evi-
dence for direct anti-inflammatory action of DHEA or
DHEAS in the brain or central nervous system (CNS)
has been elucidated per se. We were however able to
find at least three studies that have demonstrated the
anti-inflammatory effects of DHEA in vitro in models
relevant to the brain or CNS. The first demonstrated
that DHEA inhibits the synthesis of TNF-α and IL-6 by
cultured foetal rat astroglia in response to exposure to
Mycoplasma fermetans [62]. The second and third stud-
ies, which are also the most recent, were performed both
in vitro and in vivo [63, 64]. In the in vitro study, DHEA
treatment of cultured mouse microglia exposed to LPS
showed a significant reduction in TNF-α, IL-6, IL-12 and
monocyte chemoattractant protein 1 (MCP-1) mRNA ex-
pression when compared to LPS-exposed microglia re-
ceiving no treatment [64]. The in vivo study was an
experimental model of autoimmune encephalomyelitis
(EAE) in mice, which showed a significant reduction in
IL-1β and interferon gamma (IFN-γ) mRNA expression in
spinal cord tissue in animals treated with DHEAS when
compared to untreated EAE-affected animals [63].
Numerous other studies have illustrated the anti-in-

flammatory action of DHEA and DHEAS in systems and
disease models other than those related to the brain or
CNS (Table 3). Although this does not necessarily prove
that these same effects may be seen in the brain under
the same or similar circumstances, the possibility cannot
be discounted.
From these studies, it seems that DHEA exerts its

anti-inflammatory effects primarily by modulating either
the effects or production of pro-inflammatory cytokines.
However, it also appears that the same pro-inflammatory
cytokines have the ability to regulate DHEA production
in turn. For example, in macrophage-depleted primary
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murine leydig cell cultures, both IL-1 and TNF-α were
shown to inhibit androgen steroidogenesis by downregu-
lating the expression of cytochrome P450c17 mRNA—
which encodes for an enzyme that is critical to androgen
formation [65, 66]. TNF-α has shown similar inhibitory
effects in cultured porcine leydig cells by reducing the
binding of luteinising hormone (LH) or human chori-
onic gonadotropin (hCG) to the respective receptor—
which would stimulate steroidogenesis [67]. These au-
thors further suggested that the primary inhibitory ef-
fect of TNF-α was mainly by decreasing availability of
cholesterol, the initial substrate required for steroido-
genesis [67].

Regardless of how cytokines may inhibit the synthesis
of androgens, these studies provide a plausible explan-
ation for the age-related decline of DHEA not only sys-
temically, but centrally as well—given the relatively
pro-inflammatory status associated with ageing. Further-
more, since it has been shown that the inflammatory
maladaptation seen with ageing affects the brain to a lar-
ger extent (specifically the hippocampus), it is plausible
that the age-related decline of DHEA occurs even more
rapidly in the brain than it does the rest of the body.
In contrast to the idea that DHEA is largely beneficial,

a minority of studies have suggested that DHEA may
have neurotoxicity under specific conditions. In a model

Table 2 Evidence for beneficial effects of administered DHEA/DHEAS or metabolites reported in pre-clinical studies

Demonstrated beneficial effects Reference

General neuroprotective effects demonstrated both in vitro and in vivo in:

E18 Sprague–Dawley rat hippocampal cell culture model of N-methyl-D-aspartate (NMDA) neurotoxicity [187]

HT-22 mouse hippocampal cell line model of glutamate and amyloid-β neurotoxicity [188]

E18 Sprague–Dawley rat cerebral cortical cell culture anoxia model [189]

Mouse hippocampal neurodegeneration model [190]

Rats with induced forebrain ischemia model [191]

Rat hippocampal slice culture ischemia model [192]

Primary rat cerebellar granule cell anoxic and glucose deprivation model [193]

Mouse spinal cord ischemic injury model [194]

Rat inflammatory neurodegeneration model [195]

P19 neuronal NMDA-induced excitotoxicity cell line model [87]

Aged rat brain model [196]

Rat Corpus striatum (CS) and the nucleus accumbens (NAc) model of assessing effects of DHEA on monoamine oxidase (MOA) activity [197]

Human SH-SY5Y neuroblastoma cell line model assessing the effects of neurosteroids on mitochondrial bioenergetics [198]

Rat brain 3-nitropropionic acid (3-NP) induced neurotoxicity model [199]

Transient brain ischemic mouse model [200]

Primary male and female mouse cultured hippocampal neurons, as well as human SH-SY5Y neuroblastoma cell
line glucose deprivation model

[201]

Anti-apoptotic effects demonstrated in vitro in:

Undifferentiated P19 neuronal cell line model of NMDA-induced apoptosis [202]

PC12 rat pheochromocytoma cell line model of serum deprivation-induced apoptosis in adrenal medulla cells [203]

Primary rat embryonic cultured neural precursor cell model investigating the effect of DHEA and DHEAS on Akt phosphorylation [204]

Primary rat cerebellar granule cell model of hypoxia and glucose deprivation [205]

Anti-glucocorticoid effects demonstrated both in vitro and in vivo in:

Primary rat embryonic hippocampal neurons exposed to neurotoxic doses of corticosterone [206]

HT-22mouse hippocampal cell line model of glutamate and amyloid-β-induced neurotoxicity [188]

Mitigating effects on corticosterone-induced suppression of neurogenesis and survival of new neurons in dentate
gyri (hippocampi) of Lister Hooded Rats

[207]

Inhibitory effects of DHEA on glucocorticoid amplification in 3 T3-L1 adipocyte cell line and C57BL/6J mouse white
adipose and liver tissue

[208]

Inhibition of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) mediated conversion of cortisol by DHEA metabolites
in human skin samples

[209]

Suppression of 11β-HSD1 mRNA in HEK-293 rat cortical collecting duct cell line, as well as kidneys of C57BL/6J mice
and Sprague–Dawley rats

[210]
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of global cerebral ischaemic insult in rats [68], intraperito-
neal administration of a supraphysiological dose of DHEA
3 to 48 h after ischaemic injury was neuroprotective (e.g.
decreased neuronal death in the CA1 hippocampal region).
However, DHEA administration 1 h before or after the in-
sult exacerbated the effects of the injury. Given the known
anti-inflammatory role of DHEA, this may suggest that (at
least at this high dose) DHEA inhibited early inflammatory
or oxidative responses that were required for cytoprotec-
tion. Additionally, decreased cell viability was reported in
primary murine neuronal cultures and human neuroblast-
oma (SK-N-SH) cells after (24–72 h) exposure to a large
dose-range of DHEA—a result not seen in mixed neural or
glial cultures. Furthermore, the neurotoxic effects of DHEA
were abrogated by simultaneous treatment with DHEAS
[69]. From this, it is difficult to formulate an interpretation
on potentially toxic effects of DHEA. On the one hand, it is
certainly feasible that a high dose of an antioxidant such as
DHEA may have damaging effects, as this has been illus-
trated in the nutraceutical literature [70]. On the other
hand, the second study clearly highlights the limitations of
interpretations possible from single cell culture models,
although it does provide insight on the complexity of the
mechanisms at play. In our opinion, given the relatively lar-
ger body of evidence in support of a beneficial effect of
DHEA, significant concern is probably not warranted in
our context of intracrine DHEA production.
In order to further our understanding of how DHEA

may impact on the ageing brain, it is necessary to delve
deeper into the potential molecular actions and interac-
tions of DHEA and DHEAS.

Potential mechanisms for DHEA-mediated
neuroprotective effects
There are at least two ways via which DHEA can facili-
tate its effects centrally. Through following the conven-
tional steroidogenesis pathway, DHEA may be converted

to endpoint sex hormones, which would then activate
their respective receptors. Reviews by different groups
have suggested that DHEA can elicit genomic effects
through its conversion into testosterone and dihydrotes-
tosterone (DHT)—thereby activating androgen receptors
(AR)—as well as through its conversion into estradiol
and the subsequent activation of oestrogen receptors
(ER) [4, 6]. In support of this suggestion, it has indeed
been demonstrated that isolated neonatal rat cortical
and hypothalamic astrocytes can synthesise both testos-
terone and oestrogen from exogenous DHEA [71]. Alter-
natively, DHEA itself may be able to directly bind to and
activate these hormone receptors. Although no cell
membrane-bound or nuclear receptor has been de-
scribed to have an affinity specifically for DHEA or
DHEAS, a recent comprehensive review has revealed
that DHEA and DHEAS have affinity for a number of
membrane and nuclear receptors and binding sites [72],
allowing DHEA to directly activate receptors in the
brain and CNS specifically. DHEA is known to interact
with the cell membrane receptors γ-aminobutyric acid
type A (GABAA), N-methyl-D-aspartate (NMDA) and
sigma-1 (σ-1), as well as nuclear receptors such as per-
oxisome proliferator-activated receptor (PPAR)-α and fi-
nally neurotropin receptors such as tropomyosin
receptor kinase (Trk)-A, Trk-B and Trk-C [64, 72–74].
These potential mechanisms are briefly discussed in the
following paragraphs.
Firstly, GABAA receptors are ligand-gated chloride and

bicarbonate channels that induce hyperpolarisation to in-
hibit the postsynaptic potentials when activated [72].
DHEA and DHEAS (to a greater extent) have both been
shown to act as non-competitive antagonists of ionotropic
GABAA receptor-mediated activity in isolated neurosy-
naptosomes from Sprague–Dawley rat brains [75]. Simi-
larly, DHEAS was shown to block recombinant GABAA

receptor (GABAA R)-mediated currents in transfected

Table 3 Studies which have demonstrated anti-inflammatory effects of DHEA or DHEAS outside of the CNS

Disease/model Reference

Reduced regulation of IL-6 production in aged mice [211]

Reversed effects and decreased production of IL-4 and IL-6 in antigen induced immunosuppression in mice [212]

Reduced production of IL-6 in splenocytes of retrovirus infected mice as well as aged-induced immunocompromised mice [213]

Decreased production of IL-4 and increased production of IL-2 by concanavalin-A-stimulated PBMCs from patients with atopic dermatitis [214]

Reduction of TNF-α serum concentrations in obese Zucker rat model [215]

Inhibition of IL-6 production in isolated primary human peripheral blood mononuclear cells (PBMCs) [10]

Reduced production of IL-1, IL-6 and TNF-α in LPS-stimulated murine macrophage cell line [216]

Inhibition of TNF-α-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-mediated gene transcription in
HuH7 human hepatocyte cell line

[217]

Suppression of pro-inflammatory genes (IL-1β, IL-6, TNF-α) in primary human HIV-positive macrophages, as well as feline
immunodeficiency virus (FIV)-positive felines

[218]

Inhibits acute LPS-induced microglia-mediated inflammation both in vivo and in vitro through the activation of TrkA-Akt1/2-CREB-Jmjd3
pathway and reduces IL-6, TNF-α, IL-12 and MCP-1 gene expression

[64]
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HEK293 cells [76, 77]. Another study of reversible spinal
cord injury in rabbits showed that DHEAS significantly
delayed the onset of ischemia-induced paraplegia [78].
However, despite widely reported, the exact mechanisms
of how DHEA or DHEAS may elicit neuroprotective ef-
fects through GABAA receptors still remain to be fully
elucidated. It is important to point out that DHEA ap-
pears to induce multiple effects through GABA recep-
tors—of note and in the context of ischemia injuries it
demonstrates antioxidant capacity, which is already ac-
cepted in literature and highlights the beneficial pleio-
tropic effects of DHEA.
Secondly, the NMDA receptor (NMDAR) is a cell

membrane bound receptor that is composed of a large
family of glutamate receptors. Glutamate receptors bind
to neurotransmitters and allosteric effectors which regu-
late transmembrane ion channels involved in learning
and memory, i.e. LTP [72]. DHEAS has been shown to
activate NMDARs in both rat hippocampal slices and
cultured mouse embryonic cultured neocortical neurons
[79, 80]. These reports suggest a more active function of
DHEA in the context of NMDARs.
Thirdly, sigma-1 (σ-1) receptors are associated with

cellular membranes, endoplasmic reticulum, nuclear
membranes and mitochondrial membranes of many cells
of neural origin, including astrocytes, oligodendrocytes
and microglia [72]. DHEA activation of sigma-1 recep-
tors improved memory deficits in induced in mouse
models [81]. In addition, the effect that DHEA and
DHEAS have on NMDARs appears to be linked to
sigma-1 receptor interactions. Evidence has shown that
DHEAS can potentiate NMDA evoked release of nor-
epinephrine in rat hippocampal brain slices through its
action as a sigma-1 agonist [82].
Fourthly, peroxisome proliferator-activated receptors or

PPARs are nuclear-associated transcription factors that are
capable of exerting pleiotropic physiological effects, such as
regulating lipid metabolism, participating in glucose homeo-
stasis and even having a role in apoptosis [83]. DHEA and
DHEAS may exert neuroprotective effects at nuclear recep-
tors such as PPARα. Specifically, inhibiting NF-kB binding
to PPARα. In a rodent study, the effects of DHEA and
DHEAS treatment in aged wild type (PPARα+/+) vs aged
PPARα knockout mice (PPARα−/−) were investigated. The
aged wild-type mice treated with DHEA and DHEAS exhib-
ited reduced tissue lipid peroxidation, reduced NF-kB activa-
tion in the spleen and lower pro-inflammatory cytokine
production when compared to knockout mice also treated
with DHEA and DHEAS [84]. It is worth noting though that
no specific binding affinity of PPAR for DHEA or DHEAS
has been reported [85]. Despite this fact, PPARα receptors
have increasingly been reported to have a role in mediating
oxidative stress and inflammation in brain pathologies such
as traumatic brain injury (TBI) [83, 86].

In line with these mechanisms, DHEA has been shown
to activate the pro-survival phosphatidylinositol-
4,5-bisphosphate 3-kinase/protein kinase B (PI3/Akt)
pathway. In fact, a study investigating the effects of
NMDA-induced excitotoxicity in culture mouse brain
cells, illustrated that DHEA was able to mitigate the det-
rimental effects by activating the PI3/Akt pathway
through a calcium dependent mechanism [87]. Similarly,
DHEA supplementation in aged Wistar rats was able to
increase the expression of phosphorylated-Akt in liver
tissue [88].
In terms of neurotropin receptors, DHEA has been

shown to bind with high affinity to the neurotrophin
growth factor (NGF) receptor TrkA in HEK293 cells
transfected with TrkA plasmid cDNA [73]. Binding of
DHEA to TrkA led to phosphorylation of the receptor
and activation of downstream pathways such as the Akt,
extracellular signal-regulated kinases (ERK)-1/2 and
SHC-transforming protein (Shc) signalling cascades [73].
In a similar study, also conducted in transgenic HEK293
cells, DHEA was shown to also bind to TrkB, which is
mainly activated by brain-derived neurotrophic factor
(BDNF), and TrkC, which is preferentially activated by
neurotrophin-3 (NT-3) [74]. However, this study showed
that DHEA binding only led to the phosphorylation and
activation of TrkC, but not TrkB [74]. It was noted that
DHEA bound these receptors by two orders magnitude
lower than that of the inherent neurotropins.
Finally, DHEA may also have a modulatory role in

cytoskeletal dynamics. In this context, DHEA has been
found to bind to the N-terminal of the dendritic local-
ised microtubule associated protein type 2C (MAP2C).
MAPs bind to and facilitate the dynamic microtubulin
polymerisation and DHEA was reported to increase the
length of dendrites expressing MAP2C [89]. This finding
is of particular relevance in the context of neurodegenera-
tive pathologies such as AD where a pathological change
in neuritic morphology is associated with disease [90].
Taken together, these studies indicate a significant

modulatory role of DHEA/DHEAS via its binding to a
wide variety of receptors. Of particular relevance to the
current topic, DHEA-linked anti-inflammatory—albeit
mainly demonstrated in circulation—and neuroprotec-
tive outcomes indirectly suggest that several benefits
may come from prevention of DHEA decline. Supple-
mentation is one clear avenue through which this may
be achieved.

