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Hyperammonemia alters membrane
expression of GluA1 and GluA2 subunits of
AMPA receptors in hippocampus by
enhancing activation of the IL-1 receptor:
underlying mechanisms
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Abstract

Background: Hyperammonemic rats reproduce the cognitive alterations of patients with hepatic encephalopathy,
including altered spatial memory, attributed to altered membrane expression of AMPA receptor subunits in
hippocampus. Neuroinflammation mediates these cognitive alterations. We hypothesized that hyperammonemia-induced
increase in IL-1β in hippocampus would be responsible for the altered GluA1 and GluA2 membrane expression. The aims
of this work were to (1) assess if increased IL-1β levels and activation of its receptor are responsible for the changes in
GluA1 and/or GluA2 membrane expression in hyperammonemia and (2) identify the mechanisms by which activation of
IL-1 receptor leads to altered membrane expression of GluA1 and GluA2.

Methods: We analyzed in hippocampal slices from control and hyperammonemic rat membrane expression of AMPA
receptors using the BS3 cross-linker and phosphorylation of the GluA1 and GluA2 subunits using phosphor-specific
antibodies. The IL-1 receptor was blocked with IL-Ra, and the signal transduction pathways involved in modulation of
membrane expression of GluA1 and GluA2 were analyzed using inhibitors of key steps.

Results: Hyperammonemia reduces GluA1 and increases GluA2 membrane expression and reduces phosphorylation of
GluA1 at Ser831 and of GluA2 at Ser880. Hyperammonemia increases IL-1β, enhancing activation of IL-1 receptor. This
leads to activation of Src. The changes in membrane expression of GluA1 and GluA2 are reversed by blocking the IL-1
receptor with IL-1Ra or by inhibiting Src with PP2.
After Src activation, the pathways for GluA2 and GluA1 diverge. Src increases phosphorylation of GluN2B at Tyr14721
and membrane expression of GluN2B in hyperammonemic rats, leading to activation of MAP kinase p38, which binds
to and reduces phosphorylation at Thr560 and activity of PKCζ, resulting in reduced phosphorylation at Ser880 and
enhanced membrane expression of GluA2.
Increased Src activity in hyperammonemic rats also activates PKCδ which enhances phosphorylation of GluN2B at
Ser1303, reducing membrane expression of CaMKII and phosphorylation at Ser831 and membrane expression of GluA1.

Conclusions: This work identifies two pathways by which neuroinflammation alters glutamatergic neurotransmission
in hippocampus. The steps of the pathways identified could be targets to normalize neurotransmission in
hyperammonemia and other pathologies associated with increased IL-1β by acting, for example, on p38 or PKCδ.
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Highlights

� Hyperammonemia reduces GluA1 and increases
GluA2 membrane expression in hippocampus

� Hyperammonemia reduces phosphorylation of
GluA1 in Ser831 and of GluA2 in Ser880

� These effects are mediated by IL-1β and activation
of IL-1 receptor and Src kinase

� Changes in GluA2 are mediated by changes in Src,
GluN2B, MAP kinase p38, and PKCζ

� Changes in GluA1 are mediated by changes in Src,
GluN2B, CaMKII, and PKCδ

Background
Patients with chronic liver diseases (cirrhosis, hepatitis...)
may present hepatic encephalopathy with cognitive and
motor alterations including attention deficits, mild cogni-
tive impairment, and reduced spatial memory [1–4].
Hyperammonemia and inflammation are the main
contributors to the neurological alterations in hepatic
encephalopathy [5, 6]. Rats with chronic hyperammonemia
similar to that present in patients with liver cirrhosis also
show cognitive alterations, including impaired spatial
learning and memory [7, 8]. Chronic hyperammonemia
per se induces neuroinflammation, which mediates the
cognitive alterations in rats [8, 9]. Neuroinflammation is
also a main contributor to cognitive deficits in many
chronic (e.g., cirrhosis, diabetes), mental (e.g., schizophre-
nia), and neurodegenerative (e.g., Alzheimer’s) diseases and
in situations such as post-operative cognitive dysfunction
or aging [10–15]. Neuroinflammation-induced cognitive
impairment is therefore a highly and increasingly prevalent
situation with serious health, social, and economic conse-
quences. Neuroinflammation alters cognitive function by
altering neurotransmission [15, 16]. The mechanisms by
which neuroinflammation alters neurotransmission may
share common aspects in different pathologies. Unveiling
these mechanisms may provide therefore the bases to de-
sign new therapeutic approaches which could be applied
in different highly prevalent pathologies.
Neuroinflammation impairs spatial learning by mecha-

nisms which are beginning to be unveiled.
Sustained expression of IL-1β in hippocampus impairs

spatial learning and memory [17, 18].
Spatial learning is mainly modulated by NMDA and

AMPA receptors for glutamate in hippocampus [19, 20].
A main mechanism modulating glutamatergic neurotrans-
mission and synaptic plasticity in hippocampus is the
modulation of membrane expression of AMPA receptors,
which is mainly mediated by changes in phosphorylation
of the GluA1 subunit in Ser831 and Ser845 and of the
GluA2 in Ser880 [21–26].
Neuroinflammation alters membrane expression of

glutamate (AMPA, NMDA) and GABA receptors in

hippocampus and impairs spatial learning [17, 27, 28].
Lai et al. [29] showed that exposure to IL-1β reduces
phosphorylation in Ser831 and membrane expression of
GluA1 in hippocampal neurons and this was prevented
by IL-1Ra, an antagonist of IL-1 receptors. Machado
et al. [30] also found that IL-1β reduced phosphorylation
of GluA1 subunit at Ser831 and Ser845 60 min after
contextual fear memory reactivation and that intra-
hippocampal administration of IL-1β after memory re-
activation also induced a decrease in surface expression
and total expression of GluA1.
We have recently proposed that impaired spatial learn-

ing and memory in rats with hepatic encephalopathy
due to portacaval shunts would be due to the increased
levels of IL-1β in hippocampus [28]. We have also
shown that both rats with hepatic encephalopathy and
rats with hyperammonemia without liver failure show
neuroinflammation, with increased levels of IL-1β and
other pro-inflammatory markers, and altered membrane
expression of AMPA receptor subunits GluA1 and
GluA2 in hippocampus [7, 28, 31].
We hypothesize that hyperammonemia-induced in-

crease in IL-1β in hippocampus would be responsible
for the altered membrane expression of GluA1 and
GluA2 subunits of AMPA receptors. The aims of this
work were to (1) assess if increased IL-1β levels and acti-
vation of its receptor (IL-1R) are responsible for the
changes in GluA1 and/or GluA2 membrane expression
in hyperammonemia and (2) identify the mechanisms by
which activation of IL-1R leads to altered membrane
expression of GluA1 and GluA2.
The model of chronic hyperammonemia in rats used

consisted in administering them an ammonium-
containing diet as described in [32]. Membrane expres-
sion and phosphorylation of the GluA1 and GluA2 were
analyzed in freshly isolated hippocampal slices from
control and hyperammonemic rats. To assess the role of
IL-1β in the changes in GluA1 and GluA2, we tested
whether blocking the IL-1β receptor with the endogen-
ous antagonist IL-1Ra reverses these changes. We also
analyzed the intracellular pathways mediating the effects
of IL-1β by assessing the effects of modulating different
steps on GluA1 and GluA2 phosphorylation and
membrane expression.

