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Abstract

Background: Depression is a heterogeneous disorder, with the exact neuronal mechanisms causing the disease yet
to be discovered. Recent work suggests it is accompanied by neuro-inflammation, characterized, in particular, by
microglial activation. However, microglial activation and its involvement in neuro-inflammation and stress-related
depressive disorders are far from understood.

Methods: We utilized multiple detection methods to detect the neuro-inflammation in the hippocampus of rats after
exposure to chronic mild stress (CMS). Male Sprague Dawley (SD) rats were subjected to chronic mild stressors for

12 weeks. Microglial activation and hippocampal neuro-inflammation were detected by using a combinatory approach
of in vivo [18F] DPA-714 positron emission computed tomography (PET) imaging, ionized calcium-binding adapter
molecule 1 and translocator protein (TSPO) immunohistochemistry, and detection of NOD-like receptor protein 3
(NLRP3) inflammasome and some inflammatory mediators. Then, the rats were treated with minocycline during the
last 4 weeks to observe its effect on hippocampal neuro-inflammation and depressive-like behavior induced by chronic
mild stress.

Results: The results show that 12 weeks of chronic mild stress induced remarkable depressive- and anxiety-like
behavior, simultaneously causing hippocampal microglial activation detected by PET, immunofluorescence staining,
and western blotting. Likewise, activation of NLRP3 inflammasome and upregulation of inflammatory mediators, such
as interleukin-10 (IL-1B3), IL-6, and IL-18, were also observed in the hippocampus after exposure to chronic stress.
Interestingly, the anti-inflammatory mediators, such as IL-4 and IL-10, were also increased in the hippocampus
following chronic mild stress, which may hint that chronic stress activates different types of microglia, which produce
pro-inflammatory cytokines or anti-inflammatory cytokines. Furthermore, chronic minocycline treatment alleviated the
depressive-like behavior induced by chronic stress and significantly inhibited microglial activation. Similarly, the
activation of NLRP3 inflammasome and the increase of inflammatory mediators were not exhibited or significantly less
marked in the minocycline treatment group.

Conclusion: These results together indicate that microglial activation mediates the chronic mild stress-induced
depressive- and anxiety-like behavior and hippocampal neuro-inflammation.
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Background

Major depressive disorder (MDD) is a type of neuro-
logical disorder that has the following manifestations:
loss of interest in activities, feeling lethargic or deprived
of energy and grit, disturbed sleep pattern and appetite,
low self-esteem, and thoughts of or attempts at suicide
[1]. In today’s society, MDD is arguably a grave public
health concern, and it has increased the global burden of
disease. To present, it has affected an estimated 16% of
the entire population [2]. Depression is speculated to be
the main attributor responsible for the burden of world-
wide non-fatal diseases and also the fourth prime con-
tributor of worldwide disease burden by 2020 [3].
Therefore, it is of paramount importance to the public
that cellular and molecular mechanisms, which can be
targeted in order to prevent and ultimately treat depres-
sion, must be identified.

Various studies and research have verified that over-
production of cytokines is the key factor responsible for
neurological inflammation, and this phenomenon is es-
sential with regard to the psychopathology of depres-
sion [4-6]. Nonetheless, there is little knowledge
regarding the molecular mechanisms behind the rela-
tionship and correlation between depression and cen-
tral nervous system (CNS) inflammation. Interleukin-1
beta (IL-1B) is one of the many important pro-
inflammatory cytokines and has been proven to partici-
pate in the inflammatory responses that take place in
the brain. These inflammatory responses eventually
lead to cellular damage in stress-relevant neuropsychi-
atric diseases, such as co-inherited MDD [7]. Recent re-
search has suggested that both stress and IL-1fp are
responsible for the decline in hippocampal neurogen-
esis, which is, in turn, associated with the development
of depressive-like behavior [8]. A meta-analysis demon-
strated that antidepressant therapies resulted in a re-
duction in IL-1f serum level and simultaneously
alleviated depressive symptoms [9]. This phenomenon
suggests that IL-1p plays a key role in the pathogenesis
of depression. NOD-like receptor protein 3 (NLRP3),
the intracellular pattern recognition receptor, is com-
posed of two components—the apoptosis-associated
speck-like protein containing a CARD (ASC) and the
effector protein caspase-1 [10]. This multi-protein plat-
form formation leads to the autocatalysis and activation
of caspase-1, which, in turn, converts IL-1$ and IL-18
into their respective biological active forms, prior to se-
cretion. Recently, there has been evidence that suggests
inflammasome and IL-1f activities might contribute to
the development of several common human diseases,
which include gout, type 2 diabetes, non-alcoholic stea-
tohepatitis, atherosclerosis, Alzheimer’s disease, and
cancer [11, 12]. Moreover, various novel studies implied
that the NLRP3 inflammasome is involved in stress-
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induced depression and, therefore, may be a potential
target for the treatment of depression [13].