Efficacy of therapeutic DHEA administration
DHEA supplementation has historically been used in the
treatment of reproductive-related diseases, particularly
in women, where it has been shown to alleviate
menopause-related pathologies such as vaginal atrophy
[91]. In support of our interpretation of benefit from
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maintaining DHEA availability, in diseases not related to
reproduction, DHEA supplementation has been shown
to be beneficial to both sexes in the treatment of numer-
ous other pathologies or conditions (see Table 4).
Despite these many clinical studies involving DHEA

supplementation, to the best of the authors’ knowledge,
the effects of exogenous DHEA supplementation has not
been directly assessed in clinical manifestations of neu-
rodegeneration or any related pathologies. Similarly,
there are also currently no clinical studies assessing the
effects of DHEA or DHEAS supplementation as an adju-
vant therapy for neurodegenerative diseases in either the
European or American clinical trial database.
In addition, it should be noted that other studies have re-

ported oral DHEA supplementation to show little to no
benefit in the treatment of other ageing-related pathologies
such as cognitive performance, lipid metabolism, glucose
metabolism, bone health and muscle function [92–94].
However, the available clinical studies collectively do

provide some insight. The conditions included in our
summary (Table 4), which all suggests benefit from
DHEA administration, are linked by the fact that inflam-
mation is a characteristic feature in all. Similarly, neuro-
inflammation is a critical hallmark of the generalised
pathophysiology of neurodegeneration and its occur-
rence appears to have a causative role in this degenera-
tive condition. Thus, given the already discussed
anti-inflammatory effect of DHEA (refer to Table 3), as
well as the anti-inflammatory therapeutic effect sug-
gested by the results just presented, theoretically, if one
can increase DHEA production at cellular level in the
central compartment, one should be able to alleviate or
prevent neuroinflammation and thus neurodegeneration.

Is it possible to stimulate extragonadal synthesis of DHEA
or DHEAS?
Since exogenous DHEA supplementation has yielded
varying benefit, an obvious alternative therapeutic—or
preventative—strategy to consider is whether it might be
naturally or artificially possible to increase endogenous
DHEA production.
From the sport and exercise literature, it is known that

exercise in older males can significantly increase serum
DHEA and DHEAS concentrations [95–101]. These re-
sults do not provide proof of extragonadal androgen
synthesis though, as moderate exercise is known to in-
crease gonadal testosterone production. However, inter-
estingly, similar effects of exercise have been reported
for DHEA in older, post-menopausal females [102–104].
In this population, where gonadal androgen production
is less possible, it is possible that extragonadal DHEA
production may occur in response to exercise.
Interestingly, a study conducted in Sprague-Dawley

rats has illustrated skeletal muscle to have endogenous
steroidogenic capacity and that acute bouts aerobic exer-
cise can significantly enhance the localised production of
DHEA in both male and female animals [105]. This adds
substantial support for our theory that extragonadal
DHEA synthesis may be elicited through intervention.
Furthermore, higher DHEAS levels have been reported in

long-term practitioners of alternative therapies such as tran-
scendental meditation and the ancient martial art of tai chi,
when compared to age-matched controls [106, 107]. Al-
though these studies do not prove that DHEA production is
stimulated by these practices, the relatively higher levels sug-
gest at least an effect to sustain long-term production rate.
In line with these results obtained in psychology-based prac-
tices, environmental enrichment in caged rats was linked to
increases in steroidogenic enzyme expression associated
with DHEA production, relative to unstimulated rats of the
same age [108]. Indeed, enrichment therapy is already being
employed to treat patients with dementia and Alzheimer’s
disease [109–113], although the authors could not find data
on the effect of this strategy on DHEA synthesis.
Considering this evidence, perhaps it is necessary to

first understand which tissues may possess the ability for
DHEA synthesis, before considering the feasibility of this
approach in the context of neurodegeneration.

DHEA biosynthesis
DHEA is produced during steroidogenesis, in a manner
dependent on mainly two classes of steroidogenic en-
zymes, namely the P450 enzymes and the hydroxysteroid
dehydrogenases [114]. Also, DHEA can be sulphated into
DHEAS via enzymes called steroid sulphotransferases
(SULT), while conversion of DHEAS back into DHEA is
mediated via steroid sulphatases (STS). DHEAS levels
continue to increase after puberty, peaking in the mid-20s,

Table 4 Illustrating the variety of studies reporting favourable
effects of DHEA/DHEAS supplementation in clinical pathologies

Disease state References

Autoimmune disease

Systemic lupus erythematosus [219–227]

Metabolic disease

Hypercholesterolemia [228]

Metabolic syndrome [229]

Genetic diseases

Hereditary angioedema [230]

Ageing-associated

Advanced age [231, 232]

Osteoporosis [233, 234]

Endocrine disorders

Hypopituitarism [235–238]

Adrenal insufficiency/Addison’s disease [239–246]
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after which levels begin to progressively decline with age
in both men and women [3, 12]. Serum DHEA and
DHEAS levels are thought to be almost exclusively main-
tained by their synthesis in the adrenal zona reticularis
[114]. However, in theory any tissue that expresses the
steroid enzymes can be classified as steroidogenic. In fact,
in the early 80s Fernand Labrie, a well-known endocrin-
ologist, was the first to note that prostate glands of pa-
tients with prostate cancer still had high levels of
dihydrotestosterone (DHT) even after castration [115]. He
illustrated that some peripheral tissues, such as the pros-
tate, possesses the steroidogenic enzymes needed to trans-
form DHEA and DHEAS into its androgenic and
estrogenic metabolites, thereby capable of exerting a rela-
tively more localised effect. The study of this unique ability
of peripheral tissues was termed “intracrinology” and has
subsequently gained some momentum [116]. Given the im-
portance of intracrine derived hormone production in
terms of female reproductive health, it is clear that investi-
gations into intracrinological mechanisms in other contexts
are warranted, such as in neurodegeneration and ageing.
Although it is known that intracrinology takes place in

peripheral tissues, all tissue types do not express the
same isoforms of the steroidogenic enzymes, nor are
they expressed in the same quantity or constitutively
expressed as we age. For example, a recent study in rats
demonstrated that the expression of several steroido-
genic enzymes decline significantly in the brain with age
[108]. It is important to have an understanding of where
the capacity for steroidogenesis exist, as well as to con-
sider sex and species differences, as these aspects signifi-
cantly impact on choices for experimental models, as
well as on the relevance and applicability of research
data gained in any particular model. It is not possible to
address steroidogenesis in its totality within the scope of
this review. Rather, in the next few sections we describe
some of these intricacies in the context of DHEA syn-
thesis specifically.

Production sites of DHEA
In terms of substrate delivery for steroidogenesis, the ste-
roidogenic acute regulatory protein (StAR) and cholesterol
side-chain cleavage enzyme (P450scc) are required for the
transport of cholesterol to the mitochondria and conver-
sion into pregnenolone, respectively. Interestingly, these
enzymes are expressed at significantly lower levels in the
Leydig cells of aged rat testes relative to those of younger
rats [117], which—since Leydig cells are the primary cells
for testosterone production in the male body—provides a
plausible explanation for the age-related decline of the
hormone in both rodents and humans. Interestingly, in
contrast, P450scc protein and mRNA expression in the
human adrenal glands appears to be relatively stable with
ageing [118, 119].

In the context of central intracrine production of
DHEA, P450scc mRNA has been detected in cultured
human astrocytes and oligodendrocytes (but not neu-
rons) in at least one study [120]. Many other studies
have detected steroidogenic enzyme expression in both
neurons and neuroglial cells in vertebrates other than
humans (refer to Fig. 1). We tabulated these studies for
brevity, but it is important to note that although ste-
roidogenic enzyme mRNA was detectable in these differ-
ent animal brain cell types, it is not clearly indicated to
what extent the level of gene expression may differ from
one cell type to another. Our interpretation of the data
presented in most of these cited studies, is that neuro-
glial cells appear to express higher levels of steroidogenic
enzyme mRNA relative to neurons, where levels were
barely detectable in some cases. This suggests that
mainly neuroglial cells are capable of significant intra-
crine synthesis, as already reported for peripheral tissue
other than gonads and adrenals [57, 58]. In contrast to
the P450scc findings, StAR mRNA expression in rat
brain brains has been shown to indeed decline signifi-
cantly with age [121], suggesting a relative decline in
substrate delivery similar to that reported for the testis.
Whether this occurs in human brain tissue could not con-
clusively be answered from the literature, but it certainly
cannot rule out. Nevertheless, the presence of both StAR
and P450scc in astrocytes and oligodendrocytes argues in
favour of sufficient substrate availability to indeed allow
for localised production of DHEA in these cells.
Another protein of potential relevance in the context

of cholesterol transport to the mitochondria has been
described. Translocator protein (TSPO), also known as
peripheral-type benzodiazepine receptor (PBR), a protein
mainly bound to the outer mitochondrial membrane,
has also been suggested to play a role in the facilitation
of cholesterol transport via StAR [138]. Whether the
presence of TSPO is critical in the transport of choles-
terol is a matter of controversy within literature. It was
shown in mice, with a specific TSPO gene knockout in
their Leydig cells, that testosterone could still be produced
despite the absence of what thought to be a critical protein
for the process [139]. Despite the uncertainty surrounding
its role in steroidogenesis, TSPO has recently been identi-
fied as a potential biomarker of neurodegeneration, as its
expression increases with inflammation and neurodegen-
eration associated with Alzheimer’s disease, HIV enceph-
alitis and MS [140, 141].
More specifically in terms of its function centrally, in vitro

experiments in primary human astrocytes have demon-
strated that various synthetic TSPO ligands of the
N,N-dialkyl-2-phenylindol-3-ylglyoxylamide class (PIGAs)
are capable of activating TSPO activity and stimulating neu-
rosteroidogenesis [142]. In fact, PIGAs have shown to be
neuroprotective in L-buthionine-(S,R)-sulfoximine (BOS)
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induced cytotoxicity of C6 rat glioma cells [143]. The mech-
anism of neuroprotection was associated with a reduction in
lipid peroxidation and inflammation, which was abrogated
in presence of the P450scc and StAR inhibitor aminoglu-
tethimide and was therefore thought to occur due to ste-
roidogenesis. Given the known anti-inflammatory and
antioxidant properties of DHEA, TSPO may be a role player
in the maintenance of DHEA levels.
Another fact in favour of local DHEA production in

the brain is the relatively increased demand for DHEA
in brain relative to the periphery. Firstly, steroid sulpho-
transferase isoform 2A1 (SULT2A1)—which increases
circulating DHEAS by sulphating DHEA, rendering it
bio-inactive [118]—seems to not be present in brain tis-
sue at all, while SULT2B1 expression has only been re-
ported for the prefrontal cortex, hippocampus and
cerebellum, but not for the cerebral subcortex or neo-
cortex [144, 145]. Secondly, sulphatase (STS) expres-
sion—which is responsible for conversion of DHEAS
into the bioactive DHEA—is generally very high in the
CNS [6]. Together, this suggests a relatively higher de-
mand for DHEA in the brain when compared to the per-
iphery. This scenario would also increase the likelihood
of mechanisms for local production to be in place.
The idea of de novo synthesis of DHEA and DHEAS in

the brain itself remains a highly debated topic in the field.
As mentioned, the human adrenal glands were initially
thought to be the only site of endogenous steroidogenesis,
apart from the gonads (i.e. testes, ovaries) which produce
DHEA and DHEAS to a lesser extent. However, the brain
has recently and controversially been highlighted as a pos-
sible alternative site for production. Given the neuroprotec-
tive and central anti-inflammatory effects of DHEA already
discussed, this possibility for intracrine DHEA production

has far-reaching implications for both neurodegenerative
disease and ageing—not only to increase our understanding
of the disease processes, but also in terms of development
of preventative and/or therapeutic strategies.
The first suggestion of DHEA synthesis in the brain

was already published in the 1980s—when DHEA and
DHEAS concentrations were reported to be higher in rat
brains than in circulation [146]. A few years later, similar
circumstantial evidence for DHEA synthesis in the hu-
man brain emerged [147]. DHEA was subsequently
commonly referred to as a “neurosteroid”, based on its
relatively increased central localisation. Although DHEA
can be detected in both animal and human brain tissue,
it remains unclear whether de novo synthesis indeed oc-
curs. For evident reasons, it is practically difficult to ac-
curately assess actual DHEA production in the human
brain, so that most data is generated from rodent
models. To add complexity to this topic, subsequent evi-
dence may suggest that a species difference in terms of
central DHEA levels may exist. In terms of criticism of
analytical techniques, it has for example been suggested
that DHEA levels in rat brain tissue reported in earlier
studies may have been overestimated due a lack of sensi-
tivity of the radio-immunoassays (RIA) technique used
at the time, which relied on antibody specificity to detect
the steroid hormones [148]. A newer method encompass-
ing solid phase extraction (SPE), high-performance liquid
chromatography (HPLC) and gas chromatography-mass
spectrometry (GC-MS) was developed to generate more
accurate data [148]. Ironically, nearly a decade later it was
reported by the same authors that this technique may in-
deed also be flawed when it came to the detection of
sulphated steroids [149]. They showed in rodent samples
that the levels of DHEA and PREG were higher in the

Fig. 1 Representative diagram of reported steroidogenic enzyme expression reported in different brain cell types. Species employed were rat,
unless otherwise additionally indicated (^mouse or *canine) [71, 122–137]
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lipoidal fraction of the SPE. It was suggested that choles-
terol contamination may have contributed to these find-
ings through cholesterol autoxidation, generating DHEA
and PREG, and that actual levels of DHEA and DHEAS
are likely extremely low or essentially non-existent in rat
brain tissue [149]. Interestingly, in the same paper, the au-
thors were able to confirm the presence of significant
amounts of both DHEA and PREG in human brain tissue
samples using this improved methodology. The exact
mechanisms of how cholesterol autoxidation leads to
DHEA and PREG generation remains to be elucidated.
Nevertheless, these results highlight the necessity of con-
sidering species in the design of experimental models. The
fact that DHEA cannot be detected in rodent brains may
be a function of generally lower levels when compared to
humans. Thus, although rodents can still be feasible
models, the parameters to be assessed, might have to dif-
fer depending on analytical sensitivity.
Given these methodological limitations in the meas-

urement of hormone levels directly, many indirect
methods have been employed to investigate the possibil-
ity of DHEA production centrally. However, results have
again posed more questions than answers. For example,
on one hand, P450c17 mRNA—which transcribes an en-
zyme that is crucial in the formation of DHEA—has
been detected in cultured human glial cells [120]. Subse-
quently, P450c17 mRNA expression has also been dem-
onstrated in the amygdala, caudate nucleus, cerebellum,
corpus callosum, hippocampus and thalamus of the hu-
man brain [119]. In addition and similarly to circulating
DHEA levels, the enzyme expression also declines with
age in the rat brain, which argue in favour of the possi-
bility for local DHEA synthesis [150]. Interestingly, the
age-related decline in P450c17 mRNA was reported to
be more pronounced in the cerebral cortex and cerebel-
lum, but not the hypothalamus [150]—this fact should
be further explored in order to determine its relevance.
However, the expression of P450c17 in the human

brain has been a topic of debate – at least two other
studies could not detect any P450c17 mRNA in the hu-
man cerebellum, hippocampus or temporal lobe and re-
ported no P450c17 activity in the temporal lobe [145,
151]. There are a variety of possible explanations for
these different results. Firstly, it is known that age has a
significant effect on steroidogenic enzyme expression, so
it is possible that this may have affected the results.
Indeed, in the study where the P450c17 mRNA was
detected, samples were pooled from patients between
the ages of 10 to 78 years. On the other hand, in at least
one of the studies failing to detect enzyme activity, sam-
ples were collected from a much older patient cohort
(80 years and older) [119, 151]. Secondly, in terms of the
failure of any group to report activity of the enzymes
which catalyse the reaction in the brain [6], there is

currently no way to determine at which rate potential
local DHEA synthesis would occur. An important con-
sideration here is that P450c17 expression reported for
the CNS is substantially lower than for the testes, which
exceeds it by nearly 200-fold [6]. It is therefore likely
that the conventional methods previously employed in
studies with negative outcome, may not have been suffi-
ciently sensitive to detect these possibly very low levels
of activity. Thus, the issue remains to be elucidated
across the ageing spectrum, to eliminate the potential
for a false negative outcome by using aged individuals.
Additionally, it is possible that localised DHEA biosyn-

thetic mechanism in the brain may differ from that at
other sites of local DHEA production. One group has in-
deed suggested that DHEA and DHEAS can be synthe-
sised in manner independent of P450c17. Their evidence
suggests that cultured human astrocytes and oligoden-
drocytes, but not neurons, could synthesise DHEA the
presence of a P450c17 and 3β-HSD inhibitor. It is sug-
gested that this alternative pathway may be dependent
on reactive oxygen species and produce DHEA from an
unknown “precursor” molecule other than pregnenolone
[120]. Although this study provided interesting data,
there is a limitation to the scientific rationale, as the au-
thors admitted that the P450c17 inhibitor used could
not block endogenous DHEA production in the glial
cells. At least one other lab has also speculated on the
possibility for an alternative pathway of DHEA produc-
tion linked to free radicals [152]. This is not impossible,
since a precedent in this regard exists: an alternative ster-
oid production mechanisms in the brain was clearly dem-
onstrated in the case of 21-hydroxylation, which appears
to be mediated through CYP2D instead of CYPC21 [153].
Apart from the debate on the capacity for intracrine