Methods
Model of chronic hyperammonemia
Male Wistar rats (120–140 g at the beginning of the
diet, Charles River Laboratories, Barcelona, Spain) were
made hyperammonemic by feeding them a diet contain-
ing standard diet supplemented with ammonium acetate
as in [32]. In the present work, the diet contained 25%
of ammonium acetate instead of 20% as in [32]. This
change was made because now we house the rats in
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ventilated racks which were not used in [32]. These
racks extract some ammonia, and the increase in ammo-
nium acetate in the diet was necessary to reproduce the
ammonia levels in blood obtained previously in
un-ventilated cages using 20% ammonium acetate. The
ammonium-containing diet was prepared as described in
[33] (but using 25% ammonium acetate) and increased
blood ammonia levels around threefold, an increase
similar to that found in patients with liver cirrhosis. Rats
remain hyperammonemic for long periods of time and
reproduce many cognitive and motor alterations present
in cirrhotic patients with hepatic encephalopathy and has
allowed identifying some underlying mechanisms [7–9,
34–36]. Experiments were performed after 4–5 weeks in
the ammonium diet, when the rats are 10–11 weeks old.
The experiments were approved by the the Comite de
Etica y Bienestar en Experimentacion Animal, Prince
Felipe Research Center-Consellería de Agricultura, Gener-
alitat Valenciana, and carried out in accordance with the
European Communities Council Directive (86/609/EEC).

Analysis of protein content and phosphorylation in
hippocampal slices by western blot
In each experiment, four rats (two control and two
hyperammonemic rats) were decapitated at 4–5 weeks
of hyperammonemia and their brains quickly transferred
to a plate where they were carefully dissected, separating
the two hemispheres by cutting through the midline and
extracting both hippocampi using thin spatulas. Once
dissected, hippocampi were immersed immediately into
ice-cold Krebs buffer (in mmol/L): NaCl 119, KCl 2.5,
KH2PO4 1, NaHCO3 26.2, CaCl2 2.5, and glucose 11,
aerated with 95% O2 and 5% CO2 at pH 7.4. After that,
hippocampi were placed longitudinally on a manual
chopper and cut to obtain transverse slices (400 μm).
Slices were transferred to incubation wells (15 slices in
each well, from the two rats per group) without any
distinction between dorsal or ventral hippocampus and
incubated for 20 min at 35.5 °C in Krebs buffer for
stabilization. One hundred nanogram per millileter of
IL1Ra (R&D Systems cat# 1545-RA-025, Minneapolis,
USA), 100 μM ifenprodil (Abcam cat# ab120111, Cam-
bridge, MA), 20 μM SB239063 (Tocris cat# 1962, Bristol,
UK), 10 μM rottlerin (Sigma cat# R5648, Darmstadt,
Germany), or 10 μM PP2 (Sigma cat# P0042, Darmstadt,
Germany) was added to the incubation buffer during
30 min to specifically inhibit IL-1 receptor, GluN2B,
p38, PKCδ, and Src activities, respectively. After the
treatments, slices were collected and homogenized by
sonication for 20 s in a buffer (Tris-HCl 66 mM pH 7.4,
SDS 1%, EGTA 1 mM, glycerol 10%, leupeptin 0.2 mg/
mL, NaF 1 mM, Na orto-vanadate 1 mM). Samples were
subjected to immunoblotting as in Felipo et al. [37],
using antibodies against IL-1β (1:500, cat# AF-501-NA)

from R&D Systems; Src (1:1000, cat# ab47405), Src
phosphorylated at Tyr416 (1:1000, cat# ab40660), GluN2B
phosphorylated at Ser1303 (1:1000, cat# ab81271), GluA2
phosphorylated at Ser880 (1:2000, cat# ab52180), and PKCζ
phosphorylated at Thr560 (1:1000, cat# ab59412) from
Abcam; GluN2B (1:1000, cat# 06-600), GluN2B phosphory-
lated at Tyr1472 (1:1000, cat# AB5403), GluA1 (1:1000,
cat# 04-855), GluA1 phosphorylated at Ser831 (1:1000, cat#
04-823), and GluA2 (1:2000, cat# AB1768) from Millipore
(Darmstadt, Germany); p38 (1:1000, cat# 9212) and p38
phosphorylated at Thr180/Tyr182 (1:500, cat# 9211) from
Cell Signaling (Leiden, Netherlands); and PKCζ (1:2000,
cat# sc-17,781) from Santa Cruz (Dallas, TX). As a control
for protein loading, the same membranes used to quantify
the amount of proteins were incubated with an antibody
against Actin (1:5000, cat# ab6276) from Abcam. Secondary
antibodies were anti-rabbit (cat# A8025), anti-goat (cat#
A7650), or anti-mouse (cat# A3562) IgG, 1:4000 dilution
conjugated with alkaline phosphatase from Sigma (St.
Louis, MO). The images were captured using the ScanJet
5300C (Hewlett-Packard, Amsterdam, Netherlands), and
band intensities quantified using the Alpha Imager 2200,
version 3.1.2 (AlphaInnotech Corporation, San Francisco).
Phosphorylation levels were normalized to the total amount
of the respective proteins.

Analysis of surface expression of receptors or CaMKII by
cross-linking with BS3
Membrane surface expression of the GluA1 and GluA2
subunits of AMPA receptors, GluN2B subunit of NMDA
receptors, and CaMKII (1:1000 primary antibody from
Thermo Fisher cat# MA1-048, Waltham, MA) in whole
hippocampal slices was analyzed at 4–5 weeks of hyper-
ammonemia as described by Boudreau and Wolf [38], by
cross-linking with BS3 (bis(sulfosuccinimidyl) suberate,
Pierce cat# 21580, Rockford, IL). After the treatments
(see above), slices were added to tubes containing
ice-cold Krebs buffer with or without 2 mM BS3 and
incubated for 30 min at 4 °C with gentle shacking.
Cross-linking was terminated by quenching the reaction
with 100 mM glycine (10 min, 4 °C). The slices were
homogenized by sonication for 20 s. Samples treated or
not with BS3 were analyzed by western blot as describe
above. The surface expression of each subunit was calcu-
lated as the difference between the intensity of the bands
without BS3 (total protein) and with BS3 (non-mem-
brane protein) as described by Cabrera-Pastor et al. [39].

