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Abstract

Background: Lipopolysaccharide (LPS) is one of the main constituents of the cell wall of gram-negative bacteria. As
an endotoxin, LPS induces neuroinflammation, which is associated with the blood-brain barrier impairment. Lactate
is a metabolite with some significant physiological functions within the neurovascular unit/blood-brain barrier (BBB).

neuroinflammation is still unknown.

Accumulation of extracellular and cerebrospinal fluid lactate is a specific feature of bacterial meningitis. However,
the role of lactate production, transport, and sensing by lactate receptors GPR81 in the pathogenesis of bacterial

Methods: In this study, we analyzed effects of LPS on the expression of GPR81 and MCT-1 and proliferation of cerebral
endothelial cells in the BBB model in vitro. We used molecular profiling methods to measure the expression of GPR81,
MCT-1, IL-1(3, and Ki67 in the cerebral endothelium after treatment with different concentrations of LPS followed by
measuring the level of extracellular lactate, transendothelial electric resistance, and permeability of the endothelial cell layer.

Results: Our findings showed that exposure to LPS results in neuroinflammatory changes associated with decreased
expression of GPR81 and MCT-1 in endothelial cells, as well as overproduction of IL-13 and elevation of lactate
concentrations in the extracellular space in a dose-dependent manner. LPS treatment reduced JAM tight junction
protein expression in cerebral endothelial cells and altered BBB structural integrity in vitro.

Conclusion: The impairment of lactate reception and transport might contribute to the alterations of BBB structural
and functional integrity caused by LPS-mediated neuroinflammation.
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Introduction

Bacterial meningitis is a life-threatening disease of the cen-
tral nervous system (CNS), particularly, in children. Despite
the progress in development of novel antibiotic-based treat-
ment methods in early diagnosis of bacterial meningitis, the
mortality and morbidity rates of this disease are still very
high. Bacterial meningitis is recognized as the main cause
of the top ten infection-associated death worldwide [1, 2].
The disease is an inflammation of meninges (arachnoid and
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pia mater) caused by the invasion of bacteria (Haemophilus
influenza, Neisseria meningitides, streptococci, pneumo-
cocci) into the subarachnoid space [3]. Among these patho-
gens, Neisseria meningitides is the leading cause of the
infection in children and young adults [4]. Lipopolysacchar-
ide (LPS) is a major endotoxin found in Gram-negative
bacteria with strong pro-inflammatory effects [5]. LPS is a
major component of the Neisseria meningitides outer
membrane, responsible for inflammatory responses in men-
ingitis and sepsis [6, 7]. LPS is usually used for bacterial
meningitis modeling in vivo and in vitro due to its
well-known effects on immune cells and cerebral microves-
sel endothelial cells [8, 9].
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Several pathogenic mechanisms lead to the development
of brain injury in bacterial meningitis, including leukocyte
transmigration and microglia activation. Such events cause
cytotoxicity, neuronal cell death, and local production of
pro-inflammatory cytokines and chemokines. Overall, these
effects lead to acute neuroinflammation, remodeling of
extracellular matrix, BBB breakdown, and progression of
neurological deficits [10, 11].

BBB structural and functional integrity is controlled by
various mechanisms, such as coordinated expression of
tight junction and adherence junction proteins in brain
microvessel endothelial cells (BMECs), functional activity of
perivascular cells (pericytes, astrocytes), and complex inter-
cellular interactions within the neurovascular unit (NVU)
[12]. Loss of BBB integrity in bacterial meningitis can be
primary (due to the direct effect of pathogens on NVU
cells) or secondary (due to the overwhelming production of
pro-inflammatory cytokines by microglial and astroglial
cells, diminished metabolism of BMECs, and impaired
reparative angiogenesis in cerebral microvessels) [13-16].
Interaction of bacteria with the brain endothelium alters
the junctional machinery in BMECs, thereby resulting in
neuroinflammation associated with pathological overpro-
duction of cytokines with pro-inflammatory action (ie.,
IL-1B, IL-6, TNFa, chemokines) and elevated permeability
of the barrier [17]. Particularly, LPS induces a significant
increase of BBB permeability by changing the RhoA signal-
ing and cytoskeletal rearrangements in BMECs [18], stimu-
lating the cyclooxygenase activity [19] and activating matrix
metalloproteinase [20, 21]. Previous in vitro studies showed
that LPS mediates the BBB breakdown at 24 h. This
phenomenon is characterized by tight junction deregula-
tion, reactive oxygen species production in BMECs, and
cytokine production by activated microglia [22, 23]. How-
ever, some other reports suggested that BBB breakdown is
not necessarily correlated with the pathogenesis of bacterial
meningitis [2].