DHEA synthesis in the CNS, several theories have been
formulated in attempts to explain the relatively higher
DHEA and DHEAS concentrations in the central com-
partment. For example, it has been suggested that
DHEA in the brain may be produced from DHEAS de-
livered from circulation, through conversion by steroid
sulphatase (STS). Indeed, it has been shown that the hu-
man temporal lobe expresses high amounts of STS
mRNA as well as activity in the cerebral cortex relative
to subcortical white matter [145]. However, there are
two arguments against this hypothesis. Firstly, sulphated
hydroxysteroids such as DHEAS are hydrophilic and do
not readily cross the blood–brain barrier [154]. Although
sulphated steroids such as DHEAS and pregnenolone
sulphate may enter the brain through circulation via or-
ganic anion transporting peptides (OATP) transporting
them both ways, it would appear that OATP transport of
sulphated steroids favours movement out of the CNS,
not in [155]. However, a recent study investigating the
transport of DHEAS and PREGS through the blood
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brain barrier (BBB) of rats found that although PREGS
entered the blood brain barrier more readily, DHEA was
rapidly metabolised into androstenedione and androste-
nediol [156]. Further investigation found that the en-
zymes responsible for the rapid desulphatasion were
mainly localised the BBB capillaries as opposed the brain
parenchyma [156]. This argues that the DHEA in brain
is likely from peripheral sources as opposed to de novo
synthesis. However, it is important to note that the over-
all efflux of DHEAS through the BBB may still not be
rapid enough to account for the differences in concen-
tration in the brain versus the periphery.
Secondly, as already mentioned, DHEA and DHEAS

concentrations have been reported to be markedly
higher in the human brain than in circulation [147]. In
this study, DHEA concentrations were determined in
the brains of 10 subjects (9 females and 1 male, ages
ranging from 80 to 93). Nevertheless, in rat brains
DHEA concentrations were higher relative to circulation
and remained so even 15 days after an adrenalectomy
and/or orchiectomy [146]. This argues against the idea
of systemic delivery. However, as mentioned earlier the
techniques that were used to determine the concentra-
tion of DHEA in these studies may reassessed due to
possible cholesterol contamination.
Taken together there still exists a strong body of evi-

dence to support that de novo occurs in the brain. Al-
though it is near impossible to prove this specifically in
humans, as one will be faced with clear practical and
ethical hindrances, it is the opinion of the authors that
the human brain does indeed produce DHEA centrally.
In order to understand how DHEA may be produced in
the brain, the use of animal models may be the only way
to elucidate key pathways. This, however, does not come
without its challenges.

Practical challenges in steroidogenesis research
Several practical challenges have already been alluded to
in this review, such as methodological issues pertaining
to mRNA and protein determination, as well as gender-
specificity. A remaining consideration which will be
touched on in this section, is the importance of species
selection for investigations of this nature.
For example, it is important to consider that systemic ste-

roidogenesis in humans, higher primates and bovines differ
from rodents in two significant ways. Firstly, humans primar-
ily convert PREG to androstenedione through the Δ5 path-
way in the following manner: PREG » 17OH-PREG » DHEA
» androstenedione. Rodent steroidogenesis on the other
hand favours the Δ4 pathway; PREG » progesterone »
17OH-progesterone (17OH-PROG) » androstenedione
(Fig. 2). This is speculated to be the reason why humans have
high levels of circulating DHEAS, while in rodents levels are
significantly lower when compared to humans [157].
Secondly, in humans the adrenal gland is the main

source of DHEA production, but in rodents the gonads
are the main source, as the adrenal glands of most spe-
cies mice and rats appear to lack P450c17 enzyme activ-
ity [158, 159]. Although human gonads do produce
androgens such as DHEA, the reason for adrenal prefer-
ence of androgen production is not clear. The use of ro-
dent models in studying the systemic role DHEA has
thus garnered concern due the significant differences be-
tween humans and rodents. However, the fact that
DHEAS has been found in both human and rodent brain
tissue suggests that potential for de novo DHEA produc-
tion exists in the brain in both species. Therefore, ro-
dents could still serve as reliable model systems in
studying DHEA and its role in the brain.
Of specific interest in this context, it was recently dis-

covered that the precocial species of mouse, Acomys

Fig. 2 The process of steroidogenesis. Cytochrome P450 enzymes (blue font), hydroxysteroid dehydrogenases (orange font), reductases (purple
font), and steroid sulphatases (yellow font) and sulphotransferases (green font). Part of the pathway highlighted in green denotes the Δ5
pathway, which is favoured in human steroidogenesis, and the blue denotes the Δ4, which is favoured in rodent steroidogenesis
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cahirinus or Spiny mouse, possess adrenal glands that
express P450c17 and are in fact capable of producing
DHEA [160, 161]. This unique mouse has a longer ges-
tational period (± 39 days) when compared to other mice
and rats and unlike other rodents, has a brain growth
pattern that is comparable with humans at the time of
birth [162, 163]. It has also been shown in spiny mice
that cortisol is the main glucocorticoid in the blood, un-
like in rats where corticosterone is the main circulating
glucocorticoid [160, 161]. Most importantly, explanted
foetal, neonate and adult spiny mouse brain tissue in
culture have been shown capable of producing DHEA in
the presence of pregnenolone [164]. In addition, spiny
mouse also exhibit an age-related decline in DHEA syn-
thesis [163]. These mice may prove to be a particularly
reliable and relevant model for studying the mechanisms
of DHEA in many neurodegenerative disease states.

Conclusions
Based on the successes reported in experimental model
systems, DHEA has been proven to be beneficial to limit
progression of various inflammation-associated neurode-
generative diseases. From our review of the relevant litera-
ture, we conclude that central, intracrine synthesis of
DHEA is highly probable and we have highlighted several
mechanisms by which locally synthesised DHEA may
affect preventative and/or therapeutic benefit in the con-
text of neurodegeneration. Current literature is limited by
controversies regarding methodological accuracy and the
suitability of basic neuronal cell culture models. Taken to-
gether, this stresses the urgency for in vivo research specif-
ically focused at not only substantiating results from
experimental models, but also at elucidating in detail how
these processes may be harnessed for therapeutic benefits.

Abbreviations
17OH-PREG: 17-Hydroxy-pregnenonolone; 3-NP: 3-Nitropropionic acid;
AD: Alzheimer’s disease; AR: Androgen receptor; BBB: Blood–brain barrier;
BDNF: Brain-derived neurotrophic factor; CD11b: Complement receptor 3;
CNS: Central nervous system; CS: Corpus striatum; CSF: Cerebral spinal fluid;
CYP2D: Cytochrome P450 2D; DHEA: Dehydroepiandrosterone;
DHEAS: Dehydroepiandrosterone sulphate; DHT: Dihydrotestosterone; E.
coli: Escherichia coli; EAE: Experimental autoimmune encephalomyelitis;
ER: Oestrogen receptor; ERK 1/2: Extracellular signal-regulated kinases-1/2;
FIV: Feline immunodeficiency virus; GABAA R: GABAA receptor; GABAA: γ-
Aminobutyric acid type A; GC-MS: Gas chromatography mass spectrometry;
GR: Glucocorticoid receptor; hCG: human chorionic gonadotropin;
HPA: Hypothalamic pituitary adrenal axis; HPLC: High-performance liquid
chromatography; HSD: Hydroxysteroid dehydrogenase; IFN-γ: Interferon
gamma; IL: Interleukin; LH: Luteinising hormone; LPS: Lipopolysaccharide;
LTP: Long-term potentiation; MAP2C: Microtubule-associated protein type 2C;
MCP-1: Monocyte chemoattractant protein 1; MHC II: Major
histocompatibility complex II; MOA: Monoamine oxidase;
MR: Mineralocorticoid receptor; mRNA: Messenger ribonucleic acid;
MS: Multiple sclerosis; NAc: Nucleus accumbens; NF-κB: Nuclear factor kappa-
light-chain-enhancer of activated B cells; NGF: Neurotrophin growth factor;
NMDA: N-methyl-D-aspartate; NMDAR: NMDA receptor; NT-3: Neurotrophin 3;
OATP: Organic anion transporting peptide; P450: Cytochrome P450 enzyme;
P450scc: Cytochrome P450 side chain cleavage enzyme; PBMC: Peripheral
blood mononuclear cell; PD: Parkinson’s disease; PI3/

Akt: Phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B;
PPAR: Peroxisome proliferator-activated receptor; PREG: Pregnenolone;
PREGS: Pregnenolone sulphate; PTSD: Post-traumatic stress disorder;
RIA: Radio-immunoassay; SAM: Sympatho-adrenal-medullary; Shc: SHC-
transforming protein; SNS: Sympathetic nervous system; SPE: Solid phase
extraction; StAR: Steroidogenic acute regulatory protein; STS: Steroid
sulphatases; SULT: Steroid sulphotransferase; TNF: Tumour necrosis factor;
Trk: Tropomyosin receptor kinase; σ-1: Sigma 1

Funding
The South African National Research Foundation, as well as the Ethel and
Ernst Eriksen Trust and Stellenbosch University, are acknowledged for
financial support in the form of bursaries to YSLP.

Authors’ contributions
YP contributed to the conception or design of the work, acquisition or
analysis or interpretation of data for the work, drafting of the work or
revising it critically for important intellectual content and the final approval
of the version to be published and agreed to be accountable for all aspects
of the work. CS contributed to the conception or design of the work,
acquisition or analysis or interpretation of data for the work, drafting of the
work or revising it critically for important intellectual content and the final
approval of the version to be published and agreed to be accountable for all
aspects of the work.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Both authors hereby give consent for the publication of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 17 August 2018 Accepted: 24 September 2018

References
1. Tian L, Ma L, Kaarela T, Li Z. Neuroimmune crosstalk in the central nervous

system and its significance for neurological diseases. J Neuroinflammation.
2012;9:594 Available from: http://jneuroinflammation.biomedcentral.com/
articles/10.1186/1742-2094-9-155.

2. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al.
Structural and functional features of central nervous system lymphatic
vessels. Nature. 2015;523:337–41 Available from: http://www.nature.com/
doifinder/10.1038/nature14432.

3. Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH. Neurobiological
and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA
sulfate (DHEAS). Front. Neuroendocrinol. 2009:65–91. https://doi.org/10.
1016/j.yfrne.2008.11.002.

4. Arbo BD, Bennetti F, Ribeiro MF. Astrocytes as a target for neuroprotection:
modulation by progesterone and dehydroepiandrosterone. Prog Neurobiol.
2016;144:27–47. https://doi.org/10.1016/j.pneurobio.2016.03.010.

5. Puche RC, Nes WR. Binding of dehydroepiandrosterone sulfate to serum
albumin. Endocrinology. 1962;70:857–63.

6. Stárka L, Dušková M, Hill M. Dehydroepiandrosterone: a neuroactive steroid.
J Steroid Biochem Mol Biol. 2015;145:254–60.

7. Barrett-Connor E. Lower endogenous androgen levels and dyslipidemia in men
with non-insulin-dependent diabetes mellitus. Ann Intern Med. 1992;117:807–11.

8. Haffner SM, Valdez RA, Mykkänen L, Stern MP, Katz MS. Decreased
testosterone and dehydroepiandrosterone sulfate concentrations are
associated with increased insulin and glucose concentrations in nondiabetic
men. Metabolism. 1994;43:599–603.

9. Herbert J. The age of dehydroepiandrosterone. Lancet. 1995;345:1193–4
Available from: http://www.ncbi.nlm.nih.gov/pubmed/7739304.

10. Straub RH, Konecna L, Hrach S, Rothe G, Kreutz M, Schölmerich J, et al.
Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively

Powrie and Smith Journal of Neuroinflammation  (2018) 15:289 Page 14 of 21

http://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-9-155
http://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-9-155
http://www.nature.com/doifinder/10.1038/nature14432
http://www.nature.com/doifinder/10.1038/nature14432
https://doi.org/10.1016/j.yfrne.2008.11.002
https://doi.org/10.1016/j.yfrne.2008.11.002
https://doi.org/10.1016/j.pneurobio.2016.03.010
http://www.ncbi.nlm.nih.gov/pubmed/7739304


correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion
from mononuclear cells in man in vitro: possible link between
endocrinosenescence and immunosenescence. J Clin Endocrinol Metab.
1998;83:2012–7.

11. Ravaglia G, Forti P, Maioli F, Sacchetti L, Nativio V, Scali CR, et al.
Dehydroepiandrosterone-sulfate serum levels and common age-related
diseases: results from a cross-sectional Italian study of a general elderly
population. Exp Gerontol. 2002;37:701–12.

12. Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex
differences in serum dehydroepiandrosterone sulfate concentrations
throughout adulthood. J Clin Endocrinol Metab. 1984;59:551–55.

13. Petersen KS, Smith C. Ageing-associated oxidative stress and inflammation
are alleviated by products from grapes. Oxidative Med Cell Longev. 2016;
https://doi.org/10.1155/2016/6236309.

14. Hindle JV. Ageing, neurodegeneration and Parkinson’s disease. Age Ageing.
2010;39:156–61.

15. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22:
R741–52. https://doi.org/10.1016/j.cub.2012.07.024.

16. Straub RH, Miller LE, Schölmerich J, Zietz B. Cytokines and hormones as
possible links between endocrinosenescence and immunosenescence. J
Neuroimmunol. 2000;109:10–5.

17. Roubenoff R, Harris TB, Abad LW, Wilson PW, Dallal GE, Dinarello CA.
Monocyte cytokine production in an elderly population: effect of age and
inflammation. J Gerontol A Biol Sci Med Sci. 1998;53:M20–6 Available from:
http://www.ncbi.nlm.nih.gov/pubmed/9467429.

18. Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW.
Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism.
Acta Neurol Scand. 1999;100:34–41 Available from: http://www.ncbi.nlm.nih.
gov/pubmed/10416510.