Statistical analysis
Results are expressed as mean ± standard error. All statis-
tical analyses were performed using the software program
GraphPad Prism. Normality was assessed using the
D’Agostino and Pearson Omnibus test and the Shapiro-
Wilk normality tests. Differences in variances of normally
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distributed data were assessed using Bartlett’s test. Data
were analyzed by a parametric two-way analysis of
variance (ANOVA) followed by Bonferroni’s post hoc test
to determine the individual and interaction effects be-
tween hyperammonemia and/or treatments on membrane
expression and phosphorylation levels of proteins [40]. A
confidence level of 95% was accepted as significant.

Results
Hyperammonemia alters membrane expression and
phosphorylation of the GluA1 and GluA2 subunits of
AMPA receptors in hippocampus
Membrane expression of the GluA1 and GluA2 subunits
of AMPA receptors was altered in opposite ways in
hippocampus of hyperammonemic rats. Membrane
expression of GluA1 was reduced (p < 0.05) to 86 ± 6%
in control rats (Fig. 1a), while membrane expression of

GluA2 was increased (p < 0.001) to 136 ± 7% in control
rats (Fig. 1b).
Changes in membrane expression were associated with

changes in phosphorylation. Phosphorylation of GluA1
in Ser831 was reduced (p < 0.001) in hyperammonemic
rats to 73 ± 7% in control rats (Fig. 1c), and phosphoryl-
ation of GluA2 in Ser880 was reduced (p < 0.05) to 84 ±
4% in control rats (Fig. 1d).

Enhanced activation of IL-1β receptor mediates the
changes in membrane expression and phosphorylation of
GluA1 and GluA2 in hyperammonemic rats
As it has been shown that IL-1β modulates membrane
expression of AMPA receptors, we assessed its possible
contribution to the effects of hyperammonemia. In
hyperammonemic rats, the content of IL-1β in hippocam-
pus was increased to 129 ± 8% in control rats (p < 0.05).

Fig. 1 Blocking IL-1 receptor with IL-1Ra normalizes both phosphorylation and membrane expression of the GluA1 and GluA2 subunits in
hyperammonemic rats. IL-1Ra, an antagonist of IL-1 receptor, was added to hippocampal slices. Membrane expression of GluA1 (a) and GluA2
(b) subunits and phosphorylation of GluA1 at Ser831 (c) and of GluA2 at Ser880 (d) were analyzed as described in the “Methods” section. Values
are expressed as percentage of basal levels in control rats and are the mean ± SEM of 24, 34, 31, and 18 rats per group in a, b, c, and d respectively.
Data were analyzed by two-way ANOVA. In a, F (1, 92) = 0.004596 for effect of HA, p = 0.9461; F (1, 92) = 11.77 for effect of IL1Ra, p = 0.0009; and F (1,
92) = 0.0368 for interaction, p = 0.0368. In b, F (1, 132) = 4.893 for effect of HA, p = 0.0287; F (1, 132) = 41.17 for effect of IL1Ra, p < 0.0001; and F (1, 132)
= 9.953 for interaction, p = 0.0020. In c, F (1, 118) = 1.122 for effect of HA, p = 0.2915; F (1, 118) = 11.24 for effect of IL1Ra, p < 0.0001; and F (1, 118) =
15.73 for interaction, p = 0.0001. In d, F (1, 68) = 1.028 for effect of HA, p = 0.3142; F (1, 68) = 4.783 for effect of IL1Ra, p = 0.0322; and F (1, 68) = 22.11 for
interaction, p < 0.0001. Values significantly different from control rats are indicated by asterisk and from hyperammonemic rats are indicated by “a”.
Bonferroni post-test: *p < 0.05, ***p < 0.001, aaap < 0.001
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To assess if changes in membrane expression of GluA1
and GluA2 are due to enhanced activation of IL-1 recep-
tor, we tested if blocking this receptor with the endogen-
ous antagonist IL-1Ra reverses these changes. Perfusion of
IL-1Ra increased (p < 0.001) membrane expression of
GluA1 in hippocampal slices of hyperammonemic rats,
reaching 124 ± 7% in control rats (Fig. 1a), in parallel with
an increase (p < 0.001) of phosphorylation of GluA1 in
Ser831 to 140 ± 16% in control rats (Fig. 1c).
IL-1Ra reduced (p < 0.001) membrane expression of

GluA2 to the same levels in control rats (Fig. 1b) in
parallel with a normalization of phosphorylation of
GluA2 at Ser880 (Fig. 1d).
These data show that blocking IL-1 receptor with IL-

1Ra reverses the changes induced by hyperammonemia
on GluA1 and GluA2 phosphorylation and membrane
expression, suggesting that enhanced activation of IL-1
receptor is responsible for these alterations in hippocam-
pus of hyperammonemic rats.

Activation of Src kinase mediates the effects of IL-1β on
GluA1 and GluA2
We then looked for the intracellular pathways mediating
the changes in membrane expression induced by enhanced
activation of IL-1Ra. As activation of IL-1 receptor leads
often to increased phosphorylation and activity of Src
kinase [41], we tested whether it is increased in hyperam-
monemic rats. Phosphorylation of Src at Tyr416 is
increased (p < 0.05) in hyperammonemic rats to 118 ± 8%
in control rats, and blocking IL-1 receptor with IL-1Ra
normalizes it, returning to 77 ± 13% in control rats
(Fig. 2a).
To assess if enhanced activation of Src mediates the

changes in membrane expression of GluA1 and GluA2
in hyperammonemic rats, we tested if inhibiting Src with
PP2 reverses these changes.
Perfusion of PP2 increased (p < 0.001) membrane ex-

pression of GluA1 in hippocampal slices of hyperammo-
nemic rats, reaching 134 ± 20% in control rats (Fig. 2b), in
parallel with an increase (p < 0.05) of phosphorylation of
GluA1 in Ser831 to 103 ± 13% in control rats (Fig. 2c).
PP2 reduced (p < 0.001) membrane expression of GluA2

to the same levels in control rats (Fig. 2d) in parallel with an
increase of phosphorylation of GluA2 at Ser880 (Fig. 2e).
These data suggest that enhanced activation of Src

contributes to altered phosphorylation and membrane
expression of GluA1 and GluA2 in hippocampus of
hyperammonemic rats.