Inflammation in bacterial meningitis is accompanied
by a prominent increase of lactate concentrations in
cerebrospinal fluid (CSF) and can be used as a reliable
criterion for differential diagnosis of bacterial and aseptic
meningitis [24], and/or viral meningitis [25]. Local produc-
tion and transport of lactate within the NVU supports inte-
gration and normal functions of BBB [12] whereas elevated
concentrations of lactate might be associated with neuroin-
flammation and BBB impairment [26]. Within the neuro-
vascular unit, lactate is produced by neurons, perivascular
astroglial cells, or BMECs. Monocarboxylate transporters
(MCTs) carry on the influx and efflux of lactate and con-
tribute to effective metabolic coupling of NVU cells
[27]. However, in some other cell types, inhibition of
MCT-1 activity results in the suppression of angiogen-
esis [28]. GPR81 receptors transport lactate into
BMECs. These receptors are expressed at luminal and
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abluminal membranes that act as metabolic sensors. As
we demonstrated before, elevation of extracellular lactate
or activation of GPR81 stimulate mitochondrial biogenesis
and support angiogenic properties of BMECs in vitro [12,
29]. However, there are no data on the role of GPR81 or
MCT-1 in the pathogenesis of BBB impairment in bacter-
ial meningitis. Therefore, in this study, we analyzed the in
vitro effects of LPS on the expression of GPR81 and
MCT-1 in BMECs associated with neuroinflammation
and BBB breakdown.

Materials and methods

Isolation and culture of BMECs within the BBB model in
vitro

This study was performed on Wistar rats cells (n =5 for
isolation of astroglial and neuronal cells; # =5 for isolation
of cerebral endothelial cells). All experiments and animal
use were conducted in compliance with the European
Community Directive (2010/63/EC) and were approved
by the Local Ethic Committee of the Krasnoyarsk State
Medical University named after Prof. V.F. Voino-Yasenetsky.
We isolated rat BMECs from P10 rats using the protocol of
Liu et al. with minimal modifications [30]. Astroglial and
neuronal cells were isolated from P4 neonatal rats according
to a standard protocol [31]. The cells were cultured at
37 °C, 5% CO, in Dulbecco’s modified Eagle’s medium
(DMEM/F12 + 20% FBS, 3 mg/ml glucose, 0.58 mg/ml
glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin)
in gelatin-coated vials (seeding density 1 x 10° cell/ml).
Culture medium was changed every 2—3 days. When the
cells reached 90% confluence, they were separated by tryp-
sinization and seeded in culture on gelatin-coated cups.
Phase-contrast microscopy was continuously used to
evaluate cell morphology (Additional file 1).

Assessment of BBB integrity and marker expression

BBB model in vitro was reconstructed according to an
original protocol described in details elsewhere [32]. Briefly,
cells (endothelial, neuronal, and astroglial) were co-cultured
in plates where neurons and astrocytes placed on wells bot-
tom and endothelial cells placed on inserts while covered
with semi-permeable membrane (incubated at 37 °C,
5% CO,).

Monitoring of BBB permeability was carried out using
TEER measurement system known as an Epithelial Vol-
tohmmeter (EVOM2) with chopstick electrode STX2
(World Precision Instrument, USA). Achieving a TEER
of >120 Q) was used as a criterion to obtain BBB model
with the permeability characteristics suitable for further
studies.