Evidence also suggests that depression is likely to be a
type of microglial disease [14]. Microglia make up
approximately 10% of the entire brain, and they are the
main line of innate immune defense in the brain [15]. In
addition, they contribute to the normal development and
regulation of ongoing structural and functional processes of
individual synapses to neural circuits to behavior [16, 17].
Microglial cells are activated during pathological condi-
tions, such as infection, injury, and neurodegeneration, to
orchestrate and execute various inflammatory, protective,
recuperative, and toxic processes, which can have a detri-
mental impact on brain cells, including neurons and glial
cells. Owing to the responsiveness of microglia towards
those pathological conditions, they are, therefore, regarded
as important diagnostic markers of inflammation onset or
CNS disease progression [18]. Specific targets such as
microglial cell surface and mitochondrial receptors have
been utilized to develop neuro-inflammation diagnostic
biomarkers. An 18-kDa translocator protein (TSPO), a pro-
tein situated in the outer mitochondrial membrane, is an
example of a widely applicable diagnostic target for neuro-
inflammation. It is specifically upregulated in activated
microglia during brain injuries and neurodegenerative dis-
eases that are correlated to neuro-inflammation [19, 20].
Various TSPO ligands are labeled using radioisotopes for
autoradiography or in vivo neuro-inflammatory PET scan
purposes [21, 22]. [18F] DPA-714 is advantageous in com-
parison to other radioligands of TSPO, with regard to high
binding affinity and target-to-background ratio. Further-
more, F-18's physical property (- £1/2 = 109.8 min) makes it
a very appropriate candidate for in vivo PET imaging [23].

In this research, our aim is to evaluate microglial
activation and hippocampal neuro-inflammation in a
chronic mild stress (CMS)-induced depression model, by
using a combinatory approach of in vivo [18F] DPA-714
PET imaging, ionized calcium-binding adapter molecule
1 (Iba-1) and TSPO immunohistochemistry, and detec-
tion of NLRP3 inflammasome and some inflammatory
mediators. We also observed the effect of minocycline
on hippocampal neuro-inflammation and depressive-like
behavior induced by chronic mild stress. We place
strong emphasis on the implementation of the CMS-
induced depression model so as to explore the potential
role of microglial activation in CMS-induced depression.

Methods

Experimental design

To facilitate the assessment of the impact of chronic
mild stress on neuro-inflammation and behavioral pa-
rameters as well as the efficacy of the minocycline, the
current study consisted of two experiments, both of
which used the same CMS protocol.
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Experiment 1: change of microglia, NLRP3 inflammasome,
and cytokines in the hippocampus of rats submitted to
CcMS

The rats were randomly divided into two groups. The
first group was the normal control; another group was
exposed to CMS for 12 weeks. Twenty-four hours after
the last stressor, three rats of each group were randomly
selected to receive PET measurement. Other rats of each
group were sacrificed after behavior test from which we
collected brain tissue (please see Fig. 1a).

Experiment 2: efficacy of the minocycline on hippocampal
neuro-inflammation and depressive-like behavior induced
by CMS

As illustrated in Fig. 6a, the rats were randomly assigned into
four groups. The first group was the normal control; the
remaining three groups were exposed to 12-week CMS,
among which, two groups were treated simultaneously with
either saline or minocycline (i.p., 50 mg/kg, diluted in saline)
for 4 weeks (weeks 9-12 of CMS). Twenty-four hours after
the last stressor, rats of each group received behavior test in
sequence and then sacrificed. And, brain tissue was collected.

Animals

The experiments were carried out on male Sprague
Dawley (SD) rats (6-7 weeks old) weighting between
180 and 200 g, obtained from the Shanghai Laboratory
Animal Center of China, where the rats were housed in
groups after born. Rats were housed in groups of two to
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four per cage under a 12-h light/dark cycle with access
to food and water ad libitum (except when indicated).
The stress intervention began after a 1-week habituation
period. The behaviors test was conducted after 12-week
CMS when the rats were 19-20 weeks old. This study
was carried out in accordance with the National
Institutes of Health Guide for the Care and Use of
Laboratory Animals. The protocol was approved by the
Animal Ethics Committee of Shanghai Medical College,
Fudan University, Shanghai, China (20120302-107).