GluN2B, p38, and PKCζ mediate the effects of IL-1β and
Src on GluA2 but not on GluA1
On the bases of the knowledge in the literature (see the
“Discussion” section), we hypothesized that Src would
be altering GluA1 and GluA2 membrane expression by

modulating the GluN2B subunit of NMDA receptors.
Src phosphorylates GluN2B at Tyr1472 and this
increases its membrane expression [42].
As shown in Fig. 3, hyperammonemia increases phos-

phorylation (p < 0.05) of GluN2B at Tyr1472 to 122 ± 10%
in control rats (Fig. 3a) and membrane expression (p <
0.001) of GluN2B to 151 ± 10% in control rats (Fig. 3b).
Blocking IL-1 receptor with IL-1Ra normalized both

phosphorylation (Fig. 3a) and membrane expression
(Fig. 3b) of GluN2B in hyperammonemic rats.
Similar effects were obtained in experiments using the

Src inhibitor PP2, which normalized both phosphoryl-
ation (Fig. 3c) and membrane expression (Fig. 3d) of
GluN2B in hyperammonemic rats.
These data support that enhanced activation of IL-1

receptor in hyperammonemia leads to increased activity of
Src which phosphorylates and enhances membrane expres-
sion of GluN2B.
It has been reported that enhanced membrane expres-

sion of GluN2B leads to enhanced phosphorylation and
activity of the MAP kinase p38 [43]. We therefore
assessed whether phosphorylation of p38 was increased
in hippocampus of hyperammonemic rats. Phosphoryl-
ation of p38 was increased (p < 0.05) to 124 ± 10% in
control rats (Fig. 4) and was normalized by treatment
with IL-1Ra (Fig. 4a), the Src inhibitor PP2 (Fig. 4b), or
with ifenprodil (Fig. 4c), a selective antagonist of NMDA
receptors containing the GluN2B subunit [44].
To assess if enhanced activation of p38 mediates the

changes in membrane expression of GluA1 and GluA2
in hyperammonemic rats, we tested if inhibiting p38
with SB239063 reverses these changes.
Perfusion of SB239063 reduced (p < 0.01) membrane

expression of GluA2 to the same levels in control rats
(Fig. 4d) in parallel with an increase of phosphorylation
of GluA2 at Ser880 (Fig. 4e). However, SB239063 did
not normalized phosphorylation (Fig. 4g) or membrane
expression (Fig. 4f ) of the GluA1 subunit.
These data suggest that enhanced activation of p38

contributes to altered phosphorylation and membrane
expression of GluA2 but not of GluA1in hippocampus
of hyperammonemic rats.
The GluA2 subunit is phosphorylated at Ser880 by

protein kinase C (PKC) [45]. The above data suggest that
enhanced p38 activity would reduce the activity of some
isoform of PKC, resulting in reduced phosphorylation of
Ser880 and increased membrane expression of GluA2. It
has been shown that activated p38 binds to PKCζ and
this prevents auto-phosphorylation of PKCζ at Thr560,
thus reducing its activity [46].
We therefore tested whether phosphorylation of PKCζ

at Thr560 is altered in hyperammonemic rats. As shown
in Fig. 5, phosphorylation of PKCζ at Thr560 was reduced
(p < 0.05) to 83 ± 6% in control rats and was normalized
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by treatment with IL-1Ra (Fig. 5a), the Src inhibitor PP2
(Fig. 5b), or by blocking GluN2B with ifenprodil (Fig. 5c).
Altogether, the above data allow proposing the path-

way shown in Fig. 6a for the mechanism by which
hyperammonemia increases membrane expression of the
GluA2 subunit of AMPA receptors in hippocampus.
Hyperammonemia increases IL-1β, enhancing activation
of IL-1 receptor. This leads to activation of Src, reflected
in increased phosphorylation of Tyr416. Src in turn
enhances phosphorylation of GluN2B at Tyr14721 and

membrane expression of GluN2B, which leads to activa-
tion of p38. Activated p38 binds to and reduces
phosphorylation at Thr560 and activity of PKCζ, thus
resulting in reduced phosphorylation at Ser880 and
enhanced membrane expression of GluA2.

CaMKII and PKCδ mediate the effects of IL-1β and Src
on GluA1
The above results show that changes in phosphorylation
at Ser831 and in membrane expression of GluA1 are

Fig. 2 IL-1 receptor-mediated activation of Src leads to the alterations in membrane expression and phosphorylation of GluA1 and GluA2 subunit
in hyperammonemic rats. IL-1Ra or PP2, an inhibitor of Src kinase, were added to hippocampal slices. Phosphorylation of Src at Tyr416 (a), of
GluA1 at Ser831 (c), of GluA2 at Ser880 (e), and membrane expression of GluA1 (b) and GluA2 (d) were analyzed as described in the “Methods”
section. Values are expressed as percentage of basal levels in control rats and are the mean ± SEM of 24, 22, 33, 32, and 18 rats per group in
a, b, c, d, and e respectively. Data were analyzed by two-way ANOVA. In a, F (1, 92) = 0.005730 for effect of HA, p = 0.9398; F (1, 92) = 5.434 for
effect of IL1Ra, p = 0.0219; and F (1, 92) = 3.058 for interaction, p = 0.0837. In b, F (1, 83) = 1.361 for effect of HA, p = 0.2466; F (1, 83) = 9.148 for
effect of PP2, p = 0.0033; and F (1, 83) = 8.418 for interaction, p = 0.0048. In c, F (1, 127) = 4.230 for effect of HA, p = 0.0418; F (1, 127) = 5.912 for
effect of PP2, p = 0.0164; and F (1, 127) = 2.146 for interaction, p = 0.1454. In d, F (1, 123) = 1.545 for effect of HA, p = 0.2162; F (1, 123) = 8.038 for
effect of PP2, p = 0.0054; and F (1, 123) = 11.17 for interaction, p = 0.0011. In e, F (1, 68) = 7.756 for effect of HA, p = 0.0069; F (1, 68) = 7.864 for
effect of PP2, p = 0.0066; and F (1, 68) = 44.50 for interaction, p < 0.0001. Values significantly different from control rats are indicated by asterisk
and from hyperammonemic rats are indicated by “a”. Bonferroni post-test: *p < 0.05, **p < 0.01, ***p < 0.001, ap < 0.05, aaap < 0.001
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also mediated by enhanced activation of IL-1 receptor
and of Src, but not by the p38-PKC pathway. As Ser831
may be phosphorylated by PKC or by CaMKII [47, 48],
we hypothesized that changes in GluA1 would be medi-
ated by CaMKII.
We then assessed if hyperammonemic alters the