19. Wenisch C, Patruta S, Daxböck F, Krause R, Hörl W. Effect of age on human
neutrophil function. J Leukoc Biol. 2000;67:40–5 Available from: http://www.
ncbi.nlm.nih.gov/pubmed/10647996.

20. Guayerbas N, De La Fuente M. An impairment of phagocytic function is
linked to a shorter life span in two strains of prematurely aging mice. Dev
Comp Immunol. 2003;27:339–50 Available from: https://doi.org/10.1016/
S0145-305X(02)00103-9Get rights and content.

21. Bruunsgaard H, Pedersen AN, Schroll M, Skinhoj P, Pedersen BK. Impaired
production of proinflammatory cytokines in response to lipopolysaccharide
(LPS) stimulation in elderly humans. Clin Exp Immunol. 1999;118:235–41.

22. Bruunsgaard H, Skinhøj P, Qvist J, Pedersen BK. Elderly humans show
prolonged in vivo inflammatory activity during pneumococcal infections. J
Infect Dis. 1999;180:551–4. Available from: https://academic.oup.com/jid/
article/180/2/551/883344 .

23. Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhøj P,
Pedersen BK. A high plasma concentration of TNF-alpha is associated with
dementia in centenarians. J Gerontol A Biol Sci Med Sci. 1999;54:M357–64
Available from: https://academic.oup.com/biomedgerontology/article-
lookup/doi/10.1093/gerona/54.7.M357.

24. Barrientos RM, Frank MG, Watkins LR, Maier SF. Aging-related changes in
neuroimmune-endocrine function: Implications for hippocampal-dependent
cognition. Horm Behav. 2012;62:219–27. https://doi.org/10.1016/j.yhbeh.
2012.02.010.

25. Katsuki H, Nakai S, Hirai Y, Akaji K, Kiso Y, Satoh M. Interleukin-1β inhibits
long-term potentiation in the CA3 region of mouse hippocampal slices. Eur
J Pharmacol. 1990;181:323–6 Available from: https://www.sciencedirect.
com/science/article/pii/001429999090099R?via%3Dihub.

26. Cunningham AJ, Murray CA, O’Neill LAJ, Lynch MA, O’Connor JJ. Interleukin-
1β (IL-1β) and tumour necrosis factor (TNF) inhibit long-term potentiation
in the rat dentate gyrus in vitro. Neurosci Lett. 1996;203:17–20 Available
from: http://linkinghub.elsevier.com/retrieve/pii/0304394095122524.

27. Gonzalez P, Machado I, Vilcaes A, Caruso C, Roth GA, Schiöth H, et al.
Molecular mechanisms involved in interleukin 1-beta (IL-1β)-induced
memory impairment. Modulation by alpha-melanocyte-stimulating
hormone (α-MSH). Brain Behav Immun. 2013;34:141–50. https://doi.org/10.
1016/j.bbi.2013.08.007.

28. Smith C, Kruger MJ, Smith RM, Myburgh KH. The inflammatory response to
skeletal muscle injury: illuminating complexities. Sport Med. 2008;38:947–69.

29. Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, et al.
Exaggerated neuroinflammation and sickness behavior in aged mice following
activation of the peripheral innate immune system. FASEB J. 2005;19:1329–31
Available from: http://www.fasebj.org/cgi/doi/10.1096/fj.05-3776fje.

30. Barrientos RM, Frank MG, Hein AM, Higgins EA, Watkins LR, Rudy JW, et al.
Time course of hippocampal IL-1 beta and memory consolidation
impairments in aging rats following peripheral infection. Brain Behav
Immun. 2009;23:46–54. https://doi.org/10.1016/j.bbi.2008.07.002.

31. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or
beneficial response? Nat Med. 2006;12:1005–15 Available from: http://www.
nature.com/doifinder/10.1038/nm1484.

32. Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome
in chronic, inflammatory diseases. FEMS Microbiol Rev. 2015;39:567–91
Available from: http://www.ncbi.nlm.nih.gov/pubmed/25940667.

33. Veldhuis HD, Van Koppen C, Van Ittersum M, De Kloet ER. Specificity of the
adrenal steroid receptor system in rat hippocampus. Endocrinology. 1982;
110:2044–51. https://doi.org/10.1210/endo-110-6-2044.

34. Frey FJ, Odermatt A, Frey BM. Glucocorticoid-mediated mineralocorticoid
receptor activation and hypertension. Curr Opin Nephrol Hypertens. 2004;
13:451–8.

35. Ferrari E, Magri F. Role of neuroendocrine pathways in cognitive decline
during aging. Ageing Res Rev. 2008;7:225–33.

36. Pavlides C, Ogawa S, Kimura A, McEwen BS. Role of adrenal steroid
mineralocorticoid and glucocorticoid receptors in long-term potentiation in
the CA1 field of hippocampal slices. Brain Res. 1996;738:229–35.

37. Füchsl AM, Reber SO. Chronic psychosocial stress and negative feedback
inhibition: enhanced hippocampal glucocorticoid signaling despite lower
cytoplasmic GR expression. PLoS One. 2016;11:e0153164 Available from:
http://www.ncbi.nlm.nih.gov/pubmed/27057751.

38. López JF, Chalmers DT, Little KY, Watson SJ. A.E. Bennett Research Award.
Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in
rat and human hippocampus: implications for the neurobiology of
depression. Biol Psychiatry. 1998;43:547–73 Available from: http://www.ncbi.
nlm.nih.gov/pubmed/9564441.

39. Zhe D, Fang H, Yuxiu S. Expressions of hippocampal mineralocorticoid
receptor (MR) and glucocorticoid receptor (GR) in the single-prolonged
stress-rats. Acta Histochem Cytochem. 2008;41:89–95 Available from: http://
joi.jlc.jst.go.jp/JST.JSTAGE/ahc/08013?from=CrossRef.

40. Smith C, van Vuuren MJ. Central and peripheral effects of Sutherlandia
frutescens on the response to acute psychological stress. Exp Biol Med
(Maywood). 2014;239:123–8 Available from: http://www.ncbi.nlm.nih.gov/
pubmed/24304818.

41. Sapolsky RM, Krey LC, McEwen BS. The adrenocortical stress-response in
the aged male rat: impairment of recovery from stress. Exp Gerontol.
1983;18:55–64.

42. Sapolsky RM, Krey LC, McEwen BS. The neuroendocrinology of stress
and aging: the glucocorticoid cascade hypothesis. Endocr Rev. 1986;7:
284–301.

43. Medina A, Seasholtz AF, Sharma V, Burke S, Bunney W, Myers RM, et al.
Glucocorticoid and mineralocorticoid receptor expression in the human
hippocampus in major depressive disorder. J Psychiatr Res. 2013;47:307–314.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/23219281.

44. Elakovic I, Perisic T, Cankovic-Kadijevic M, Matic G. Correlation between
glucocorticoid receptor binding parameters, blood pressure, and body mass
index in a healthy human population. Cell Biochem. 2007;25:427–31.
Available from: https://www.ncbi.nlm.nih.gov/pubmed/16615046.

45. Heffner KL. Neuroendocrine effects of stress on immunity in the elderly:
implications for inflammatory disease. Immunol Allergy Clin North Am.
2011;31:95–108. https://doi.org/10.1016/j.iac.2010.09.005.

46. Päth G, Bornstein SR, Ehrhart-bornstein M, Scherbaum WA. Interleukin-6 and
the interleukin-6 receptor in the human adrenal gland: expression and
effects on steroidogenesis. J Clin Endocrinol Metab. 1997;82:2343–9.

47. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M,
Greenwood BN, et al. Catecholamines mediate stress-induced increases
in peripheral and central inflammatory cytokines. Neuroscience. 2005;
135:1295–307.

48. Blandino P, Barnum CJ, Deak T. The involvement of norepinephrine and
microglia in hypothalamic and splenic IL-1β responses to stress. J
Neuroimmunol. 2006;173:87–95.

49. Blandino P, Barnum CJ, Solomon LG, Larish Y, Lankow BS, Deak T. Gene
expression changes in the hypothalamus provide evidence for regionally-
selective changes in IL-1 and microglial markers after acute stress. Brain
Behav Immun. 2009;23:958–68. https://doi.org/10.1016/j.bbi.2009.04.013.

50. Kim M-H, Gorouhi F, Ramirez S, Granick JL, Byrne BA, Soulika AM, et al.
Catecholamine stress alters neutrophil trafficking and impairs wound

Powrie and Smith Journal of Neuroinflammation  (2018) 15:289 Page 15 of 21

https://doi.org/10.1155/2016/6236309
https://doi.org/10.1016/j.cub.2012.07.024
http://www.ncbi.nlm.nih.gov/pubmed/9467429
http://www.ncbi.nlm.nih.gov/pubmed/10416510
http://www.ncbi.nlm.nih.gov/pubmed/10416510
http://www.ncbi.nlm.nih.gov/pubmed/10647996
http://www.ncbi.nlm.nih.gov/pubmed/10647996
https://doi.org/10.1016/S0145-305X
https://doi.org/10.1016/S0145-305X
https://academic.oup.com/jid/article/180/2/551/883344
https://academic.oup.com/jid/article/180/2/551/883344
https://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/54.7.M357
https://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/54.7.M357
https://doi.org/10.1016/j.yhbeh.2012.02.010
https://doi.org/10.1016/j.yhbeh.2012.02.010
https://www.sciencedirect.com/science/article/pii/001429999090099R?via%3Dihub
https://www.sciencedirect.com/science/article/pii/001429999090099R?via%3Dihub
http://linkinghub.elsevier.com/retrieve/pii/0304394095122524
https://doi.org/10.1016/j.bbi.2013.08.007
https://doi.org/10.1016/j.bbi.2013.08.007
http://www.fasebj.org/cgi/doi/10.1096/fj.05-3776fje
https://doi.org/10.1016/j.bbi.2008.07.002
http://www.nature.com/doifinder/10.1038/nm1484
http://www.nature.com/doifinder/10.1038/nm1484
http://www.ncbi.nlm.nih.gov/pubmed/25940667
https://doi.org/10.1210/endo-110-6-2044
http://www.ncbi.nlm.nih.gov/pubmed/27057751
http://www.ncbi.nlm.nih.gov/pubmed/9564441
http://www.ncbi.nlm.nih.gov/pubmed/9564441
http://joi.jlc.jst.go.jp/JST.JSTAGE/ahc/08013?from=CrossRef
http://joi.jlc.jst.go.jp/JST.JSTAGE/ahc/08013?from=CrossRef
http://www.ncbi.nlm.nih.gov/pubmed/24304818
http://www.ncbi.nlm.nih.gov/pubmed/24304818
http://www.ncbi.nlm.nih.gov/pubmed/23219281
https://www.ncbi.nlm.nih.gov/pubmed/16615046
https://doi.org/10.1016/j.iac.2010.09.005
https://doi.org/10.1016/j.bbi.2009.04.013


healing by β2-adrenergic receptor-mediated upregulation of IL-6. J Invest
Dermatol. 2014;134:809–17 Available from: http://www.ncbi.nlm.nih.gov/
pubmed/24121404.

51. Esler M, Lambert G, Kaye D, Rumantir M, Hastings J, Seals DR. Influence of
ageing on the sympathetic nervous system and adrenal medulla at rest and
during stress. Biogerontology. 2002;3:45–9 Available from: http://link.
springer.com/10.1023/A:1015203328878.

52. Franco-Morselli R, Elghozi JL, Joly E, Di Giuilio S, Meyer P. Increased plasma
adrenaline concentrations in benign essential hypertension. Br Med J. 1977;
2:1251–4 Available from: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=1632467&tool=pmcentrez&rendertype=abstract.

53. Esler M, Kaye D, Thompson J, Jennings G, Cox H, Turner A, et al. Effects of
aging on epinephrine secretion and regional release of epinephrine from
the human heart. J Clin Endocrinol Metab. 1995;80:435–42 Available from:
https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem.80.2.
7852502.

54. Kudielka BM, Schmidt-Reinwald AK, Hellhammer DH, Schurmeyer T,
Kirschbaum C. Psychosocial stress and HPA functioning: no evidence for a
reduced resilience in healthy elderly men. Stress. 2000;3:229–40.

55. Amano A, Tsunoda M, Aigaki T, Maruyama N, Ishigami A. Age-related
changes of dopamine, noradrenaline and adrenaline in adrenal glands of
mice. Geriatr Gerontol Int. 2013;13:490–6.

56. Elenkov IJ, Kvetnansky R, Hashiramoto A, Bakalov VK, Link AA, Zachman K,
et al. Low- versus high-baseline epinephrine output shapes opposite innate
cytokine profiles: presence of Lewis- and Fischer-like neurohormonal
immune phenotypes in humans? J Immunol. 2008;181:1737–45 Available
from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.181.3.1737.

57. Labrie F. All sex steroids are made intracellularly in peripheral tissues by the
mechanisms of intracrinology after menopause. J Steroid Biochem Mol Biol.
2015;145:133–8. https://doi.org/10.1016/j.jsbmb.2014.06.001.

58. Labrie F. Combined blockade of testicular and locally made androgens in
prostate cancer: a highly significant medical progress based upon
intracrinology. J Steroid Biochem Mol Biol. 2015;145:144–56. https://doi.org/
10.1016/j.jsbmb.2014.05.012.

59. Rutkowski K, Sowa P, Rutkowska-Talipska J, Kuryliszyn-Moskal A,
Rutkowski R. Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs.
2014;74:1195–207.

60. Roth GS, Lane MA, Ingram DK, Mattison JA, Elahi D, Tobin JD, et al.
Biomarkers of caloric restriction may predict longevity in humans. Science.
2002;297:811.

61. Gaby AR. Dehydroepiandrosterone: biological effects and clinical
significance. Altern Med Rev.1996;1:60–9.

62. Kipper-Galperin M, Galilly R, Danenberg HD, Brenner T.
Dehydroepiandrosterone selectively inhibits production of tumor necrosis
factor alpha and interleukin-6 [correction of interlukin-6] in astrocytes. Int J
Dev Neurosci. 1999;17:765–75.

63. Boghozian R, McKenzie BA, Saito LB, Mehta N, Branton WG, Lu JQ, et al.
Suppressed oligodendrocyte steroidogenesis in multiple sclerosis:
implications for regulation of neuroinflammation. Glia. 2017;65:1590–606.

64. Alexaki VI, Fodelianaki G, Neuwirth A, Mund C, Kourgiantaki A, Ieronimaki E,
et al. DHEA inhibits acute microglia-mediated inflammation through
activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol Psychiatry. 2017:1–
11 Available from: http://www.nature.com/doifinder/10.1038/mp.2017.167.

65. Hales DB. Interleukin-1 inhibits Leydig cell steroidogenesis primarily by
decreasing 17 alpha-hydroxylase/C17-20 lyase cytochrome P450 expression.
Endocrinology. 1992;131:2165–72. https://doi.org/10.1210/endo.131.5.
1425417.

66. Li X, Youngblood GL, Payne AH, Hales DB. Tumor necrosis factor-alpha
inhibition of 17 alpha-hydroxylase/C17-20 lyase gene (Cyp17) expression.
Endocrinology. 1995;136:3519–26. https://doi.org/10.1210/endo.136.8.
7628389.

67. Mauduit C, Hartmann DJ, Chauvin MA, Revol A, Morera AM, Benahmed M.
Tumor necrosis factor alpha inhibits gonadotropin action in cultured
porcine Leydig cells: site(s) of action. Endocrinology. 1991;129:2933–40.
https://doi.org/10.1210/endo-129-6-2933.

68. Li Z, Cui S, Zhang Z, Zhou R, Ge Y, Sokabe M, et al. DHEA-neuroprotection
and -neurotoxicity after transient cerebral ischemia in rats. J Cereb Blood
Flow Metab. 2009;29:287–96.