CMS procedure

CMS is a rodent model of depression in which animals
are exposed to a random sequence of mild stressors.
Rats were subjected to nine different stressors: water
deprivation (24 h), food deprivation (24 h), light/dark
cycle reversal, hot environment (40 °C, 5 min), swim-
ming in cold water (4 °C, 5 min), cage shake (15 min),
restraint (2 h), radio noise in the room (12 h), and flash-
ing light (12 h). These stressors were performed once
per day in a random order for 12 weeks.

Behavioral testing
Twenty-four hours after the end of CMS, the open field
test (OFT), the elevated plus maze (EPM), and the
forced swim test (FST) were conducted in sequence
(test/day).

The OFT was performed as previously described [23].
Rats were placed in the center of a Plexiglas box (100 cm x
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100 cm x 40 cm) in a brightly lit room. During a 5-min
session, animals were scored for the number of rearing
behaviors and the distance traveled in the box. Animal
behavior was recorded and subsequently analyzed using a
video-tracking system (Shanghai Mobile Datum Informa-
tion Technology Company, Shanghai, China).

The EPM was shaped like a plus sign and consisted of
a central platform (5x5 cm), two opposite open arms
(30 cm x5 cm), and two equal-sized opposite closed
arms, elevated 50 cm from floor and illuminated by a
dim light. Individual trials lasted for 5 min each and
were recorded with a video-tracking system (Shanghai
Mobile Datum Information Technology Company,
Shanghai, China). Open-arm time percentage ([time in
open arms] / [time in total arms] x 100) was calculated
as described in our previous paper [24]. All behavioral
tests were performed by an individual who was blind to
the animal’s treatment status.

In the FST, rats were individually put into an 18- or
15-cm-diameter glass cylinder filled to 30 cm with 23 +
1 °C water. During analysis of the recordings, immobility
was defined as the absence of all movement except mo-
tions required to maintain the animal’s head above the
water. Struggling was defined as vigorous movements
with forepaws breaking the water. Results were
expressed as time (in seconds) that animals spent immo-
bile or struggling during a 5-min session.

[18F] DPA-714 PET

Small-animal PET was performed with a micro-PET
scanner (Siemens Inc.). Under isoflurane anesthesia, the
rats were placed prone in the center of the field of view
of the scanner and injected with [18F] DPA-714 via the
lateral tail vein. Whole-brain scanning was performed
after radiotracer injection, and 10-min static PET images
were acquired. The quantification analysis of PET
images was performed using the same method as previ-
ously reported [25].

Minocycline treatment

Minocycline (Sigma-Aldrich) was used as a microglial
activation inhibitor to examine whether CMS-induced
microglial activation is involved in the development of
depressive-like behavior and the underlying mechanisms.
Rats were intraperitoneally injected of saline and mino-
cycline (50 mg/kg, diluted in saline) once daily during
the last 4 weeks of 12-week CMS (weeks 9-12 of CMYS).

Immunohistochemical analysis

The brains were separated and post-fixed in 4% PFA at
4 °C overnight and immersed in 20% sucrose (4% PFA as
solvent) followed by 30% sucrose (in 0.1 M PBS). The
brain samples were cut into 30-um-thick sections
(CM1850; Leica Microsystems, Wetzlar, Germany).
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Sections were incubated in 0.01 mol/L citrate buffer
(pH 6.0) for high-temperature antigen retrieval. Tissues
were blocked in 2% (w/v) BSA (Sigma) and then exposed
overnight to the following primary antibody mixtures:
anti-Iba-1 (1:500, Abcam), anti-PBR (1:500, Santa Cruz),
and anti-NLRP3 (1:500, Abcam) at 4 °C. Detection of
primary antibodies was performed with secondary
antibodies (donkey anti-rabbit, Alexa 594 conjugated,
1:1000, Invitrogen, USA; donkey anti-goat, Alexa 594
conjugated, 1:1000, Invitrogen, USA; donkey anti-goat,
Alexa 488 conjugated, 1:1000, Invitrogen, USA; donkey
anti-rabbit, Alexa 488 conjugated, 1:1000, Invitrogen,
USA; Hoechst, 1:1000, Beyotime, China) for 1 h in the
dark. The sections were then washed five times with
PBS in the dark. Immunofluorescence sections were
observed with a Leica SP5 fluorescence microscope,
using excitation wavelengths of 633 nm (helium/neon2,
blue Cy5 labeling), 543 nm (helium/neonl, red Cy3
immunofluorescence), and 488 nm (argon, yellow green
Cy2 immunofluorescence), and images were captured
with a CCD spot camera for data analysis. The same
region per hippocampal section and three sections per
animal were counted by experimenters who were blind
to the experiment design.