amount of CaMKII in the membrane. The amount of
CaMKII in the membrane is strongly reduced (p < 0.01)
in membrane of hippocampal slices from hyperammone-
mic rats, to 54 ± 10% in control rats (Fig. 7). Moreover,
this decrease is reversed by treatment with IL-1Ra
(Fig. 7a) or by inhibiting Src with PP2 (Fig. 7b).
One of the mechanisms of modulation of membrane

expression of CaMKII is phosphorylation of GluN2B at
Ser1303. Enhancing this phosphorylation reduces mem-
brane expression of CaMKII [49]. Phosphorylation of
GluN2B at Ser1303 is increased in hyperammonemic rats
(Fig. 7c, d). Moreover, blocking IL-1 receptor with IL-1Ra

(Fig. 7c) or inhibiting Src with PP2 (Fig. 7d) normalizes
phosphorylation of GluN2B at Ser1303. This suggests that
increased phosphorylation of GluN2B at Ser1303 in
hyperammonemic rats leads to reduced membrane ex-
pression of CaMKII which, in turn, reduces phosphoryl-
ation at Ser831 and membrane expression of GluA1.
Increased phosphorylation of GluN2B at Sr1303 is

mediated by IL-1 receptor and by Src. However, Src is a
tyrosine kinase, and may not phosphorylate Ser residues.
This suggests that a serine-threonine kinase would
mediate the effects of Src on phosphorylation of GluN2B
at Ser1303 [50]. It has been reported that Src phosphor-
ylates PKCδ at Tyr311, enhancing its activity [51].
To assess if increased activity of PKCδ mediates the in-

crease in phosphorylation of GluN2B at Ser1303 in hyper-
ammonemic rats, we analyzed whether a specific inhibitor
of PKCδ (rottlerin) reverses this increase. Treatment with
rottlerin completely reversed the increase in

Fig. 3 IL-1 receptor and Src activation lead to increased phosphorylation at Tyr1472 and membrane expression of the GluN2B subunit in
hyperammonemic rats. IL-1Ra or PP2, an inhibitor of Src kinase, were added to hippocampal slices. Phosphorylation of GluN2B at Tyr1472
(a, c) and membrane expression of GluN2B (b, d) were analyzed as described in the “Methods” section. Values are expressed as percentage of
basal levels in control rats and are the mean ± SEM of 27, 37, 28, and 37 rats per group in a, b, c, and d respectively. Data were analyzed by
two-way ANOVA. In a, F (1, 104) = 0.3170 for effect of HA, p = 0.5746; F (1, 104) = 5.592 for effect of IL-1Ra, p = 0.0199; and F (1, 104) = 9.208 for
interaction, p = 0.0030. In b, F (1, 143) = 3.642 for effect of HA, p = 0.0583; F (1, 143) = 10.33 for effect of IL-1Ra, p = 0.0016; and F (1, 143) = 9.704
for interaction, p = 0.0022. In c, F (1, 106) = 1.727 for effect of HA, p = 0.1917; F (1, 106) = 6.991 for effect of PP2, p = 0.0094; and F (1, 106) = 1.457
for interaction, p = 0.2302. In d, F (1, 143) = 8.814 for effect of HA, p = 0.0035; F (1, 143) = 5.432 for effect of PP2, p = 0.0212; and F (1, 143) = 4.963
for interaction, p = 0.0275. Values significantly different from control rats are indicated by asterisk and from hyperammonemic rats are indicated
by “a”. Bonferroni post-test: *p < 0.05, ***p < 0.001, ap < 0.05, aap < 0.01, aaap < 0.001
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phosphorylation of GluN2B at Ser1303 in hyperammone-
mic rats (Fig. 8a). Moreover, rottlerin also increased mem-
brane expression of CaMKII (Fig. 8b) even above (178 ±
75%) in control rats. The increase of CaMKII in the mem-
brane was associated with an increase, also above con-
trol rats, of phosphorylation of GluA1 at Ser831 (142
± 11% in controls, Fig. 8c) and of membrane expres-
sion of GluA1 (140 ± 37% in controls, Fig. 8d).
The above data allow proposing the pathway shown in

Fig. 6b for the mechanism by which hyperammonemia
reduces membrane expression of the GluA1 in

hippocampus. Hyperammonemia increases IL-1β, en-
hancing activation of IL-1 receptor. This leads to activa-
tion of Src, reflected in increased phosphorylation of
Tyr416. Src in turn activates PKCδ which enhances
phosphorylation of GluN2B at Ser1303, reducing mem-
brane expression of CaMKII and phosphorylation at
Ser831 and membrane expression of GluA1.

Discussion
There is increasing evidence that many pathological
situations, including neurodegenerative and chronic

Fig. 4 IL-1 receptor, Src, and GluN2B-mediated activation of p38 leads to the alterations in membrane expression and phosphorylation of the
GluA2 but not of the GluA1 subunit in hyperammonemic rats. IL-1Ra, PP2, SB239063, an inhibitor of p38 MAP-kinase, or ifenprodil, an antagonist
of GluN2B-containing NMDA receptors, were added to hippocampal slices. Phosphorylation of p38 (a, b, c), GluA1 at Ser831 (g), and GluA2 at
Ser880 (e) and membrane expression of GluA1 (f) and GluA2 (d) subunits were analyzed as described in the “Methods” section. Values are expressed as
percentage of basal levels in control rats and are the mean ± SEM of 18, 16, 20, 30, 17, 22, and 29 rats per group in a, b, c, d, e, f, and g respectively. Data
were analyzed by two-way ANOVA. In a, F (1, 66) = 0.004793 for effect of HA, p = 0.9450; F (1, 66) = 23.42 for effect of IL-1Ra, p < 0.0001; and F (1, 66) =
6.695 for interaction, p = 0.0119. In b, F (1, 59) = 0.02867 for effect of HA, p = 0.8661; F (1, 59) = 6.959 for effect of PP2, p = 0.0106; and F (1, 59) = 4.611 for
interaction, p = 0.0359. In c, F (1, 76) = 2.894 for effect of HA, p = 0.0930; F (1, 76) = 7.961 for effect of ifenprodil, p = 0.0061; and F (1, 76) =
1.682 for interaction, p = 0.1985. In d, F (1, 116) = 4.486 for effect of HA, p = 0.0363; F (1, 116) = 7.577 for effect of SB239063, p = 0.0069; and F
(1, 116) = 2.616 for interaction, p = 0.1085. In e, F (1, 64) = 0.2959 for effect of HA, p = 0.5883; F (1, 64) = 26.34 for effect of SB239063, p < 0.0001;
and F (1, 64) = 10.08 for interaction, p = 0.0023. In f, F (1, 83) = 0.006480 for effect of HA, p = 0.9360; F (1, 83) = 0.1665 for effect of SB239063,
p = 0.6843; and F (1, 83) = 2.228 for interaction, p = 0.1393. In g, F (1, 110) = 6.864 for effect of HA, p = 0.0100; F (1, 110) = 0.9431 for effect of
SB239063, p = 0.3336; and F (1, 110) = 0.001793 for interaction, p = 0.9663. Values significantly different from control rats are indicated by asterisk and
from hyperammonemic rats are indicated by “a”. Bonferroni post-test: *p < 0.05, ***p < 0.001, ap < 0.05, aap < 0.01, aaap < 0.001