Immunohistochemistry was used to assess the expres-
sion of GPR81 receptors, lactate transporter MCT-1,
pro-inflammatory cytokine IL-1B, and cell proliferation
marker Ki67 with appropriate primary and secondary
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antibodies. We used primary antibodies at 1:400 and sec-
ondary at 1:600 (Abcam, USA) followed by visualization
with confocal laser microscopy (Olympus FV10i-W, Japan)
and Olympus Fluoview software. The relative numbers of
antigen-positive cells were counted in at least 10 fields.

Lactate extracellular concentrations were evaluated
spectrophotometrically with the Lactate assay kit
(Sigma-Aldrich, USA). Cell viability was tested with
Trypan blue.

Analysis of BMEC monolayer permeability for Lucifer
yellow

Lucifer yellow (LY) assay allows measuring the endothelial
layer permeability in vitro [22]. For transport experiments,
all media were removed from the upper chamber of the
insert and replaced with pre-warmed media with solutions
of LY (50-uM working concentration). Samples were col-
lected at 30, 60, and 90 min. At the end of each experi-
ment (5 replicates), the concentration of the fluorescent
compounds accumulated in the chamber was measured
using a spectrofluorimeter (CM2203, “SOLAR”, Belarus)
with excitation at 430/485 nm and emission at 535 nm.
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We used the following equation to measure the perme-
ability coefficients:

Permeability coefficients (Pe) = dC/dT x V/(A x C)

[V = sample volume, dC = concentration variations, dT =
time variations, C = the initial concentration in the donor
compartment, A =exposed surface (cellular monolayer
in cm?).]

LPS-induced inflammation in BBB model in vitro
We tested the effects of LPS on BMECs and BBB in vitro
at 24 h of LPS exposure (Escherichia coli strain 0111:B4
LPS lot no L4391, Sigma, USA), concentrations 50 and
100 ng/ml (indicated as LPSsq and LPS; o, respectively).
Statistical analysis was performed using the nonparamet-
ric data x* tests, Kruskal-Wallis test result with pairwise
comparisons for the groups. P values below 0.05 were con-
sidered significant.

Results and discussion
In vitro exposure of rat BBB model to LPS in two tested
concentrations during 24 h resulted in a progressive
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Fig. 1 The effects LPS on TEER (a) and on the permeability (b) of blood-brain barrier model to Lucifer yellow (LY) in vitro. The cells of BBB were
cultured with two concentrations of LPS, 50 ng/ml (blue lines; n = 14) and 100 ng/ml (red lines; n = 14) during 24 h. Control group (n = 14) is
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decrease of TEER and elevated permeability of the bar-
rier in LY-test (Fig. la, b). Thus, LPS-induced break-
down was evident in BBB model. Incubation of BMECs
(within the BBB model) with LPS exhibited a reduction
in GPR81 expression after 24 h of incubation with no
clear difference between two tested LPS concentrations
(Fig. 2a). Similarly, expression of lactate transporter
MCT-1 in brain microvessel endothelial cells was dra-
matically suppressed after incubation with LPS for 24 h
(Fig. 2b). The observed changes in the expression of lac-
tate transporters were associated with elevated concen-
trations of lactate in the culture medium at 24 h of BBB
model exposure to LPS (Fig. 2f). However, these changes
in extracellular lactate concentrations were not caused
by cytolysis. We evaluated the viability of the cells in
each group before measuring the expression of the target
molecules and lactate levels in the medium. The average
number of viable cells was comparable in all tested
groups (95% in control versus 93% in LPSso-treated
group and 94% in LPS;q,-treated group). Thus, elevated
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extracellular lactate is actively produced rather than pas-
sively released from damaged cells. The origin of lactate
produced in the LPS-treated BBB model remains to be
evaluated, i.e., astroglial production is rather possible.
We found a reduced expression of junctional adhesion
molecule (JAM) proteins in BMECs (Fig. 2d) and elevated
expression of pro-inflammatory cytokine IL-1p in BBB
model at 24 h of LPS exposure (Fig. 2e). Thus, LPS-induced
changes suggest establishment of a pro-inflammatory micro-
environment, altered transport and reception of extracellular
lactate, and deregulation of tight junction protein expression
in BMECs (Fig. 3). Neuroinflammation and loss of BBB
integrity are well-known triggers of BMEC proliferation
[33]. Moreover, after being cultured within the BBB
model, BMECs demonstrated visible angiogenic potential.
Taking into the consideration that activation of glycolysis
and lactate production is a prerequisite for BMEC activa-
tion and proliferation [34], we further tested the prolifera-
tive activity of BMECs which were exposed to LPS for
24 h. We assessed the expression of Ki67 protein in
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Fig. 3 Microphotographs of endothelial monolayer in the model of BBB in vitro. The photos show GPR81, MCT-1JAM, and IL-1(3 expression after
incubations of BMECs with LPSsq (n =8), LPS 00 (n =8), or in the control group (n = 8). Scale bars 100 um
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BMEC:s as a marker of cell proliferation. Moreover, altered
expression of Ki67 was evident in human BMECs affected
by N. meningitis [35]. We found that Ki67 expression in
rat BMECs exposed to LPS was not significantly changed
at 24 h (Fig. 2c). However, Ki67 expression in BMECs was
significantly reduced at 72 h (16.5% Ki67-immunopositive
cells in the control versus 10.6% in LPSso-treated group
and 7.8% in LPS;g-treated group (p <0.01)). Thus, BBB
breakdown and impaired transport and reception of lac-
tate in BMECs were not associated with the stimulation of
their proliferation in LPS-induced neuroinflammatuion,
but rather resulted in long-lasting suppression of BMEC
angiogenic potential.