Western blot analysis

The rats’ hippocampi were homogenized in RIPA buffer
(Thermo Scientific) with protease inhibitors (Beyotime).
Protein samples were run on 12% Tris-glycine SDS-PAGE
gels, transferred to PVDF membrane (0.2 or 0.45 um), and
blotted with antibodies against Iba-1 (1:1000, Abcam),
CD11b (1:1000, Abcam), NLRP3 (1:1000, Abcam),
caspase-1 (1:1000, Abcam), ASC (1:200, Santa Cruz), IL-
1P (1:1000, R&D System), GAPDH (1:20,000), and f-actin
(1:20,000). Primary antibody incubation was performed
overnight at 4 °C. Secondary antibodies (1:10,000,
EarthOx) were incubated for 2 h at room temperature.
The signal was captured on an ImageQuant LAS4000
mini image analyzer (GE Healthcare, Buckinghamshire,
UK), and the band levels were quantified using Image]
software (NIH, Bethesda, MD, USA).

Quantitative real-time RT-PCR

Total RNA was isolated from the rats’ hippocampi using
TRIzol reagent (Invitrogen) according to the manufac-
turer’s instructions. cDNA was synthesized by a Prime
Script Kit (Bio-Rad). Quantitative real-time PCR was
performed by using gene-specific primers and SYBR Pre-
mix Ex Taq (Bio-Rad, CA, USA). Oligonucleotide primers
specific for rat are IL-1p (F 5" TTCTTTGAGGCTGACA-
GACC 35 R 5° CGTCTTTCATCACACAGGAC 3'),
NLRP3 (F 5° AGTGGATAGGTTTGCTGGGATA 3’; R
5" CTGGGTGTAGCGTCTGTTGAG 3'), ASC (F 5’
GAAGAGTCTGGAGCTGTGG 3'; R 5° AATGAGTG
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CTTGCCTGTG 3’), caspase-1 (F 5" AGTGTAGGGACA
ATAAATGG 3’; R 5" GATGGACCTGACTGAAGC 3'),
IL-6 (F 5" ACTTCCAGCCAGTTGCCTTCTTG 3'; R 5’
GGTCTGTTGTGGGTGGTATCCTC 3), iNOS (F 5’
GCACAGAGGGCTCAAAGG 3'; R 5" CACATCGCCA-
CAAACATAAA 37), IL-4 (F 5" GAACCAGGTCACAGA
AAAAGGGA 35 R 5 TGGGAAGTAAAATTTGCG
AAGCA 3'), IL-10 (F 5" TGCCTTCAGCAGAGTGAAG
3R 5" GGGAAGAAATCGATGACAG 3’), and GAPDH
(F5" CCCTTCATTGACCTCAACTAC 3'; R 5" CTTCT
CCA TGGTGGTGAAGAC 3’). Relative messenger RNA
(mRNA) expression levels were analyzed using the
formula 272" method and normalized to the GAPDH
ribosomal RNA.

Statistical analysis

All data were analyzed using SPSS 16.0 (SPSS Inc., Chicago,
USA). The data collection and analysis were performed
independently by two experimenters. Results are expressed
as the mean + standard error of the mean. Data were ana-
lyzed using one- or two-way analysis of variance (ANOVA)
according to the factors introduced in the experimental
design. Where F ratios were significant, post hoc compari-
sons were made using Tukey’s post hoc test. Significance
levels were set at p < 0.05.

Results

CMS induces depressive-like behavior in rats

To clarify the role of neuro-inflammation in depression,
we subjected SD rats to the CMS protocol (Fig. 1a). This
protocol involves multiple, daily, mild stressors at unpre-
dictable times proven to induce depressive- and anxiety-
like behavior. As expected, after 12 weeks of CMS,
stressed rats displayed depressive-like behavior as shown
by increased immobility time and decreased struggling
time in the FST (a measure of despair with good predict-
ive value for antidepressant effects; Fig. 1b, ¢) and
reduced rearing numbers (a measure of exploration;
Fig. 1d) in the OFT, when compared to non-stressed
control animals. As shown in Fig. 1e, CMS also reduced
the locomotor activity of rats as shown by decreased
total distance in the OFT. Additionally, stressed rats
showed a significant decrease in the time spent in the
open arms of EPM as compared to non-stressed control
animals (Fig. 1f). These results indicate that CMS suc-
cessfully induced depressive- and anxiety-like behavior.