Taoro-Gonzalez et al. Journal of Neuroinflammation  (2018) 15:36 Page 8 of 15



diseases, lead to neuroinflammation which, in turn, is a
main contributor to cognitive impairment in these
situations. Neuroinflammation would impair cognitive
function by altering neurotransmission. Unveiling the
mechanisms by which neuroinflammation alters neuro-
transmission would allow identifying pathways and
therapeutic targets to try to reverse the alterations in
neurotransmission and therefore in cognitive function in
different pathological situations.
In this study, we have identified two pathways by

which neuroinflammation alters membrane expression
of the GluA2 and GluA1 subunits of AMPA receptors,
respectively, in hippocampus of hyperammonemic rats.
It is shown that hyperammonemia increases IL-1β and
activation of its receptor, leading to activation of Src
which increases phosphorylation at Tyr1472 and mem-
brane expression of GluN2B, which leads to activation
of p38. Activated p38 binds to and reduces phosphoryl-
ation at Thr560 and activity of PKCζ. This is associated
with reduced phosphorylation of GluA2 at Ser880 and
enhanced membrane expression of GluA2. On the other
hand, activated Src also increases phosphorylation of
PKCδ which enhances phosphorylation of GluN2B at
Ser1303, reducing membrane expression of CaMKII
and phosphorylation at Ser831 and membrane expres-
sion of GluA1.
Modulation of the membrane expression of AMPA

receptors plays a main role in synaptic plasticity in
hippocampus [52]. Long-term potentiation (LTP) is
mediated by enhanced and long-term depression (LTD)
by reduced membrane expression of AMPA receptors
[53, 54]. LTP in hippocampus is considered the bases for

spatial learning and memory [55]. Both LTP in hippo-
campus [56] and spatial learning and memory [7] are
impaired in hyperammonemic rats. Altered modulation
of GluA1 and GluA2 membrane expression in hyperam-
monemic rats would be a main contributor to the
impairment of LTP and spatial learning.
We show here that the alterations in membrane ex-

pression of GluA1 and GluA2 in hyperammonemic rats
are a consequence of neuroinflammation and of
enhanced activation of IL-1 receptor by increased levels
of IL-1β. It has been already shown that high levels of
IL-1β impair LTP [57]. Altogether, these data support
that in hyperammonemic rats, (and likely in other
pathological situations) increased levels of IL-1β in
hippocampus alter membrane expression of GluA1 and
GluA2 subunits of AMPA receptors, which would lead
to impairment of LTP and of spatial learning and
memory.
We also identify the intracellular signal transduction

pathways by which activation of IL-1 receptor leads to
changes in phosphorylation and to opposite effects
on membrane expression of GluA1 and GluA2.
These pathways are presented in Fig. 6 and in the
graphical abstract.
Hyperammonemia increases IL-1β, enhancing activa-

tion of IL-1 receptor. This leads to activation of Src,
reflected in increased phosphorylation of Tyr416. These
steps are common to the pathways leading to altered
membrane expression of the GluA1 and GluA2 subunits.
The changes in membrane expression of both GluA1
and GluA2 are reversed by blocking the IL-1 receptor
with IL-1Ra or by inhibiting Src with PP2, thus

Fig. 5 Enhanced activation of IL-1 receptor, Src, and GluN2B-containing NMDA receptors leads to reduced phosphorylation of PKCζ at Thr560 in
hyperammonemic rats. IL-1Ra, PP2, or ifenprodil were added to hippocampal slices. Phosphorylation of PKCζ at Thr560 was analyzed as described
in the “Methods” section. Values are expressed as percentage of basal levels in control rats and are the mean ± SEM of 15 rats per group in
a, b, and c. Data were analyzed by two-way ANOVA. In a, F (1, 55) = 1.077 for effect of HA, p = 0.3039; F (1, 55) = 1.220 for effect of IL-1Ra, p =
0.2742; and F (1, 55) = 14.93 for interaction, p = 0.0003. In b, F (1, 56) = 2.647 for effect of HA, p = 0.1093; F (1, 56) = 15.57 for effect of PP2, p =
0.0002; and F (1, 56) = 1.630 for interaction, p = 0.2069. In c, F (1, 55) = 10.21 for effect of HA, p = 0.0023; F (1, 55) = 30.59 for effect of ifenprodil,
p < 0.0001; and F (1, 55) = 0.2520 for interaction, p = 0.6177. Values significantly different from control rats are indicated by asterisk and from
hyperammonemic rats are indicated by “a”. Bonferroni post-test: *p < 0.05, ***p < 0.001, aap < 0.01
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confirming the contribution of these steps to the
changes in membrane expression.
However, after Src activation, the pathways diverge.