Expression of GPR81 receptors have been previously
reported in BMECs [36], but their role in the regulation
of BBB integrity or neurovascular coupling is mainly un-
known. Proposed involvement of GPR81 and MCT-1 in
the pathogenesis of BBB alterations in cerebral malaria

[26] suggests that similar mechanisms might be active in
a case of acute meningitis. Excessive glycolysis in brain
cells is a characteristic of bacterial meningitis [37]; thus,
BMECs should be equipped with effective machinery for
transporting and sensing elevated brain tissue lactate
concentrations. However, observed changes in GPR81 and
MCT-1 expression in LPS-treated cells of BBB in vitro
could reflect impaired lactate clearance through the BBB in
bacterial meningitis. Recently, we found that stimulation of
GPR81 receptors in brain microvessel endothelial cells re-
sulted in the stimulation of mitochondrial biogenesis [29]
which is a prerequisite for cell proliferation and highly con-
trolled permeability of endothelial cell layer [38, 39]. There-
fore, reduced expression of lactate transporters and GPR81
in BMECs exposed to LPS could prevent lactate-mediated
effects on mitochondrial dynamics, thus resulting in the
suppression of endothelial metabolism. Given into the con-
sideration that endothelial cells could use extracellular
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MCT-1-transported lactate as a “fuel” for mitochondrial
respiration, we may propose that reduced expression of
MCT-1 in LPS-treated BMECs within the BBB model
would negatively affect their mitochondrial energy pro-
duction and metabolic status. The latter could lead to
impairment of tight junctions and barrier function of
BMECs as well as suppression of angiogenesis. Thus,
elevated production of lactate due to the presence of
pro-inflammatory concentrations of LPS is associated
with reduced transport and reception of lactic acid by
endothelial cells, impaired lactate clearance mechanism,
and loss of BBB structural integrity.

Conclusions

Action of LPS in the BBB model in vitro results in endo-
thelial layer impairment which is coupled to the accumu-
lation of extracellular lactate and reduced ability of brain
microvessel endothelial cells to sense or transport lactic
acid. Reduced expression of GPR81 lactate receptors and
MCT-1 lactate transporters in brain microvessel endothe-
lial cells corresponds to the loss of BBB integrity and ele-
vated permeability of the barrier in vitro.

Additional file

Additional file 1: Figure S4. Phase contrast microphotograph (ZOE
Fluorescent Cell Imager, Bio-rad, USA) of endothelial cells in the in vitro
model of BBB, showing the monolayer status of cultured cells. Figure
magnification x 20. Scale bar represents 100 um. (DOCX 333 kb)
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