Multi-modal detection of hippocampal microglial
activation in the rats exposed to CMS

Recently, neuro-inflammation, characterized in particu-
lar by microglial activation, has been suggested as a pos-
sible mechanism of stress-induced depressive disorders.
An experimental radiopharmaceutical specific of TSPO
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ligand, namely [18F] DPA-714, allows quantifying this
microglial activation using PET imaging. To examine the
effect of chronic mild stress on TSPO inflammatory sig-
nals, [18F] DPA-714 uptake was compared at 12-week
treatment time points. As illustrated in Fig. 2a, accumu-
lation of [18F] DPA-714 in the hippocampus was greater
in stressed rats than in non-stressed control rats. The
brain uptake of [18F] DPA-714 expressed as %ID/g was
calculated (Fig. 2b). The results exhibited that CMS
significantly increased [18F] DPA-714 signals at the
hippocampus.

Then, we also detected the expression of TSPO in the
hippocampus of normal rats using the immunohisto-
chemical technique. The results showed that TSPO was
predominantly expressed by microglia (Fig. 2c¢) and
further confirmed that [18F] DPA-714 signal correlated
well with microglial activation. We also observed the
amount of Iba-1-labeled microglial cells was significantly
larger in the hippocampus of stressed rats than in non--
stressed control rats (Fig. 2d, e). We then analyzed pro-
tein levels of Iba-1 and another microglial marker
protein CD11b by western blotting. The results showed
that protein levels of Iba-1 (Fig. 2f) and CD11b (Fig. 2g)
increased significantly in the hippocampus of stressed
rats compared with non-stressed control rats. Briefly,
immunohistochemical analysis and western blot assay
further confirmed PET imaging results and indicated
chronic mild stress induced microglial activation in the
hippocampus.

CMS increases gene expression of inflammatory factors in
the hippocampus

To further study the putative changes induced by
chronic stress on hippocampal milieu, we measured the
hippocampal inflammatory gene expression by qPCR. As
shown in Fig. 3a—e, chronic stress not only increased
IL-1pB, IL-18, and IL-6 gene expression but also en-
hanced the mRNA levels of anti-inflammatory cytokines,
such as IL-4 and IL-10, in the hippocampus of rats.
These results confirmed that chronic stress induced the
hippocampal neuro-inflammation, which suggested by
the upregulation of inflammatory mediators in the
hippocampus.

CMS causes the cleavage of IL-13 and caspase-1

There is some evidence that IL-1f is an important
mediator of stress-induced depressive-like behavior and
depression. As shown above, the hippocampal IL-1p
mRNA was upregulated in stressed rats. Then, is the
active form of IL-1p also increased? The results
exhibited that the mature form of IL-1f and its con-
vertase, cleaved caspase-1, were both increased in the
hippocampus after exposure to chronic stress (Fig. 4a, b).
These results suggest that chronic stress induced
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caspase-1 activation and IL-1 maturation in the hippo-
campus of rats.

Changes of NLRP3 inflammasome in the hippocampus of
CMS rats

As we know, the maturation of IL-1p, that is to say the
cleavage of caspase-1, is dependent on NLRP3 inflam-
masome. We then further detected the expression of

NLRP3 in the hippocampus of normal rats. The results
showed that NLRP3 was predominantly expressed by
microglia (Fig. 5a) and the three components of the
NLRP3 inflammasome, including NLRP3 (Fig. 5b, c),
ASC (Fig. 5d, e), and caspase-1 (Fig. 5f, g), displayed
significantly higher protein and mRNA expression
levels in the rats exposed to CMS compared to the con-
trol group. All these data hint that the NLPR3
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inflammasome has a vital role in CMS-induced

depressive-like behavior.

Chronic minocycline treatment reversed CMS-induced
depressive-like behavior

Minocycline, as a common inhibitor of microglial activa-
tion, can be used to assess the role of microglial activa-
tion in stress-induced depressive-like behavior. Chronic
treatment with minocycline (animal treatment paradigm
exhibited in Fig. 6a) can significantly normalize the be-
havioral deficits of stressed rats, indicated by spending

In the OFT, minocycline treatment increased the num-
ber of rearing but still has a significant difference from
the normal group. Meanwhile, minocycline treatment
had no effect on the total distance moved (Fig. 6d, e).