69. Gil-ad I, Shtaif B, Eshet R, Maayan R, Rehavi M, Weizman A. Effect of
dehydroepiandrosterone and its sulfate metabolite on neuronal cell viability
in culture. Isr Med Assoc J. 2001;3:639–43.

70. Burkitt M. Too much of a good thing? Nat Biotechnol. 2001;19:811 Available
from: http://www.nature.com/doifinder/10.1038/nbt0901-811a.

71. Zwain IH, Yen SS. Dehydroepiandrosterone: biosynthesis and metabolism in
the brain. Endocrinology. 1999;140:880–7.

72. Prough RA, Clark BJ, Klinge CM. Novel mechanisms for DHEA action. J Mol
Endocrinol. 2016;56:R139–55.

73. Lazaridis I, Charalampopoulos I, Alexaki VI, Avlonitis N, Pediaditakis I,
Efstathopoulos P, et al. Neurosteroid dehydroepiandrosterone interacts with
nerve growth factor (NGF) receptors, preventing neuronal apoptosis. PLoS
Biol. 2011;9: e1001051.

74. Pediaditakis I, Iliopoulos I, Theologidis I, Delivanoglou N, Margioris AN,
Charalampopoulos I, et al. Dehydroepiandrosterone: an ancestral ligand of
neurotrophin receptors. Endocrinology. 2015;156:16–23.

75. Imamura M, Prasad C. Modulation of GABA-gated chloride ion influx in the
brain by dehydroepiandrosterone and its metabolites. Biochem Biophys Res
Commun. 1998;243:771–5 Available from: http://www.sciencedirect.com/
science/article/pii/S0006291X98981773.

76. Švob Štrac D, Jazvinšćak Jembrek M, Erhardt J, Mirković Kos K, Peričić D.
Modulation of recombinant GABAA receptors by neurosteroid
dehydroepiandrosterone sulfate. Pharmacology. 2012;89:163–71 Available
from: http://www.karger.com/DOI/10.1159/000336058.

77. Sachidanandan D, Bera AK. Inhibition of the GABAA receptor by sulfated
neurosteroids: a mechanistic comparison study between pregnenolone
sulfate and dehydroepiandrosterone sulfate. J Mol Neurosci. 2015;56:868–77.

78. Lapchak PA, Chapman DF, Nunez SY, Zivin JA. Dehydroepiandrosterone
sulfate is neuroprotective in a reversible spinal cord ischemia model. Stroke.
2000;31:1953 LP–1957. Available from: https://www.ncbi.nlm.nih.gov/
pubmed/10926963.

79. Monnet FP, Mahe V, Robel P, Baulieu EE. Neurosteroids, via sigma receptors,
modulate the [H- 3]norepinephrine release evoked by N-methyl-D-aspartate
in the rat hippocampus. Proc Natl Acad Sci U S A. 1995;92:3774–8.

80. Compagnone NA, Mellon SH. Dehydroepiandrosterone: a potential
signalling molecule for neocortical organization during development.
Neurobiology. 1998;95:4678–83.

81. Meunier J, Maurice T. Beneficial effects of the sigma1 receptor agonists
igmesine and dehydroepiandrosterone against learning impairments in rats
prenatally exposed to cocaine. Neurotoxicol Teratol. 2004;26:783–97
Available from: http://linkinghub.elsevier.com/retrieve/pii/
S089203620400100X.

82. Monnet FP, Mahei V, Robelt P, Baulieut E. Neurosteroids, via cr receptors,
modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate
in the rat hippocampus. Neurobiology. 1995;92:3774–8.

83. Stahel PF, Smith WR, Bruchis J, Rabb CH. Peroxisome proliferator-activated
receptors: “key” regulators of neuroinflammation after traumatic brain injury.
PPAR Res. 2008;2008:538141.

84. Poynter ME, Daynes RA. Peroxisome proliferator-activated receptor alpha
activation modulates cellular redox status, represses nuclear factor-kappa B
signaling, and reduces inflammatory cytokine production in aging. J Biol
Chem. 1998;273:32833–41 Available from: http://www.jbc.org/cgi/content/
abstract/273/49/32833.

85. Peters JM, Zhou YC, Ram PA, Lee SS, Gonzalez FJ, Waxman DJ. Peroxisome
proliferator-activated receptor alpha required for gene induction by
dehydroepiandrosterone-3 beta-sulfate. Mol Pharmacol. 1996;50:67–74.

86. Feng D, Zhang Y, Chen G. Cortical expression of peroxisome proliferator-
activated receptor-alpha after human brain contusion. J Int Med Res. 2008;
36:783–91.

87. Xilouri M, Papazafiri P. Induction of Akt by endogenous neurosteroids and
calcium sequestration in P19 derived neurons. Neurotox Res. 2008;13:209–
19 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18522900.

88. Jacob MHVM, Janner DDR, Araújo ASDR, Jahn MP, Kucharski LCR, Moraes TB,
et al. Dehydroepiandrosterone improves hepatic antioxidant reserve and
stimulates Akt signaling in young and old rats. J Steroid Biochem Mol Biol.
2011;127:331–6. https://doi.org/10.1016/j.jsbmb.2011.07.007.

89. Laurine E, Lafitte D, Gregoire C, Seree E, Loret E, Douillard S, et al. Specific
Binding of Dehydroepiandrosterone to the N Terminus of the Microtubule-
associated Protein MAP2. J Biol Chem. 2003;278:29979–86 Available from:
http://www.jbc.org/cgi/doi/10.1074/jbc.M303242200.

90. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive
involvement of autophagy in alzheimer disease: an immuno-electron
microscopy study. J Neuropathol Exp Neurol. 2005;64:113–22 Available from:
http://jnen.oxfordjournals.org/content/64/2/113.abstract. [cited 2014 Nov 2].

Powrie and Smith Journal of Neuroinflammation  (2018) 15:289 Page 16 of 21

http://www.ncbi.nlm.nih.gov/pubmed/24121404
http://www.ncbi.nlm.nih.gov/pubmed/24121404
http://link.springer.com/10.1023/A:1015203328878
http://link.springer.com/10.1023/A:1015203328878
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1632467&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1632467&tool=pmcentrez&rendertype=abstract
https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem.80.2.7852502
https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem.80.2.7852502
http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.181.3.1737
https://doi.org/10.1016/j.jsbmb.2014.06.001
https://doi.org/10.1016/j.jsbmb.2014.05.012
https://doi.org/10.1016/j.jsbmb.2014.05.012
http://www.nature.com/doifinder/10.1038/mp.2017.167
https://doi.org/10.1210/endo.131.5.1425417
https://doi.org/10.1210/endo.131.5.1425417
https://doi.org/10.1210/endo.136.8.7628389
https://doi.org/10.1210/endo.136.8.7628389
https://doi.org/10.1210/endo-129-6-2933
http://www.nature.com/doifinder/10.1038/nbt0901-811a
http://www.sciencedirect.com/science/article/pii/S0006291X98981773
http://www.sciencedirect.com/science/article/pii/S0006291X98981773
http://www.karger.com/DOI/10.1159/000336058
https://www.ncbi.nlm.nih.gov/pubmed/10926963
https://www.ncbi.nlm.nih.gov/pubmed/10926963
http://linkinghub.elsevier.com/retrieve/pii/S089203620400100X
http://linkinghub.elsevier.com/retrieve/pii/S089203620400100X
http://www.jbc.org/cgi/content/abstract/273/49/32833
http://www.jbc.org/cgi/content/abstract/273/49/32833
http://www.ncbi.nlm.nih.gov/pubmed/18522900
https://doi.org/10.1016/j.jsbmb.2011.07.007
http://www.jbc.org/cgi/doi/10.1074/jbc.M303242200
http://jnen.oxfordjournals.org/content/64/2/113.abstract


91. Labrie F, Archer D, Bouchard C, Fortier M, Cusan L, Gomez J-L, et al.
Intravaginal dehydroepiandrosterone (Prasterone), the physiological and a
highly efficient treatment of vaginal atrophy. Menopause. 2009;16:907–22
Available from: https://journals.lww.com/menopausejournal/Fulltext/2009/
16050/Intravaginal_dehydroepiandrosterone__Prasterone_,.15.aspx

92. Wolf OT, Neumann O, Hellhammer DH, Geiben AC, Strasburger CJ,
Dressendörfer RA, et al. Effects of a two-week physiological
dehydroepiandrosterone substitution on cognitive performance and well-
being in healthy elderly women and men. J Clin Endocrinol Metab. 1997;82:
2363–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9215320.

93. Percheron G, Hogrel J-Y, Denot-Ledunois S, Fayet G, Forette F, Baulieu E-E,
et al. Effect of 1-year oral administration of dehydroepiandrosterone to 60-
to 80-year-old individuals on muscle function and cross-sectional area: a
double-blind placebo-controlled trial. Arch Intern Med. 2003;163:720–7
Available from: http://www.ncbi.nlm.nih.gov/pubmed/12639206.

94. Corona G, Rastrelli G, Giagulli VA, Sila A, Sforza A, Forti G, et al.
Dehydroepiandrosterone supplementation in elderly men: a meta-analysis
study of placebo-controlled trials. J Clin Endocrinol Metab. 2013;98:3615–26.

95. Boudou P, De Kerviler E, Vexiau P, Fiet J, Cathelineau G, Gautier J. Effects of
a single bout of exercise and exercise training on steroid levels in middle-
aged type 2 diabetic men: relationship to abdominal adipose tissue
distribution and metabolic status. Diabetes Metab. 2000;26:450–7 Available
from: http://www.ncbi.nlm.nih.gov/pubmed/11173715.

96. Ravaglia G, Forti P, Maioli F, Pratelli L, Vettori C, Bastagli L, et al. Regular
moderate intensity physical activity and blood concentrations of
endogenous anabolic hormones and thyroid hormones in aging men.
Mech Ageing Dev. 2001;122:191–203.

97. Tissandier O, Peres G, Fiet J, Piette F. Testosterone, dehydroepiandrosterone,
insulin-like growth factor 1, and insulin in sedentary and physically trained
aged men. Eur J Appl Physiol. 2001;85:177–84.

98. Tremblay MS, Copeland JL, Van Helder W. Effect of training status and exercise
mode on endogenous steroid hormones in men. J Appl Physiol. 2004;96:531–9.

99. Arai MH, Duarte AJ, Natale VM. The effects of long-term endurance training
on the immune and endocrine systems of elderly men: the role of
cytokines and anabolic hormones. Immun Ageing. 2006;3:9 Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1564411&tool=
pmcentrez&rendertype=abstract.

100. Cadore EL, Lhullier FL, Brentano MA, da Silva EM, Ambrosini MB, Spinelli R,
et al. Hormonal responses to resistance exercise in long-term trained and
untrained middle-aged men. J Strength Cond Res. 2008;22:1617–24
Available from: http://www.ncbi.nlm.nih.gov/pubmed/18714223.

101. Heaney JLJ, Carroll D, Phillips AC. DHEA, DHEA-S and cortisol responses to
acute exercise in older adults in relation to exercise training status and sex.
Age (Omaha). 2013;35:395–405.

102. Copeland JL, Consitt LA, Tremblay MS. Hormonal responses to endurance
and resistance exercise in females aged 19-69 years. J Gerontol A Biol Sci
Med Sci. 2002;57:B158–65.

103. Giannopoulou I, Carhart R, Sauro LM, Kanaley JA. Adrenocortical responses
to submaximal exercise in postmenopausal black and white women.
Metabolism. 2003;52:1643–7.

104. Kemmler W, Wildt L, Engelke K, Pintag R, Pavel M, Bracher B, et al. Acute
hormonal responses of a high impact physical exercise session in early
postmenopausal women. Eur J Appl Physiol. 2003;90:199–209.

105. Aizawa K, Iemitsu M, Maeda S, Otsuki T, Sato K, Ushida T, et al. Acute
exercise activates local bioactive androgen metabolism in skeletal muscle.
Steroids. 2010;75:219–23.

106. Glaser JL, Brind JL, Vogelman JH, Eisner MJ, Dillbeck MC, Wallace RK, et al.
Elevated serum dehydroepiandrosterone sulfate levels in practitioners of the
transcendental meditation (TM) and TM-Sidhi programs. J Behav Med. 1992;
15:327–41 Available from: http://www.ncbi.nlm.nih.gov/pubmed/1404349.

107. Lai H-M, Liu MS-Y, Lin T-J, Tsai Y-L, Chien EJ. Higher DHEAS levels associated
with long-term practicing of Tai chi. Chin J Physiol. 2017;60:124–30
Available from: http://www.ncbi.nlm.nih.gov/pubmed/28468030.

108. Rossetti MF, Varayoud J, Moreno-Piovano GS, Luque EH, Ramos JG.
Environmental enrichment attenuates the age-related decline in the mRNA
expression of steroidogenic enzymes and reduces the methylation state of
the steroid 5α-reductase type 1 gene in the rat hippocampus. Mol Cell
Endocrinol. 2015;412:330–8. https://doi.org/10.1016/j.mce.2015.05.024.

109. Garcia-Casal JA, Goni-Imizcoz M, Perea-Bartolome MV, Soto-Perez F, Smith
SJ, Calvo-Simal S, et al. The efficacy of emotion recognition rehabilitation for
people with Alzheimer’s disease. J Alzheimers Dis. 2017;57:937–51.

110. Sanchez A, Maseda A, Marante-Moar MP, de Labra C, Lorenzo-Lopez L,
Millan-Calenti JC. Comparing the effects of multisensory stimulation and
individualized music sessions on elderly people with severe dementia: a
randomized controlled trial. J Alzheimers Dis. 2016;52:303–15.

111. Quintana-Hernandez DJ, Miro-Barrachina MT, Ibanez-Fernandez IJ, Pino AS-
D, Quintana-Montesdeoca MP, Rodriguez-de Vera B, et al. Mindfulness in
the maintenance of cognitive capacities in Alzheimer’s disease: a
randomized clinical trial. J Alzheimers Dis. 2016;50:217–32.

112. da Cruz TJP, Sa SPC, Lindolpho Mda C, Caldas CP. Cognitive stimulation for
older people with Alzheimer’s disease performed by the caregiver. Rev Bras
Enferm. 2015;68(450–456):510–6.

113. Matias-Guiu JA, Perez-Martinez DA, Matias-Guiu J. A pilot study of a new
method of cognitive stimulation using abacus arithmetic in healthy and
cognitively impaired elderly subjects. Neurologia Spain. 2016;31:326–31.

114. Miller WL, Geller DH, Rosen M. Ovarian and adrenal androgen biosynthesis and
metabolism. In: Azziz R, Nestler JE, Dewailly D, editors. Androg Excess Disord
Women [Internet]. Second ed. Totowa: Humana Press; 2007. p. 19–33. Available
from: https://link.springer.com/chapter/10.1007%2F978-1-59745-179-6_2.

115. Labrie F. DHEA, important source of sex steroids in men and even more in
women. Prog Brain Res. 2010:97–148. https://doi.org/10.1016/S0079-
6123(10)82004-7.

116. Re RN. Thirty years of intracrinology. Ochsner J. 2014;14:673–80 Available
from: http://www.ncbi.nlm.nih.gov/pubmed/25598734.

117. Luo L, Chen H, Zirkin BR. Leydig cell aging: steroidogenic acute regulatory protein
(StAR) and cholesterol side-chain cleavage enzyme. J Androl. 2001;22:149–56.

118. Suzuki T, Sasano H, Takeyama J, Kaneko C, Freije WA, Carr BR, et al.
Developmental changes in steroidogenic enzymes in human postnatal adrenal
cortex: immunohistochemical studies. Clin Endocrinol. 2000;53:739–47.