The enhanced activity of Src in hyperammonemic rats
results in increased phosphorylation of GluN2B at
Tyr1472 and membrane expression of GluN2B, which
leads to activation of p38. Activated p38 binds to and re-
duces phosphorylation at Thr560 and activity of PKCζ,
thus resulting in reduced phosphorylation at Ser880 and
enhanced membrane expression of GluA2 (Fig. 6a). The
changes in membrane expression of GluA2 are reversed
by blocking the GluN2B-containing NMDA receptors
with ifenprodil or inhibiting p38 with SB239063, thus
confirming the contribution of these steps to the

changes in membrane expression of GluA2 (Fig. 6a).
Some reports in the literature support the existence of
the steps proposed in Fig. 6a. It has been already shown
that Src phosphorylates GluN2B at Tyr1472 and this in-
creases its membrane expression [42] that enhanced
membrane expression of GluN2B leads to enhanced
phosphorylation and activity of the MAP kinase p38 [43]
and that activated p38 binds to PKCζ and this prevents
auto-phosphorylation of PKCζ at Thr560, thus reducing
its activity [46]. We show here that all these steps are in-
duced sequentially in hyperammonemic rats by activa-
tion of IL-1 receptor, leading to increased membrane
expression of GluA2.
Moreover, these steps would occur in neurons and not

in astrocytes. This is supported by the report of Sriniva-
san et al. [58], who showed that IL-1β activates the p38
signaling pathway in hippocampal neurons, in contrast
to the activation of NF-kB in hippocampal astrocytes,
demonstrating cell type-specific signaling responses to
IL-1 in the brain and yielding distinct functional
responses. However, Srinivasan et al. [58] did not tested
if activation of p38 by IL-1β is a direct effect or it is
mediated by some previous steps. We show here that in-
creased phosphorylation of p38 is reduced by blocking
the IL-1 receptor, by inhibiting Src, or by blocking the
NR2B subunit of NMDA receptors, supporting that acti-
vation of p38 by IL-1β is mediated by Src and NR2B.
Altered membrane expression of GluA1 is also medi-

ated by activation of IL-1 receptor and Src, but after this
step, the pathway is different than for GluA2. Increased
activity of Src in hyperammonemic rats also activates
PKCδ which enhances phosphorylation of GluN2B at
Ser1303, reducing membrane expression of CaMKII and
phosphorylation at Ser831 and membrane expression of
GluA1. These changes are reversed by blocking the IL-1
receptor with IL-1Ra and by inhibiting Src with PP2 or
PKCδ with rottlerin, thus supporting the contribution of
the pathway depicted in Fig. 6b in the changes in mem-
brane expression of GluA1. Some reports in the litera-
ture support the existence of the steps proposed in
Fig. 6b. It has already been reported that Src phosphory-
lates PKCδ at Tyr311, enhancing its activity [59], and
that enhancing phosphorylation GluN2B at Ser1303
reduces membrane expression of CaMKII [49]. We show
here that all these steps are induced sequentially in
hyperammonemic rats by activation of IL-1 receptor,
leading to reduced membrane expression of GluA1.
We show that the steps of the pathway summarized in

Fig. 6a are induced sequentially in hyperammonemic rats
by activation of IL-1 receptor, leading to increased mem-
brane expression of GluA2. Blocking IL-1β receptor pre-
vents all subsequent steps, indicating that this activation
is in the origin of the pathway activation. Inhibiting Src
with PP2 prevents changes in phosphorylation and

Fig. 6 Scheme showing the proposed mechanisms for the IL-1β-
induced alterations in membrane expression of GluA2 and GluA1
subunits of AMPA receptor in hippocampus of hyperammonemic
rats. Hyperammonemia increases IL-1β, enhancing activation of IL-1
receptor. This leads to activation of Src, reflected in increased
phosphorylation of Tyr416. a Src in turn enhances phosphorylation at
Tyr1472 and membrane expression of GluN2B, which leads to activation
of p38. Activated p38 binds to and reduces phosphorylation at Thr560
and activity of PKCζ, thus resulting in reduced phosphorylation at Ser880
and enhanced membrane expression of GluA2. b Src also activates PKCδ
which enhances phosphorylation of GluN2B at Ser1303, reducing
membrane expression of CaMKII and phosphorylation at Ser831 and
membrane expression of GluA1
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membrane expression of NR2B, in phosphorylation of
p38 and of PKCζ and phosphorylation and membrane
expression of GluA2, indicating that activation of Src
precedes all these steps. Similarly, blocking NR2B with
ifenprodil prevents changes in phosphorylation of p38
and of PKCζ and phosphorylation and membrane
expression of GluA2, indicating that changes in NR2B
precede these steps. Finally, inhibiting p38 with
SB239063 prevents changes in phosphorylation and
membrane expression of GluA2. Altogether, these results
show that the hyperammonemia induces sequential acti-
vation of the pathway depicted in Fig. 6a to modulate
membrane expression of GluA2. Similarly, hyperammo-
nemia induces sequential activation of the pathway
depicted in Fig. 6b to modulate membrane expression of
GluA1. Although the activation of these pathways occurs
sequentially, it occurs very rapidly. The phosphorylation
and membrane expression of GluA1 and GluA2 AMPA
receptor subunits is very dynamic and may change

rapidly in response to synaptic activity or other stimuli.
The data reported here show that, under the conditions
used in the present work, hyperammonemia alters these
pathways as summarized in Fig. 6.
The above data demonstrate that neuroinflammation

in hippocampus induced by hyperammonemia alters
glutamatergic neurotransmission by altering membrane
expression of AMPA and NMDA receptor subunits.
Moreover, this is mediated by increased levels of IL-1β
and of activation of IL-1 receptor and we identify the
intracellular pathways involved.
It is noteworthy that neuroinflammation may also alter

AMPA receptors by other mechanisms. TNF-α also may
alter membrane expression of AMPA receptor subunits.
Moreover, the effects of IL-1β and of TNF-α on membrane
expression of AMPA receptors are the opposite. IL-1β re-
duces membrane expression of the GluA1 subunit while
TNF-α increases GluA1 but reduces GluA2 membrane ex-
pression [29, 60–62]. This indicates that different types or

Fig. 7 Enhanced activation of IL-1 receptor and Src leads to increased phosphorylation of GluN2B subunit at Ser1303 and reduced membrane-associated
CaMKII in hyperammonemic rats. IL-1Ra or PP2 were added to hippocampal slices. CaMKII membrane association (a, b) and phosphorylation of GluN2B
subunit at Ser1303 (c, d) were analyzed as described in the “Methods” section. Values are expressed as percentage of basal levels in control rats and are
the mean ± SEM of 12, 15, 17, and 17 rats per group in a, b, c, and d respectively. Data were analyzed by two-way ANOVA. In a, F (1, 45) = 0.2872 for effect
of HA, p = 0.5947; F (1, 45) = 1.742 for effect of IL-1Ra, p = 0.1936; and F (1, 45) = 7.909 for interaction, p = 0.0073. In b, F (1, 54) = 0.4278 for effect of HA,
p = 0.5159; F (1, 54) = 18.16 for effect of PP2, p < 0.0001; and F (1, 54) = 8.633 for interaction, p = 0.0048. In c, F (1, 63) = 1.059 for effect of HA, p = 0.3073; F
(1, 63) = 1.244 for effect of IL-1Ra, p = 0.2689; and F (1, 63) = 9.532 for interaction, p = 0.0030. In d, F (1, 63) = 1.701 for effect of HA, p = 0.1969; F (1, 63)
= 2.920 for effect of PP2, p = 0.0924; and F (1, 63) = 7.765 for interaction, p = 0.0070. Values significantly different from control rats are indicated by asterisk
and from hyperammonemic rats are indicated by “a”. Bonferroni post-test: **p< 0.01, ap< 0.05, aap< 0.01, aaap< 0.001
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grades of neuroinflammation may lead to different alter-
ations in AMPA receptor membrane expression depending
on the prevalence of IL-1β or TNF-α effect [29, 60–62].
TNF-α selectively enhances membrane expression of