Chronic minocycline treatment dampened microglial
activation, NLRP3 inflammasome, and pro-inflammatory
mediators in rats exposed to CMS

The effect of minocycline on microglial activation was
checked by examining the protein of the microglial
cell surface markers Iba-1 and CD11b. Data revealed
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normalized Iba-1 and CD11b expression in the hippo-
campus of CMS rats (Fig. 7a, b). Furthermore, we
found that the abovementioned antidepressant effect
of minocycline maybe was associated with decreased
NLRP3 inflammasome activity. The minocycline treat-
ment significantly inhibited CMS-induced NLRP3
inflammasome component gene expression (NLRP3,
ASC, and pro-caspase-1) (Fig. 7c—e), among which,

ASC gene expression still remained significantly dif-
ferent between minocycline-treated and normal sub-
jects. Meanwhile, after minocycline treatment,
matured caspase-1 and IL-1p were significant normal-
ized (Fig. 7f, g). Besides, chronic minocycline treat-
ment also remarkably prevented the increase of
mRNA levels of the pro-inflammatory cytokines, such
as IL-1B, IL-18, and IL-6. But, IL-6 mRNA is still
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higher in minocycline-treated subjects as compared
with normal subjects (Fig. 7h—j).

Discussion

In our present study, we detected hippocampal neuro-
inflammation by implementing PET imaging with the
specific TSPO ligand—[18F] DPA-714 in a CMS rat
model of depression. We were able to correctly iden-
tify that activated microglia are the possible cellular
correlate of increased [18F] DPA-714 uptake thanks to
the combination of PET imaging and ex vivo TSPO
and Iba-1 antibody staining on the brain sections. We
also detected an increase of NLRP3 inflammasome and
some inflammatory mediators in the hippocampus
after chronic stress and found that minocycline treat-
ment can alleviate the depressive- and anxiety-like
behavior and neuro-inflammation induced by chronic
stress. This study highlighted that microglial activation

is very likely to play a role in CMS-induced
depressive- and anxiety-like behavior via NLRP3
inflammasome-IL-1f signaling.

The CMS procedure utilized in this study is a vali-
dated animal model that represents the pathophysi-
ology of human depression [26]. In our hypothesis, we
suggested that CMS is responsible for a myriad of
complex human depression symptoms, which include
physiological change increment [27], hopelessness
state augmentation, and motivation loss [28]. Hence,
this model is frequently utilized to analyze the under-
lying cellular and molecular mechanisms behind the
pathophysiology of depression. We confirmed that rats
that are exposed to CMS for 12 weeks became more
immobile and struggled less during the FST, exhibited
a decline in rearing behaviors during OFT, and spent
less time in the open arms during the EPM test.
These characteristics are consistent with our previous
reports [24].



Wang et al. Journal of Neuroinflammation (2018) 15:21

Page 10 of 14

a b | c
e | o
p-actin |- o m= -|43KD p-actin |----| 43KD
NLRP3
2.0 *% - -
£ £ 25 *k 525 *k
.g * K] *% s *%
5 151 # £ 209 < 2.0-
- - k)
8 T © 15+ #2154
0 104 —= ° I <
2 S z —_ ##
o 2 1.0q —— o 1.0 —_
2 e £
2 051 £ 054 2 054
< E; s
0.0 T T 0.0 T T x 0.0 T T
Normal CcMs Saline Mino Normal CMS Saline Mino Normal CMs Saline Mino
d e f
asc caspase-t ot [ ] 410
O 5+ @ 3+ 2.5
2 *k *k g *o ** £
s *k
S 41 S © 20 *x
° T 24 &
2 34 e ° 154 #
< * < 2
2 z HHH 3 u
x 2- # Al 3 1.0-
£ -T— € 14 -
® —_ g 2
Z 11 = s 051
K] % ;u
® 0 . : @ 0 T T 0.0 T -
Normal CcMS Saline Mino Normal CMs Saline Mino Normal CMs Saline Mino
g 1
claved .13 [ L N 170
p-actin |--- | 43D IL-1 IL-18
c 31 g 47 g 31
@ H Kk c Kk Kk
o S 2
s - 31 *% S
%5 21 ° Z 24
: £ s
-— < 2_ <
o — o
o 17 E 4 £ 1] —= H#Hit
2 Q14 o o
- > — >
. s 2
= & s
Il
%o . 0 T T 0 . r
Normal Saline Mlno Normal CMs Saline Mino Normal CcMSs Saline Mino
J IL-6
o 4+
o
c
©
=
© 34
k) *
o
2
< 2] #
z
o
€
2"
s
K
Q
x 0 T T
Normal Saline Mino