119. Yu L, Romero DG, Gomez-Sanchez CE, Gomez-Sanchez EP. Steroidogenic
enzyme gene expression in the human brain. Mol Cell Endocrinol. 2002;190:9–17.

120. Brown RC, Cascio C, Papadopoulos V. Pathways of neurosteroid biosynthesis in
cell lines from human brain: regulation of dehydroepiandrosterone formation
by oxidative stress and β-amyloid peptide. J Neurochem. 2000;74:847–59.

121. Sierra A, Lavaque E, Perez-Martin M, Azcoitia I, Hales DB, Garcia-Segura LM.
Steroidogenic acute regulatory protein in the rat brain: cellular distribution,
developmental regulation and overexpression after injury. Eur J Neurosci.
2003;18:1458–67.

122. Gottfried-Blackmore A, Sierra A, Jellinck PH, McEwen BS, Bulloch K. Brain
microglia express steroid-converting enzymes in the mouse. J Steroid
Biochem Mol Biol. 2008;109:96–107.

123. Melcangi RC, Celotti F, Castano P, Martini L. Differential localization of the 5
alpha-reductase and the 3 alpha-hydroxysteroid dehydrogenase in neuronal
and glial cultures. Endocrinology [Internet]. 1993;132:1252-9. Available from:
https://doi.org/10.1210/en.132.3.1252.

124. Zwain IH, Yen SS. Neurosteroidogenesis in astrocytes, oligodendrocytes, and
neurons of cerebral cortex of rat brain. Endocrinology [Internet]. 1999;140:
3843-52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10433246.

125. Lovelace M, Watson TG, Stephenson GL. Steroid 21-hydroxylase expression
in cultured rat astrocytes. Brain. 2003;61:609–15.

126. Karri S, Dertien JS, Stocco DM, Syapin PJ. Steroidogenic acute regulatory
protein expression and pregnenolone synthesis in rat astrocyte cultures. J
Neuroendocrinol. 2007;19:860–9.

127. Mizoguchi K, Ikeda R, Shoji H, Tanaka Y, Maruyama W, Tabira T. Aging
attenuates glucocorticoid negative feedback in rat brain. Neuroscience
[Internet]. IBRO; 2009;159:259-70. Available from: http://dx.doi.org/10.1016/j.
neuroscience.2008.12.020.

128. Benmessahel Y, Troadec JD, Cadepond F, Guennoun R, Hales DB, Schumacher M,
et al. Downregulation of Steroidogenic Acute Regulatory Protein (StAR) Gene
Expression by Cyclic AMP in Cultured Schwann Cells. Glia. 2004;45:213–28.

129. Geerling JC, Kawata M, Loewy AD. Aldosterone-sensitive neurons in the rat
central nervous system. J Comp Neurol. 2006;494:515–27.

130. Mizoguchi K, Kanno H, Ikarashi Y, Kase Y. Specific binding and characteristics
of 18β-glycyrrhetinic acid in rat brain. PLoS One. 2014;9:1–8.

131. Kimoto T, Tsurugizawa T, Ohta Y, Makino J, Tamura HO, Hojo Y, et al.
Neurosteroid synthesis by cytochrome P450-containing systems localized in
the rat brain hippocampal neurons: N-methyl-D-aspartate and calcium-
dependent synthesis. Endocrinology. 2001;142:3578–89.

132. Shibuya K, Takata N, Hojo Y, Furukawa A, Yasumatsu N, Kimoto T, et al.
Hippocampal cytochrome P450s synthesize brain neurosteroids which are
paracrine neuromodulators of synaptic signal transduction. Biochim Biophys
Acta - Gen Subj. 2003;1619:301–16.

Powrie and Smith Journal of Neuroinflammation  (2018) 15:289 Page 17 of 21

https://journals.lww.com/menopausejournal/Fulltext/2009/16050/Intravaginal_dehydroepiandrosterone__Prasterone_,.15.aspx
https://journals.lww.com/menopausejournal/Fulltext/2009/16050/Intravaginal_dehydroepiandrosterone__Prasterone_,.15.aspx
http://www.ncbi.nlm.nih.gov/pubmed/9215320
http://www.ncbi.nlm.nih.gov/pubmed/12639206
http://www.ncbi.nlm.nih.gov/pubmed/11173715
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1564411&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1564411&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/18714223
http://www.ncbi.nlm.nih.gov/pubmed/1404349
http://www.ncbi.nlm.nih.gov/pubmed/28468030
https://doi.org/10.1016/j.mce.2015.05.024
https://link.springer.com/chapter/10.1007/978-1-59745-179-6_2
https://doi.org/10.1016/S0079-6123(10)82004-7
https://doi.org/10.1016/S0079-6123(10)82004-7
http://www.ncbi.nlm.nih.gov/pubmed/25598734
https://doi.org/10.1210/en.132.3.1252
http://www.ncbi.nlm.nih.gov/pubmed/10433246
http://dx.doi.org/10.1016/j.neuroscience.2008.12.020
http://dx.doi.org/10.1016/j.neuroscience.2008.12.020


133. Mukai H, Takata N, Ishii HT, Tanabe N, Hojo Y, Furukawa A, et al.
Hippocampal synthesis of estrogens and androgens which are paracrine
modulators of synaptic plasticity: Synaptocrinology. Neuroscience. 2006;138:
757–64.

134. Griffin LD, Gong W, Verot L, Mellon SH. Niemann-Pick type C disease
involves disrupted neurosteroidogenesis and responds to allopregnanolone.
Nat Med. 2004;10:704–11.

135. Ukena K, Usui M, Kohchi C, Tsutsui K. Cytochrome p450 side-chain cleavage
enzyme in the cerebellar purkinje neuron and its neonatal change in rats.
Endocrinology. 1998;139:137–47.

136. Ukena K, Kohchi C, Tsutsui K. Expression and activity of 3beta-
hydroxysteroid dehydrogenase/delta5-delta4-isomerase in the rat Purkinje
neuron during neonatal life. Endocrinology [Internet]. 1999;140:805-13.
Available from: http://endo.endojournals.org/cgi/doi/10.1210/en.140.2.805.

137. Yarim M, Kabakci N. Neurosteroidogenesis in oligodendrocytes and Purkinje
neurones of cerebellar cortex of dogs. J Vet Med Ser C Anat Histol Embryol.
2004;33:151–4.

138. Lacapère JJ, Papadopoulos V. Peripheral-type benzodiazepine receptor:
structure and function of a cholesterol-binding protein in steroid and bile
acid biosynthesis. Steroids. 2003;68:569–85.

139. Morohaku K, Pelton SH, Daugherty DJ, Butler WR, Deng W, Selvaraj V.
Translocator protein/peripheral benzodiazepine receptor is not required for
steroid hormone biosynthesis. Endocrinology. 2014;155:89–97.

140. Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, et al. In vivo
radioligand binding to translocator protein correlates with severity of
Alzheimer’s disease. Brain. 2013;136:2228–38.

141. Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, et
al. Expression of the translocator protein of 18 kDa by microglia,
macrophages and astrocytes based on immunohistochemical localization in
abnormal human brain. Neuropathol Appl Neurobiol. 2009;35:306–28.

142. Da Pozzo E, Giacomelli C, Costa B, Cavallini C, Taliani S, Barresi E, et al. TSPO
PIGA ligands promote neurosteroidogenesis and human astrocyte well-
being. Int J Mol Sci. 2016;17:1028.

143. Santoro A, Mattace Raso G, Taliani S, Da Pozzo E, Simorini F, Costa B, et al.
TSPO-ligands prevent oxidative damage and inflammatory response in C6
glioma cells by neurosteroid synthesis. Eur J Pharm Sci. 2016;88:124–31.
https://doi.org/10.1016/j.ejps.2016.04.006.

144. Lin EHB, Von Korff M, Peterson D, Ludman EJ, Ciechanowski P, Katon W.
Population targeting and durability of multimorbidity colloborative care
management. Am J Manag Care. 2014;20:887–93.

145. Steckelbroeck S, Nassen A, Ugele B, Ludwig M, Watzka M, Reissinger A, et al.
Steroid sulfatase (STS) expression in the human temporal lobe: enzyme
activity, mRNA expression and immunohistochemistry study. J Neurochem.
2004;89:403–17.

146. Corpéchot C, Robel P, Axelsont M, Sjovallt J, Baulieu E-E. Characterization
and measurement of dehydroepiandrosterone sulfate in rat brain.
Biochemistry. 1981;78:4704–7.

147. Lacroix C, Fiet J, Benais JP, Gueux B, Bonete R, Villette JM, et al.
Simultaneous radioimmunoassay of progesterone, androst-4-enedione,
pregnenolone, dehydroepiandrosterone and 17-hydroxyprogesterone in
specific regions of human brain. J Steroid Biochem. 1987;28:317–25.

148. Liere P, Akwa Y, Weill-Engerer S, Eychenne B, Pianos A, Robel P, et al.
Validation of an analytical procedure to measure trace amounts of
neurosteroids in brain tissue by gas chromatography-mass
spectrometry. J Chromatogr Biomed Sci Appl. 2000:739, 301–12
Available from: https://www.sciencedirect.com/science/article/pii/
S0378434799005630

149. Liere P, Pianos A, Eychenne B, Cambourg A, Bodin K, Griffiths W, et al.
Analysis of pregnenolone and dehydroepiandrosterone in rodent brain:
cholesterol autoxidation is the key. J Lipid Res. 2009;50:2430–44.

150. Munetomo A, Hojo Y, Higo S, Kato A, Yoshida K, Shirasawa T, et al.
Aging-induced changes in sex-steroidogenic enzymes and sex-steroid
receptors in the cortex, hypothalamus and cerebellum. J Physiol Sci.
2015;65:253–63.

151. MacKenzie SM, Dewar D, Stewart W, Fraser R, Connell JMC, Davies E. The
transcription of steroidogenic genes in the human cerebellum and
hippocampus: a comparative survey of normal and Alzheimer’s tissue. J
Endocrinol. 2008;196:123–30.

152. Maayan R, Touati-Werner D, Ram E, Galdor M, Weizman A. Is brain
dehydroepiandrosterone synthesis modulated by free radicals in mice?
Neurosci Lett. 2005;377:130–5.

153. Kishimoto W, Hiroi T, Shiraishi M, Osada M, Imaoka S, Kominami S, et al.
Cytochrome P450 2D catalyze steroid 21-hydroxylation in the brain.
Endocrinology. 2004;145:699–705.

154. Kishimoto Y, Hoshi M. Dehydroepiandrosterone sulphate in rat brain:
incorporation from blood and metabolism in vivo12. J Neurochem. 1972;19:
2207–15 Available from: http://doi.wiley.com/10.1111/j.1471-4159.1972.
tb05129.x. [cited 2017 Oct 19].

155. Asaba H, Hosoya KI, Takanaga H, Ohtsuki S, Tamura E, Takizawa T, et al.
Blood-brain barrier is involved in the efflux transport of a neuroactive
steroid, dehydroepiandrosterone sulfate, via organic anion transporting
polypeptide 2. J Neurochem. 2000;75:1907–16.

156. Qaiser MZ, Dolman DEM, Begley DJ, Abbott NJ, Cazacu-Davidescu M, Corol
DI, et al. Uptake and metabolism of sulphated steroids by the blood-brain
barrier in the adult male rat. J Neurochem, Available from. 2017;142:672–85
http://www.ncbi.nlm.nih.gov/pubmed/28665486.

157. Pluchino N, Drakopoulos P, Bianchi-Demicheli F, Wenger JM, Petignat P,
Genazzani AR. Neurobiology of DHEA and effects on sexuality, mood and
cognition. J Steroid Biochem Mol Biol. 2015;145:273–80. https://doi.org/10.
1016/j.jsbmb.2014.04.012.

158. Le Goascogne C, Sananes N, Gouezou M, Takemori S, Kominami S, Baulieu
EE, et al. Immunoreactive cytochrome P-45017 in rat and guineapig gonads,
adrenal glands and brain. Reproduction. 1991;93:609–22 Available from:
https://rep.bioscientifica.com/view/journals/rep/93/2/jrf_93_2_042.xml

159. van Weerden WM, Bierings HG, Van Steenbrugge GJ, De Jong FH, Schröder
FH. Adrenal glands of mouse and rat do not synthesize androgens. Life Sci.
1992;50:857–61.

160. Quinn T, Ratnayake U, Dickinson H, Nguyen TH, McIntosh M, Castillo-
Melendez M, et al. Ontogeny of the adrenal gland in the spiny mouse, with
particular reference to production of the steroids cortisol and
dehydroepiandrosterone. Endocrinology. 2013;154:1190–201.

161. Quinn T, Ratnayake U, Castillo-Melendez M, Moritz KM, Dickinson H, Walker
DW. Adrenal steroidogenesis following prenatal dexamethasone exposure
in the spiny mouse. J Endocrinol. 2014;221:347–62.

162. Brunjes PC, Korol DL, Stern KG. Prenatal neurogenesis in the telencephalon
of the precocial mouse Acomys cahirinus. Neurosci Lett. 1989;107:114–9.

163. Quinn T, Ratnayake U, Dickinson H, Castillo-Melendez M, Walker DW. The
feto-placental unit, and potential roles of dehydroepiandrosterone (DHEA)
in prenatal and postnatal brain development: a re-examination using the
spiny mouse. J Steroid Biochem Mol Biol. 2016;160:204–13. https://doi.org/
10.1016/j.jsbmb.2015.09.044.

164. Quinn TA, Ratnayake U, Dickinson H, Castillo-Melendez M, Walker DW.
Ontogenetic change in the regional distribution of dehydroepiandrosterone-
synthesizing enzyme and the glucocorticoid receptor in the brain of the spiny
mouse (Acomys cahirinus). Dev Neurosci. 2016;38:54–73 Available from: http://
www.ncbi.nlm.nih.gov/pubmed/26501835.

165. Sunderland T, Merril CR, Harrington MG, Lawlor BA, Molchan SE, Martinez R,
et al. Reduced plasma dehydroepiandrosterone concentrations in
Alzheimer’s disease. Lancet. 1989;334:570.

166. Yanase T, Fukahori M, Taniguchi S, Nishi Y, Sakai Y, Takayanagi R, et al. Serum
dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEA-S) in Alzheimer’s
disease and in cerebrovascular dementia. Endocr J. 1996;43:119–23 Available
from: http://www.ncbi.nlm.nih.gov/pubmed/8732462.

167. Bernardi F, Lanzone A, Cento RM, Spada RS, Pezzani I, Genazzani AD, et al.
Allopregnanolone and dehydroepiandrosterone response to corticotropin-
releasing factor in patients suffering from Alzheimer’s disease and vascular
dementia. Eur J Endocrinol. 2000;142:466–71 Available from: http://www.
ncbi.nlm.nih.gov/pubmed/10802523.

168. Hillen T, Lun A, Reischies FM, Borchelt M, Steinhagen-Thiessen E, Schaub RT.
DHEA-S plasma levels and incidence of Alzheimer’s disease. Biol Psychiatry.
2000;47:161–3 Available from: http://linkinghub.elsevier.com/retrieve/pii/
S0006322399002176.

169. Murialdo G, Barreca A, Nobili F, Rollero A, Timossi G, Gianelli MV, et al.
Relationships between cortisol, dehydroepiandrosterone sulphate and insulin-
like growth factor-I system in dementia. J Endocrinol Invest. 2001;24:139–46.

170. Genedani S, Rasio G, Cortelli P, Antonelli F, Guidolin D, Galantucci M, et al.
Studies on homocysteine and dehydroepiandrosterone sulphate plasma
levels in Alzheimer’s disease patients and in Parkinson’s disease patients.
Neurotox Res. 2004;6:327–32.