GluA1 in hippocampal neurons and the proportion of
GluA2-lacking receptors, resulting in AMPA receptors
with different properties becoming calcium-permeable,
inwardly rectifying and inhibited by polyamines [61]. In
vivo nanoinjection of TNF-α in rats also increases
synaptic expression of the GluA1 subunits with a con-
current decrease in the GluA2 subunit [62]. In contrast,
IL-1β at high concentrations reduces membrane expres-
sion of GluA1 [29]. The results reported here show that,
in hyperammonemic rats, increased levels of IL-1β re-
duces GluA1 and enhances GluA2 membrane expression
through activation of IL-1 receptor.

It is also noteworthy that, although the effects of IL-1β
and TNF-α on membrane expression of AMPA receptors
are the opposite, both increased levels of IL-1β and of
TNF-α result in altered glutamatergic neurotransmission
by altering AMPA receptor function. Sustained overex-
pression of either IL-1β or TNF-α impairs hippocampal
LTP [63]. Increased levels of IL-1β also impair spatial
learning and memory [17, 64]. Some reports suggest that
TNF-α also impairs spatial learning [65, 66].
A potential limitation of the present work is that the

effects reported could be limited to a certain period of
time in the progression of chronic hyperammonemia.
The present work has been performed at 4–5 weeks of
hyperammonemia. However, the type or intensity of
neuroinflammation could be different at longer times of
hyperammonemia, triggering other mechanisms. The

Fig. 8 Enhanced activity of PKCδ mediates the increase in GluN2B phosphorylation at Ser1303, the reduced association to membrane of CaMKII,
and the reduced phosphorylation at Ser831 and membrane expression of GluA1 in hyperammonemic rats. Rottlerin, an inhibitor for PKCδ, was
added to hippocampal slices. Phosphorylation of GluN2B subunit at Ser1303 (a) and GluA1 at Ser831 (c) and membrane expression of CaMKII
(b) and GluA1 (d) were analyzed as described in the “Methods” section. Values are expressed as percentage of basal levels in control rats and are
the mean ± SEM of 15, 10, 29, and 21 rats per group in a, b, c, and d respectively. Data were analyzed by two-way ANOVA. In a, F (1, 55) = 0.5387
for effect of HA, p = 0.4661; F (1, 55) = 5.649 for effect of rottlerin, p = 0.0210; and F (1, 55) = 8.403 for interaction, p = 0.0054. In b, F (1, 36) = 1.445
for effect of HA, p = 0.2372; F (1, 36) = 9.889 for effect of rottlerin, p = 0.0033; and F (1, 36) = 13.77 for interaction, p = 0.0007. In c, F (1, 113) = 1.353
for effect of HA, p = 0.2471; F (1, 113) = 11.81 for effect of rottlerin, p = 0.0008; and F (1, 113) = 16.36 for interaction, p < 0.0001. In d, F (1, 80) =
2.696 for effect of HA, p = 0.1045; F (1, 80) = 6.059 for effect of rottlerin, p = 0.0160; and F (1, 80) = 9.431 for interaction, p = 0.0029. Values significantly
different from control rats are indicated by asterisk and from hyperammonemic rats are indicated by “a”. Bonferroni post-test: *p < 0.05, **p < 0.01,
***p < 0.01 aap < 0.01, aaap < 0.001
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above reports indicate that neuroinflammation may alter
hippocampal neurotransmission and spatial learning by
different mechanisms depending on the type and grade
of neuroinflammation, for example on the relative
contribution of the increases in IL-1β and TNF-α [17, 29,
60–66]. This may explain the discrepancy between the ef-
fects induced by 4–5 weeks of hyperammonmeia reported
here and those reported in [7] showing increased GluA1
and reduced GluA2 membrane expression at 8 weeks of
hyperammonemia. We have preliminary results showing
that neuroinflammation in hyperammonemic rats is
dynamic and changes with time, resulting in a different
pattern of inflammatory markers at different types.
Dynamic changes in neuroinflammation have been also re-
ported in situations such as Parkinson’s disease [67], stroke
[68, 69], ischemia [70], amyotrophic lateral sclerosis, AIDS,
and multiple sclerosis [71]. These dynamic changes in
neuroinflammation and its consequences on neurotrans-
mission suggest that the treatments to reverse
neuroinflammation-induced cognitive impairment should
be different depending on the type and grade of neuroin-
flammation reached, which would be different in different
pathological situations.
We show that in rats with chronic moderate hyperam-

monemia, similar to that present in patients with liver
cirrhosis, neuroinflammation in hippocampus alters
membrane expression of AMPA receptors mainly
through activation of IL-1 receptor by increased levels of
IL-1β. Blocking IL-1 receptor with the endogenous
antagonist IL-1Ra reverses completely the alterations in
AMPA receptor membrane expression. It has been
shown that IL-1Ra also prevents the impairment of LTP
by IL-1β [63]. This suggests that blocking this receptor
would also restore spatial learning impaired by overex-
pression of IL-1β in different in pathological situations
associated with neuroinflammation, including hyperam-
monemic rats, and possibly, patients with minimal
hepatic encephalopathy.

Conclusions
In summary, this work identifies two pathways by which
neuroinflammation alters glutamatergic neurotransmission
in hippocampus. Increased IL-1β and activation of its
receptor leads to activation of Src, increased membrane ex-
pression of GluN2B, and activation of p38 which reduces
activity of PKCζ and phosphorylation of GluA2 at Ser880,
increasing membrane expression of GluA2. Activated Src
also increases phosphorylation of PKCδ which enhances
phosphorylation of GluN2B at Ser1303, reducing mem-
brane expression of CaMKII and phosphorylation at Ser831
and membrane expression of GluA1. These steps could be
targets to normalize neurotransmission in hyperammone-
mia and other pathologies associated with increased IL-1β
by acting, for example, on p38 or PKCδ.
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