Fig. 7 Chronic minocycline treatment dampened microglial activation, NLRP3 inflammasome, and pro-inflammatory mediators in rats exposed to CMS. a
Western blot analysis of Iba-1 (n = 4/group). b Western blot analysis of CD11b (n = 4/group). c—e PCR analysis of NLRP3, ASC, and caspase-1 (n = 4/group).
f, g Western blot analysis of cleaved caspase-1 and cleaved IL-1(3 (n = 4/group). h-j PCR analysis of IL-13, IL-18, and IL-6 (n = 4/group). All data are expressed
as the mean + SEM. “p < 0.05, #p < 001, **p < 0,001, compared to saline-treated rats. *p < 0.05, **p < 001, **p < 0001, compared to normal rats




Wang et al. Journal of Neuroinflammation (2018) 15:21

We hypothesized that [18F] DPA-714 PET imaging,
which is a non-invasive marker of microglial cell activa-
tion, is very likely to be beneficial with regard to detect-
ing and following immunological status of the brains in
rat models of depression. By using [18F] DPA-714 PET
imaging of TSPO, it is evident that the amount of [18F]
DPA-714 that has successfully bound to the hippocam-
pus of CMS rats was increased in comparison to that of
control animals in our study. Consistent with these find-
ings, a recent study observed an increase in brain TSPO
total distribution volume (VT), an index of TSPO dens-
ity, in patients with MDD compared with healthy and
age-matched control participants using [18F] FEPPA
PET [29]. However, to present, there has been no study
available about the neuro-inflammatory changes in rats
using PET imaging in the depression model. However, it
is an encouraging sign that specific TSPO ligands have
been investigated as potential therapies for neurological
disorders such as Alzheimer’s disease [30], multiple
sclerosis [31], neuropathic pain [32], peripheral nerve
injury [33], and anxiety disorders [34]. Several TSPO
ligands are labeled using radioisotopes to detect neuro-
inflammation using either autoradiography or in vivo
PET imaging. Among them, [18F] DPA-714 is advanta-
geous with regard to possessing high binding affinity and
target-to-background ratio in comparison to other TSPO
radioligands. A pilot clinical study confirmed the in vivo
stability and biodistribution, and acceptable effective dose
estimation of [18F] DPA-714 in healthy humans, which
supports further clinical trials and preclinical evaluation
with PET imaging [35]. Therefore, in our present study,
we first utilized the [18F] DPA-714, the PET ligand which
binds to active-stage TSPO that is upregulated on micro-
glia, to demonstrate neuro-inflammation imaging in rat
models of depression.

A few studies addressed that PET imaging of TSPO
(18 kDa) can be utilized to detect activated microglial
cells in the brain [36, 37]. TSPO expressivity is low in
healthy brains. However, it is elevated in diseases that
are correlated to neuro-inflammation such as stroke,
trauma, infection, and auto-immune and neurodegenera-
tive disorders [38, 39]. Nevertheless, it is crucial to bear
in mind that TSPO can also be expressed by reactive
astrocytes [40]. In order to demonstrate this, we showed
that TSPO is situated within the microglia in the rat
hippocampal region by performing IHC double-staining
using TSPO antibody and Iba-1 antibody. Both were
capable of corroborating with [18F] DPA-714 PET
imaging in rats. An increase in TSPO radiotracer bind-
ing, which was detected by PET, is likely to be attributed
to microglial activation. Hence, we deduced that an
increase in TSPO binding is evidence of neuro-
inflammation. Coupled with recent evidence regarding
the targeting of TSPO, this may provide new therapeutic
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opportunities. Our present study will prompt a strong
interest on both the preclinical and clinical TSPO in vivo
imaging for depressive disorders.

Neuro-inflammation is defined as the cellular and bio-
chemical responses to numerous insults that occur
within the central nervous system, which include the
activation of microglia, also known as the macrophages
of the CNS. Microglia play an important role by acting
as an innate immune response to invading pathogens
and by initiating adaptive responses via antigen presen-
tation [41]. In this study, we explored the expression of
microglial activation biomarkers at the end of the 12-
week CMS procedure. In our model, we discovered that
Iba-1 and CD11b are both significantly over-expressed
in the CMS-exposed rats’ hippocampi, which implied
that microglia are activated in CMS-exposed rats, and
activated microglia possess hyper-ramified or amoeboid/
phagocytic properties. Hyper-ramified microglial morph-
ology composed of increased arborization with thick
processes; however, these processes were retracted and
the cell bodies became enlarged when transformation of
hyper-ramified microglia into amoeboid form com-
mences. Activated microglia produce pro-inflammatory
cytokines such as IL-1B, tumor necrosis factor (TNF),
and IL-6, just to highlight a few. We also detected pro-
inflammatory mediator—IL-1f, IL-18, and IL-6—gene
expressivity in the hippocampus. There are significant
increases in the rats exposed to CMS as compared to
that of the control group. Preclinical and clinical
research studies that establish relationships and links
between psychiatric illnesses and inflammatory processes
have burgeoned over the past two decades. This is
attributable to an attempt to link illnesses, especially
MDD, with “stress” biology, which increases the possibil-
ity of the existence of an “initial common pathway”
whereupon the combinatory effects of immune/inflam-
matory and stress biomarkers are capable of producing
changes in both brain structure and functions.