171. Aldred S, Mecocci P. Decreased dehydroepiandrosterone (DHEA) and
dehydroepiandrosterone sulfate (DHEAS) concentrations in plasma of
Alzheimer’s disease (AD) patients. Arch Gerontol Geriatr. 2010;51:e16–8.

Powrie and Smith Journal of Neuroinflammation  (2018) 15:289 Page 18 of 21

https://doi.org/10.1016/j.ejps.2016.04.006
https://www.sciencedirect.com/science/article/pii/S0378434799005630
https://www.sciencedirect.com/science/article/pii/S0378434799005630
http://doi.wiley.com/10.1111/j.1471-4159.1972.tb05129.x
http://doi.wiley.com/10.1111/j.1471-4159.1972.tb05129.x
http://www.ncbi.nlm.nih.gov/pubmed/28665486
https://doi.org/10.1016/j.jsbmb.2014.04.012
https://doi.org/10.1016/j.jsbmb.2014.04.012
https://rep.bioscientifica.com/view/journals/rep/93/2/jrf_93_2_042.xml
https://doi.org/10.1016/j.jsbmb.2015.09.044
https://doi.org/10.1016/j.jsbmb.2015.09.044
http://www.ncbi.nlm.nih.gov/pubmed/26501835
http://www.ncbi.nlm.nih.gov/pubmed/26501835
http://www.ncbi.nlm.nih.gov/pubmed/8732462
http://www.ncbi.nlm.nih.gov/pubmed/10802523
http://www.ncbi.nlm.nih.gov/pubmed/10802523
http://linkinghub.elsevier.com/retrieve/pii/S0006322399002176
http://linkinghub.elsevier.com/retrieve/pii/S0006322399002176


172. Tourney G, Hatfield L. Plasma androgens in male schizophrenics. Arch Gen
Psychiatry. 1972;27:753–5. https://doi.org/10.1001/archpsyc.1972.
01750300025004.

173. Harris DS, Wolkowitz OM, Reus VI. Movement disorder, memory, psychiatric
symptoms and serum DHEA levels in schizophrenic and schizoaffective
patients. World J Biol Psychiatry. 2001;2:99–102. https://doi.org/10.3109/
15622970109027500.

174. Ritsner M, Gibel A, Ram E, Maayan R, Weizman A. Alterations in DHEA
metabolism in schizophrenia: two-month case-control study. Eur
Neuropsychopharmacol. 2006;16:137–46.

175. Gallagher P, Watson S, Smith MS, Young AH, Ferrier IN. Plasma cortisol-
dehydroepiandrosterone (DHEA) ratios in schizophrenia and bipolar
disorder. Schizophr Res. 2007;90:258–65.

176. Ritsner M, Maayan R, Gibel A, Weizman A. Differences in blood
pregnenolone and dehydroepiandrosterone levels between
schizophrenia patients and healthy subjects. Eur Neuropsychopharmacol.
2007;17:358–65.

177. Strous RD, Maayan R, Kaminsky M, Blumensohn R, Weizman A, Spivak B.
DHEA and DHEA-S levels in hospitalized adolescents with first-episode
schizophrenia and conduct disorder: a comparison study. Eur
Neuropsychopharmacol. 2009;19:499–503. https://doi.org/10.1016/j.
euroneuro.2009.03.001.

178. Babinkostova Z, Stefanovski B, Janicevic-Ivanovska D, Samardziska V.
Association between serum cortisol and DHEA-s levels and response to
antipsychotic treatment in schizophrenia. Maced J Med Sci. 2015;3:124–8.
Available from: http://www.id-press.eu/mjms/article/view/289.

179. Orefice NS, Carotenuto A, Mangone G, Bues B, Rehm R, Cerillo I, et al.
Assessment of neuroactive steroids in cerebrospinal fluid comparing acute
relapse and stable disease in relapsing-remitting multiple sclerosis. J Steroid
Biochem Mol Biol. 2016;159:1–7.

180. Spivak B, Maayan R, Kotler M, Mester R, Gil-Ad I, Shtaif B, et al. Elevated
circulatory level of GABA(A)--antagonistic neurosteroids in patients with
combat-related post-traumatic stress disorder. Psychol Med. 2000;30:1227–
31 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12027057.

181. Söndergaard HP, Hansson LO, Theorell T. Elevated blood levels of
dehydroepiandrosterone sulphate vary with symptom load in posttraumatic
stress disorder: findings from a longitudinal study of refugees in Sweden.
Psychother Psychosom. 2002;71:298–303.

182. Yehuda R, Brand SR, Golier JA, Yang R-K. Clinical correlates of DHEA associated
with post-traumatic stress disorder. Acta Psychiatr Scand. 2006;114:187–93
Available from: http://doi.wiley.com/10.1111/j.1600-0447.2006.00801.x.

183. Bremner D, Vermetten E, Kelley ME. Cortisol, dehydroepiandrosterone, and
estradiol measured over 24 hours in women with childhood sexual abuse-
related posttraumatic stress disorder. J Nerv Ment Dis. 2007;195:919–27.
Available from: https://journals.lww.com/jonmd/Fulltext/2007/11000/
Cortisol,_Dehydroepiandrosterone,_and_Estradiol.6.aspx

184. Gill J, Vythilingam M, Page GG. Low cortisol, high DHEA, and high levels of
stimulated TNF-α, and IL-6 in women with PTSD. J Trauma Stress. 2008;21:
530–9 Available from: http://doi.wiley.com/10.1002/jts.20372.

185. Kellner M, Muhtz C, Peter F, Dunker S, Wiedemann K, Yassouridis A.
Increased DHEA and DHEA-S plasma levels in patients with post-traumatic
stress disorder and a history of childhood abuse. J Psychiatr Res. 2010;44:
215–9. https://doi.org/10.1016/j.jpsychires.2009.08.009.

186. Jergović M, Bendelja K, Savić Mlakar A, Vojvoda V, Aberle N, Jovanovic T, et al.
Circulating levels of hormones, lipids, and immune mediators in post-traumatic
stress disorder – a 3-month follow-up study. Front Psychiatry. 2015;6:1–13 Available
from: http://journal.frontiersin.org/article/10.3389/fpsyt.2015.00049/abstract.

187. Kimonides VG, Khatibi NH, Svendsen CN, Sofroniew MV, Herbert J.
Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect
hippocampal neurons against excitatory amino acid-induced neurotoxicity.
Proc Natl Acad Sci U S A. 1998;95:1852–7. Available from: http://www.pnas.
org/content/95/4/1852.long

188. Cardounel A, Regelson W, Kalimi M. Dehydroepiandrosterone protects
hippocampal neurons against neurotoxin-induced cell death: mechanism of
action. Proc Soc Exp Biol Med. 1999;222:145–9.

189. Marx CE, Jarskog LF, Lauder JM, Gilmore JH, Lieberman JA, Morrow AL.
Neurosteroid modulation of embryonic neuronal survival in vitro following
anoxia. Brain Res. 2000;871:104–12.

190. Maurice T, Phan VL, Sandillon F, Urani A. Differential effect of
dehydroepiandrosterone and its steroid precursor pregnenolone against the
behavioural deficits in CO-exposed mice. Eur J Pharmacol. 2000;390:145–55.

191. Li H, Klein G, Sun P, Buchan AM. Dehydroepiandrosterone (DHEA) reduces
neuronal injury in a rat model of global cerebral ischemia. Brain Res. 2001;
888:263–6 Available from: http://linkinghub.elsevier.com/retrieve/pii/
S0006899300030778.

192. Pringle AK, Schmidt W, Deans JK, Wulfert E, Reymann KG, Sundstrom LE. 7-
Hydroxylated epiandrosterone (7-OH-EPIA) reduces ischaemia-induced
neuronal damage both in vivo and in vitro. Eur J Neurosci. 2003;18:117–24.

193. Kaasik A, Safiulina D, Kalda A, Zharkovsky A. Dehydroepiandrosterone with
other neurosteroids preserve neuronal mitochondria from calcium overload.
J Steroid Biochem Mol Biol. 2003;87:97–103.

194. Fiore C, Inman DM, Hirose S, Noble LJ, Igarashi T, Compagnone NA.
Treatment with the neurosteroid dehydroepiandrosterone promotes
recovery of motor behavior after moderate contusive spinal cord injury in
the mouse. J Neurosci Res. 2004;75:391–400.

195. Dudas B, Hanin I, Rose M, Wülfert E. Protection against inflammatory
neurodegeneration and glial cell death by 7β-hydroxy epiandrosterone, a
novel neurosteroid. Neurobiol Dis. 2004;15:262–8.

196. Kumar P, Taha A, Sharma D, Kale RK, Baquer NZ. Effect of
dehydroepiandrosterone (DHEA) on monoamine oxidase activity, lipid
peroxidation and lipofuscin accumulation in aging rat brain regions.
Biogerontology. 2008;9:235–46.

197. Pérez-Neri I, Montes S, Ríos C. Inhibitory effect of dehydroepiandrosterone
on brain monoamine oxidase activity: in vivo and in vitro studies. Life Sci.
2009;85:652–6. https://doi.org/10.1016/j.lfs.2009.09.008.

198. Grimm A, Schmitt K, Lang UE, Mensah-Nyagan AG, Eckert A. Improvement
of neuronal bioenergetics by neurosteroids: implications for age-related
neurodegenerative disorders. Biochim Biophys Acta - Mol Basis Dis. 2014;
1842:2427–38. https://doi.org/10.1016/j.bbadis.2014.09.013.

199. Hanna DMF, Tadros MG, Khalifa AE. ADIOL protects against 3-NP-induced
neurotoxicity in rats: possible impact of its anti-oxidant, anti-inflammatory
and anti-apoptotic actions. Prog Neuro-Psychopharmacology Biol Psychiatry.
2015;60:36–51. https://doi.org/10.1016/j.pnpbp.2015.02.005.

200. Yabuki Y, Shinoda Y, Izumi H, Ikuno T, Shioda N, Fukunaga K.
Dehydroepiandrosterone administration improves memory deficits
following transient brain ischemia through sigma-1 receptor stimulation.
Brain Res. 2015;1622:102–13. https://doi.org/10.1016/j.brainres.2015.05.006.

201. Vieira-Marques C, Arbo BD, Ruiz-Palmero I, Ortiz-Rodriguez A, Ghorbanpoor
S, Kucharski LC, et al. Dehydroepiandrosterone protects male and female
hippocampal neurons and neuroblastoma cells from glucose deprivation.
Brain Res. 2016;1644:176–82. https://doi.org/10.1016/j.brainres.2016.05.014.

202. Xilouri M, Papazafiri P. Anti-apoptotic effects of allopregnanolone on P19
neurons. Eur J Neurosci. 2006;23:43–54.

203. Charalampopoulos I, Tsatsanis C, Dermitzaki E, Alexaki V-I, Castanas E,
Margioris AN, et al. Dehydroepiandrosterone and allopregnanolone protect
sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2
proteins. Proc Natl Acad Sci U S A. 2004;101:8209–14 Available from: http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=419582&tool=
pmcentrez&rendertype=abstract.

204. Zhang L, Li BS, Ma W, Barker JL, Chang YH, Zhao W, et al.
Dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEAS)
regulate apoptosis during neurogenesis by triggering the Akt signaling
pathway in opposing ways. Mol Brain Res. 2002;98:58–66.

205. Kaasik A, Kalda A, Jaako K, Zharkovsky A. Dehydroepiandrosterone sulphate
prevents oxygen-glucose deprivation-induced injury in cerebellar granule
cell culture. Neuroscience. 2001;102:427–32.

206. Kimonides VG, Spillantini MG, Sofroniew MV, Fawcett JW, Herbert J.
Dehydroepiandrosterone antagonizes the neurotoxic effects of
corticosterone and translocation of stress-activated protein kinase 3 in
hippocampal primary cultures. Neuroscience. 1999;89:429–36.

207. Karishma KK, Herbert J. Dehydroepiandrosterone (DHEA) stimulates
neurogenesis in the hippocampus of the rat, promotes survival of newly
formed neurons and prevents corticosterone-induced suppression. Eur J
Neurosci. 2002;16:445–53.

208. Apostolova G, Schweizer RA, Balazs Z, Kostadinova RM, Odermatt A.
Dehydroepiandrosterone inhibits the amplification of glucocorticoid action
in adipose tissue. Am J Physiol Endocrinol Metab. 2005;288:E957–64
Available from: http://www.ncbi.nlm.nih.gov/pubmed/15613680.

209. Hennebert O, Chalbot S, Alran S, Morfin R. Dehydroepiandrosterone 7alpha-
hydroxylation in human tissues: possible interference with type 1 11beta-
hydroxysteroid dehydrogenase-mediated processes. J Steroid Biochem Mol
Biol. 2007;104:326–33.

Powrie and Smith Journal of Neuroinflammation  (2018) 15:289 Page 19 of 21

https://doi.org/10.1001/archpsyc.1972.01750300025004
https://doi.org/10.1001/archpsyc.1972.01750300025004
https://doi.org/10.3109/15622970109027500
https://doi.org/10.3109/15622970109027500
https://doi.org/10.1016/j.euroneuro.2009.03.001
https://doi.org/10.1016/j.euroneuro.2009.03.001
http://www.id-press.eu/mjms/article/view/289
http://www.ncbi.nlm.nih.gov/pubmed/12027057
http://doi.wiley.com/10.1111/j.1600-0447.2006.00801.x
https://journals.lww.com/jonmd/Fulltext/2007/11000/Cortisol,_Dehydroepiandrosterone,_and_Estradiol.6.aspx
https://journals.lww.com/jonmd/Fulltext/2007/11000/Cortisol,_Dehydroepiandrosterone,_and_Estradiol.6.aspx
http://doi.wiley.com/10.1002/jts.20372
https://doi.org/10.1016/j.jpsychires.2009.08.009
http://journal.frontiersin.org/article/10.3389/fpsyt.2015.00049/abstract
http://www.pnas.org/content/95/4/1852.long
http://www.pnas.org/content/95/4/1852.long
http://linkinghub.elsevier.com/retrieve/pii/S0006899300030778
http://linkinghub.elsevier.com/retrieve/pii/S0006899300030778
https://doi.org/10.1016/j.lfs.2009.09.008
https://doi.org/10.1016/j.bbadis.2014.09.013
https://doi.org/10.1016/j.pnpbp.2015.02.005
https://doi.org/10.1016/j.brainres.2015.05.006
https://doi.org/10.1016/j.brainres.2016.05.014
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=419582&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=419582&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=419582&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/15613680


210. Balazs Z, Schweizer RAS, Frey FJ, Rohner-Jeanrenaud F, Odermatt A. DHEA
induces 11-HSD2 by acting on CCAAT/enhancer-binding proteins. J Am Soc
Nephrol. 2008;19:92–101 Available from: http://www.jasn.org/cgi/doi/10.
1681/ASN.2007030263.

211. Daynes RA, Araneo BA, Ershler WB, Maloney C, Li GZ, Ryu SY. Altered
regulation of IL-6 production with normal aging. Possible linkage to the
age-associated decline in dehydroepiandrosterone and its sulfated
derivative. J Immunol. 1993;150:5219–30. Available from: http://www.
jimmunol.org/content/150/12/5219.abstract.

212. Kim HR, Ryu SY, Kim HS, Choi BM, Lee EJ, Kim HM, et al. Administration of
dehydroepiandrosterone reverses the immune suppression induced by high
dose antigen in mice. Immunol Invest. 1995;24:583–93 Available from:
https://www.ncbi.nlm.nih.gov/pubmed/7622196

213. Araghi-Niknam M, Liang B, Zhang Z, Ardestani SK, Watson RR.
Modulation of immune dysfunction during murine leukaemia retrovirus
infection of old mice by dehydroepiandrosterone sulphate (DHEAS).
Immunology. 1997;90:344–9 Available from: http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_
uids=9155639.