IL-1p might mark the start of the pro-inflammatory
responses targeted specifically at psychological stress
by resulting in a cascade of inflammatory cytokine
responses [13]. It has been speculated that depression
is related to an increased secretion of cytokines, in
particular IL-1B, by macrophages [42]. Koo and
Duman discovered that depressive behavior and cellu-
lar responses, which are attributable to chronic stress
exposure, can be halted by IL-1p blockade [43]. In
our research, IL-1f protein and mRNA expression
were both markedly increased in the brains of the
CMS group rats. This finding was compatible with
several studies in patients with depression, and animal
models [44, 45]. Our data also demonstrated that
IL-1p might play a key role in CMS-induced
depressive-like behavior in rats.
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IL-1B precursor needs to be biologically activated via
proteolytic cleavage prior to secretion [46]. Caspase-1,
which is also known as an IL-1B-converting enzyme, is
responsible for IL-1f maturation by cleaving the 31-kDa
IL-1B precursor into 17-kDa biologically active forms [47].
The significant increase in active IL-1p forms and IL-1
mRNA in the hippocampus of CMS implied that there is a
possibility for caspase-1 to be activated in the brain, which
was justified by the increase of active caspase-1 form (p10).
It is well known that many types of stimuli, such as bacter-
ial compounds, viruses, and endogenous molecules
released from injured cells, activate caspase-1 via NLRP3
inflammasome—a crucial component in caspase-1 activa-
tion [48-50]. We postulated that there were higher expres-
sion levels of NLRP3 inflammasome components. As
predicted, all three components of the NLRP3 inflamma-
some had significantly higher mRNA and protein expres-
sion levels, when measured by real-time RT-PCR and
western blotting, respectively, in the CMS-exposed rats’
brains compared with those of the control rats, including
NLRP3, ASC, and caspase-1. These data illustrated that
the NLPR3 inflammasome might play a central role in the
rats’ CMS-induced depressive-like behavior.

To characterize further the role of microglia in the
observed CMS-induced depressive-like behavior, we
used minocycline, which has been shown to have several
biological effects including inhibition of cytochrome C
release from mitochondria, inhibition of caspase expres-
sion, and suppression of microglial activation [51].
Different timing and duration of minocycline treatment
were used according to different stress procedures. Some
studies got the similar results in which minocycline was
given concurrently with chronic exposure [52, 53] or
following the stressor intervention [54]. In our study,
minocycline treatment was given during the last period
of CMS to evaluate its antidepressant effect. We found
that minocycline administration completely inhibited the
increase and activation of microglia in the hippocampus
and reduced CMS-induced depressive-like behaviors in
the FST and OFT. Moreover, minocycline administration
also inhibited expression of pro-inflammatory factors
and reduced CMS-induced increased levels of the com-
ponents of NLRP3 inflammasome in the hippocampus,
which indicates that neuro-inflammation induced by
microglia may play a vital role in the pathogenesis of
CMS-induced depressive-like behavior. This is consist-
ent with previous studies using animal models of depres-
sion [54]. Thus, we inferred that microglial activation
indeed plays a pivotal role in the regulation of CMS-
induced depressive-like behaviors.

Conclusion
Our present results suggest that [18F] DPA-714 is a suit-
able PET ligand for imaging in depression model rats.
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The increase in TSPO in all these pathologies is mir-
rored by an analogous behavior in the main correspond-
ing preclinical models, thereby supporting the use of
TSPO tracers for the study of microglial activation and
TSPO upregulation, despite the existence of some differ-
ences, related to different tracers, which are emerging in
similar cases. Coupled to recent evidences regarding the
targeting of TSPO may provide new therapeutic oppor-
tunities. Our present study will prompt a strong interest
on both the preclinical and clinical TSPO in vivo
imaging for depressive disorders. Furthermore, the
present study suggests that the NLRP3 inflammasome is
involved in CMS-induced depressive-like behavior in
rats. The NLRP3 inflammasome may be a central medi-
ator between immune activation and development of
depression. It raises the possibility that the NLRP3
inflammasome can be a more specific target for the
development of novel pharmacological agents for de-
pression treatments in the near future.
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