214. Tabata N, Tagami H, Terui T. Dehydroepiandrosterone may be one of
the regulators of cytokine production in atopic dermatitis. Arch
Dermatol Res. 1997;289:410–4 Available from: http://www.ncbi.nlm.nih.
gov/pubmed/9248620.

215. Kimura M, Tanaka S, Yamada Y, Kiuchi Y, Yamakawa T, Sekihara H.
Dehydroepiandrosterone decreases serum tumor necrosis factor-alpha
and restores insulin sensitivity: independent effect from secondary
weight reduction in genetically obese Zucker fatty rats. Endocrinology.
1998;139:3249–53 Available from: http://www.ncbi.nlm.nih.gov/pubmed/
9645700.

216. Padgett DA, Loria RM. Endocrine regulation of murine macrophage
function: effects of dehydroepiandrosterone, androstenediol, and
androstenetriol. J Neuroimmunol. 1998;84:61–8 Available from: http://www.
ncbi.nlm.nih.gov/pubmed/9600709.

217. Iwasaki Y, Asai M, Yoshida M, Nigawara T, Kambayashi M, Nakashima N.
Dehydroepiandrosterone-sulfate inhibits nuclear factor-κB-dependent
transcription in hepatocytes, possibly through antioxidant effect. J Clin
Endocrinol Metab. 2004;89:3449–54.

218. Maingat FG, Polyak MJ, Paul AM, Vivithanaporn P, Noorbakhsh F,
Ahboucha S, et al. Neurosteroid-mediated regulation of brain innate
immunity in HIV/AIDS: DHEA-S suppresses neurovirulence. FASEB J.
2013;27:725–37.

219. Sánchez-Guerrero J, Fragoso-Loyo HE, Neuwelt CM, Wallace DJ, Ginzler EM,
Sherrer YRS, et al. Effects of prasterone on bone mineral density in women
with active systemic lupus erythematosus receiving chronic glucocorticoid
therapy. J Rheumatol. 2008;35:1567–75 Available from: http://www.ncbi.nlm.
nih.gov/pubmed/18634158.

220. Petri MA, Mease PJ, Merrill JT, Lahita RG, Iannini MJ, Yocum DE, et al. Effects
of prasterone on disease activity and symptoms in women with active
systemic lupus erythematosus. Arthritis Rheum. 2004;50:2858–68 Available
from: http://www.ncbi.nlm.nih.gov/pubmed/15452837.

221. Chang D-M, Lan J-L, Lin H-Y, Luo S-F. Dehydroepiandrosterone treatment of
women with mild-to-moderate systemic lupus erythematosus: a multicenter
randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46:
2924–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12428233.

222. Petri MA, Lahita RG, Van Vollenhoven RF, Merrill JT, Schiff M, Ginzler EM, et
al. Effects of prasterone on corticosteroid requirements of women with
systemic lupus erythematosus: a double-blind, randomized, placebo-
controlled trial. Arthritis Rheum. 2002;46:1820–9 Available from: http://www.
ncbi.nlm.nih.gov/pubmed/12124866.

223. van Vollenhoven RF, Park JL, Genovese MC, West JP, McGuire JL. A double-
blind, placebo-controlled, clinical trial of dehydroepiandrosterone in severe
systemic lupus erythematosus. Lupus. 1999;8:181–7 Available from: http://
www.ncbi.nlm.nih.gov/pubmed/10342710.

224. Barry NN, McGuire JL, van Vollenhoven RF. Dehydroepiandrosterone in
systemic lupus erythematosus: relationship between dosage, serum levels,
and clinical response. J Rheumatol. 1998;25:2352–6 Available from: http://
www.ncbi.nlm.nih.gov/pubmed/9858429.

225. van Vollenhoven RF, Morabito LM, Engleman EG, McGuire JL. Treatment of
systemic lupus erythematosus with dehydroepiandrosterone: 50 patients
treated up to 12 months. J Rheumatol. 1998;25:285–9 Available from: http://
www.ncbi.nlm.nih.gov/pubmed/9489820.

226. van Vollenhoven RF, Engleman EG, McGuire JL. Dehydroepiandrosterone in
systemic lupus erythematosus. Results of a double-blind, placebo-controlled,
randomized clinical trial. Arthritis Rheum. 1995;38:1826–31 Available from:
http://www.ncbi.nlm.nih.gov/pubmed/8849355.

227. van Vollenhoven RF, Engleman EG, McGuire JL. An open study of
dehydroepiandrosterone in systemic lupus erythematosus. Arthritis Rheum. 1994;
37:1305–10 Available from: http://www.ncbi.nlm.nih.gov/pubmed/7945493.

228. Felt V, Stárka L. Metabolic effects of dehydroepiandrosterone and Atromid
in patients with hyperlipaemia. Cor Vasa. 1966;8:40–8 Available from: http://
www.ncbi.nlm.nih.gov/pubmed/4160021.

229. Villareal DT, Holloszy JO. Effect of DHEA on abdominal fat and insulin action
in elderly women and men: a randomized controlled trial. JAMA. 2004;292:
2243–2248. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15536111.

230. Koó E, Fehér KG, Fehér T, Füst G. Effect of dehydroepiandrosterone on
hereditary angioedema. Klin Wochenschr. 1983;61:715–7 Available from:
http://www.ncbi.nlm.nih.gov/pubmed/6224964.

231. Morales AJ, Haubrich RH, Hwang JY, Asakura H, Yen SS. The effect of six
months treatment with a 100 mg daily dose of dehydroepiandrosterone
(DHEA) on circulating sex steroids, body composition and muscle strength
in age-advanced men and women. Clin Endocrinol (Oxf). 1998;49:421–32
Available from: http://www.ncbi.nlm.nih.gov/pubmed/9876338.

232. Morales AJ, Nolan JJ, Nelson JC, Yen SS. Effects of replacement dose of
dehydroepiandrosterone in men and women of advancing age. J Clin
Endocrinol Metab. 1994;78:1360–7 Available from: http://www.ncbi.nlm.nih.
gov/pubmed/7515387.

233. von Mühlen D, Laughlin GA, Kritz-Silverstein D, Bergstrom J, Bettencourt R.
Effect of dehydroepiandrosterone supplementation on bone mineral
density, bone markers, and body composition in older adults: the DAWN
trial. Osteoporos Int. 2008;19:699–707 Available from: http://www.ncbi.nlm.
nih.gov/pubmed/18084691.

234. Sun Y, Mao M, Sun L, Feng Y, Yang J, Shen P. Treatment of osteoporosis in
men using dehydroepiandrosterone sulfate. Chin Med J (Engl). 2002;115:
402–4 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11940375.

235. Brooke AM, Kalingag LA, Miraki-Moud F, Camacho-Hübner C, Maher KT,
Walker DM, et al. Dehydroepiandrosterone (DHEA) replacement reduces
growth hormone (GH) dose requirement in female hypopituitary patients
on GH replacement. Clin Endocrinol (Oxf). 2006;65:673–80 Available from:
http://www.ncbi.nlm.nih.gov/pubmed/17054472.

236. Brooke AM, Kalingag LA, Miraki-Moud F, Camacho-Hübner C, Maher KT,
Walker DM, et al. Dehydroepiandrosterone improves psychological well-
being in male and female hypopituitary patients on maintenance growth
hormone replacement. J Clin Endocrinol Metab. 2006;91:3773–9 Available
from: http://www.ncbi.nlm.nih.gov/pubmed/16849414.

237. Bilger M, Speraw S, LaFranchi SH, Hanna CE. Androgen replacement in
adolescents and young women with hypopituitarism. J Pediatr Endocrinol
Metab. 2005;18:355–62 Available from: http://www.ncbi.nlm.nih.gov/
pubmed/15844469.

238. Johannsson G, Burman P, Wirén L, Engström BE, Nilsson AG, Ottosson M,
et al. Low dose dehydroepiandrosterone affects behavior in hypopituitary
androgen-deficient women: a placebo-controlled trial. J Clin Endocrinol
Metab. 2002;87:2046–52 Available from: http://www.ncbi.nlm.nih.gov/
pubmed/11994339.

239. Gurnell EM, Hunt PJ, Curran SE, Conway CL, Pullenayegum EM, Huppert FA,
et al. Long-term DHEA replacement in primary adrenal insufficiency: a
randomized, controlled trial. J Clin Endocrinol Metab. 2008;93:400–9
Available from: http://www.ncbi.nlm.nih.gov/pubmed/18000094.

240. Dhatariya K, Bigelow ML, Nair KS. Effect of dehydroepiandrosterone
replacement on insulin sensitivity and lipids in hypoadrenal women.
Diabetes. 2005;54:765–9 Available from: http://www.ncbi.nlm.nih.gov/
pubmed/15734854.

241. van Thiel SW, Romijn JA, Pereira AM, Biermasz NR, Roelfsema F, van Hemert
A, et al. Effects of dehydroepiandrostenedione, superimposed on growth
hormone substitution, on quality of life and insulin-like growth factor I in
patients with secondary adrenal insufficiency: a randomized, placebo-
controlled, cross-over trial. J Clin Endocrinol Metab. 2005;90:3295–303
Available from: http://www.ncbi.nlm.nih.gov/pubmed/15797966.

242. Libè R, Barbetta L, Dall’Asta C, Salvaggio F, Gala C, Beck-Peccoz P, et al.
Effects of dehydroepiandrosterone (DHEA) supplementation on hormonal,
metabolic and behavioral status in patients with hypoadrenalism. J
Endocrinol Invest. 2004;27:736–41 Available from: http://www.ncbi.nlm.nih.
gov/pubmed/15636426.

Powrie and Smith Journal of Neuroinflammation  (2018) 15:289 Page 20 of 21

http://www.jasn.org/cgi/doi/10.1681/ASN.2007030263
http://www.jasn.org/cgi/doi/10.1681/ASN.2007030263
http://www.jimmunol.org/content/150/12/5219.abstract
http://www.jimmunol.org/content/150/12/5219.abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9155639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9155639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9155639
http://www.ncbi.nlm.nih.gov/pubmed/9248620
http://www.ncbi.nlm.nih.gov/pubmed/9248620
http://www.ncbi.nlm.nih.gov/pubmed/9645700
http://www.ncbi.nlm.nih.gov/pubmed/9645700
http://www.ncbi.nlm.nih.gov/pubmed/9600709
http://www.ncbi.nlm.nih.gov/pubmed/9600709
http://www.ncbi.nlm.nih.gov/pubmed/18634158
http://www.ncbi.nlm.nih.gov/pubmed/18634158
http://www.ncbi.nlm.nih.gov/pubmed/15452837
http://www.ncbi.nlm.nih.gov/pubmed/12428233
http://www.ncbi.nlm.nih.gov/pubmed/12124866
http://www.ncbi.nlm.nih.gov/pubmed/12124866
http://www.ncbi.nlm.nih.gov/pubmed/10342710
http://www.ncbi.nlm.nih.gov/pubmed/10342710
http://www.ncbi.nlm.nih.gov/pubmed/9858429
http://www.ncbi.nlm.nih.gov/pubmed/9858429
http://www.ncbi.nlm.nih.gov/pubmed/9489820
http://www.ncbi.nlm.nih.gov/pubmed/9489820
http://www.ncbi.nlm.nih.gov/pubmed/8849355
http://www.ncbi.nlm.nih.gov/pubmed/7945493
http://www.ncbi.nlm.nih.gov/pubmed/4160021
http://www.ncbi.nlm.nih.gov/pubmed/4160021
http://www.ncbi.nlm.nih.gov/pubmed/15536111
http://www.ncbi.nlm.nih.gov/pubmed/6224964
http://www.ncbi.nlm.nih.gov/pubmed/9876338
http://www.ncbi.nlm.nih.gov/pubmed/7515387
http://www.ncbi.nlm.nih.gov/pubmed/7515387
http://www.ncbi.nlm.nih.gov/pubmed/18084691
http://www.ncbi.nlm.nih.gov/pubmed/18084691
http://www.ncbi.nlm.nih.gov/pubmed/11940375
http://www.ncbi.nlm.nih.gov/pubmed/17054472
http://www.ncbi.nlm.nih.gov/pubmed/16849414
http://www.ncbi.nlm.nih.gov/pubmed/15844469
http://www.ncbi.nlm.nih.gov/pubmed/15844469
http://www.ncbi.nlm.nih.gov/pubmed/11994339
http://www.ncbi.nlm.nih.gov/pubmed/11994339
http://www.ncbi.nlm.nih.gov/pubmed/18000094
http://www.ncbi.nlm.nih.gov/pubmed/15734854
http://www.ncbi.nlm.nih.gov/pubmed/15734854
http://www.ncbi.nlm.nih.gov/pubmed/15797966
http://www.ncbi.nlm.nih.gov/pubmed/15636426
http://www.ncbi.nlm.nih.gov/pubmed/15636426


243. Callies F, Fassnacht M, van Vlijmen JC, Koehler I, Huebler D, Seibel MJ, et al.
Dehydroepiandrosterone replacement in women with adrenal insufficiency:
effects on body composition, serum leptin, bone turnover, and exercise
capacity. J Clin Endocrinol Metab. 2001;86:1968–72 Available from: http://
www.ncbi.nlm.nih.gov/pubmed/11344193.

244. Gebre-Medhin G, Husebye ES, Mallmin H, Helström L, Berne C, Karlsson FA,
et al. Oral dehydroepiandrosterone (DHEA) replacement therapy in women
with Addison’s disease. Clin Endocrinol (Oxf). 2000;52:775–80 Available from:
http://www.ncbi.nlm.nih.gov/pubmed/10848883.

245. Hunt PJ, Gurnell EM, Huppert FA, Richards C, Prevost AT, Wass JA, et al.
Improvement in mood and fatigue after dehydroepiandrosterone
replacement in Addison’s disease in a randomized, double blind trial. J Clin
Endocrinol Metab. 2000;85:4650–6 Available from: http://www.ncbi.nlm.nih.
gov/pubmed/11134123.

246. Arlt W, Callies F, van Vlijmen JC, Koehler I, Reincke M, Bidlingmaier M, et al.
Dehydroepiandrosterone replacement in women with adrenal insufficiency.
N Engl J Med. 1999;341:1013–20 Available from: http://www.nejm.org/doi/
abs/10.1056/NEJM199909303411401.

Powrie and Smith Journal of Neuroinflammation  (2018) 15:289 Page 21 of 21

http://www.ncbi.nlm.nih.gov/pubmed/11344193
http://www.ncbi.nlm.nih.gov/pubmed/11344193
http://www.ncbi.nlm.nih.gov/pubmed/10848883
http://www.ncbi.nlm.nih.gov/pubmed/11134123
http://www.ncbi.nlm.nih.gov/pubmed/11134123
http://www.nejm.org/doi/abs/10.1056/NEJM199909303411401
http://www.nejm.org/doi/abs/10.1056/NEJM199909303411401

	Abstract
	Background
	Process of ageing
	Immune system maladaptation
	Neuroinflammatory changes

	Endocrine dysfunction
	The ageing hypothalamic–pituitary–adrenal axis (HPA)
	The effect of age on the sympatho–adrenal–medullary pathway (SAM pathway)
	The effect of ageing on sex hormones


	DHEA—the magic bullet?
	Pre-clinical evidence suggesting neuroprotective effects of DHEA
	Direct and indirect evidence for neuroprotective anti-inflammatory effects of DHEA

	Potential mechanisms for DHEA-mediated neuroprotective effects
	Efficacy of therapeutic DHEA administration
	Is it possible to stimulate extragonadal synthesis of DHEA or DHEAS?
	DHEA biosynthesis
	Production sites of DHEA
	Practical challenges in steroidogenesis research

	Conclusions
	Abbreviations
	Funding
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

