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Abstract

independent cohorts.

consistently associated with MS.

Background: Multiple sclerosis (MS) is a demyelinating and degenerative disease of the central nervous system.
Normally, demyelination is followed by remyelination, which requires repopulation of a demyelinated area by
oligodendrocyte precursor cells. Although large numbers of precursor cells are present in MS lesions, remyelination
often fails, in part by the inability of precursor cells to differentiate into mature myelin-forming cells. In mouse and
rat, miR-219 is required for this differentiation. Previously, we identified decreased miR-219 expression in tissue of
MS patients compared to controls. Cell-free miRNAs have been detected in many different body fluids including
cerebrospinal fluid (CSF) and may reflect disease processes going on in the central nervous system. This prompted
us to investigate the biomarker performance of CSF miR-219 for MS diagnosis.

Methods: Quantitative PCR was performed measuring miR-219 levels in CSF of MS patients and controls in three
Results: All three cohorts of MS patients and controls revealed that absence of miR-219 detection in CSF is

Conclusions: We have been able to identify and validate absence of miR-219 detection in CSF of MS patients
compared to controls, suggesting that it may emerge as a candidate biomarker for MS diagnosis.

Keywords: Multiple sclerosis, Cerebrospinal fluid, Biomarkers, miRNA, miR-219, miR-150

Background

Multiple sclerosis (MS) is the most common chronic in-
flammatory demyelinating central nervous system (CNS)
disease of young adults worldwide [1]. Although MS has
classically been considered a white matter disease, gray
matter demyelination is now recognized as an important
feature of MS, particularly during the progressive stage
of the disease, when neurodegenerative mechanisms pre-
dominate [2, 3]. Focal demyelinated plaques throughout
the CNS are the major pathological hallmark of MS [4].
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Under physiological conditions, demyelination is followed
by remyelination, which requires repopulation of a demye-
linated area by oligodendrocyte precursor cells (OPCs)
[5]. Although large numbers of OPCs are present in MS
lesions, remyelination fails, possibly caused by the inability
of OPCs to differentiate into mature myelin-forming cells
[6, 7]. Lack of remyelination is one major mechanism
underlying neurodegeneration in MS [8].

Modulation of gene expression by microRNAs (miR-
NAs) has a central role in neurodegenerative processes
and immune responses [9]. miRNAs regulate gene ex-
pression by binding target mRNAs and inhibiting pro-
tein synthesis or causing mRNA degradation [9]. There
is evidence for dysregulated miRNA expression levels in
blood, cerebrospinal fluid (CSF), and white matter tissue
of MS patients [10-12]. Biomarkers assisting MS diag-
nosis and subtyping into relapsing remitting (RR), sec-
ondary progressive (SP), and primary progressive (PP)
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are needed [13]. In this respect, CSF biomarkers based
on miRNA expression levels are interesting as they may
reflect disease processes going on in the CNS.

In a previous study, we identified a large number of dif-
ferentially expressed miRNAs in chronic white matter and
gray matter lesions of MS patients compared to age-
matched healthy controls (Bruinsma et al., submitted). In
particular, decreased miR-219 expression was identified in
both white matter and gray matter lesions. In mouse and
rat, miR-219 is required for both oligodendrocyte differen-
tiation and myelination [14—18]. Downregulation of miR-
219 in MS may thus contribute to impaired OPC differen-
tiation and consecutive lack of remyelination in MS. In
this study, we therefore assessed the biomarker perform-
ance of CSF miR-219 for MS diagnosis.

Methods

Human CSF samples

Lumbar CSF samples were obtained from the Radboud
UMC, Nijmegen, the Netherlands (cohort 1), the Eras-
mus University Medical Center, Rotterdam, the
Netherlands (cohort 2), and the VU University Medical
Center, Amsterdam, the Netherlands (cohort 3). CSF
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samples were collected, prepared, and stored in agree-
ment with international consensus guidelines [19].
Table 1 shows the demographic and clinical characteris-
tics of the included participants in all three cohorts. All
CSF donors signed written informed consent for use of
material and clinical information for research purposes.
MS and CIS were diagnosed according to state-of-the-
art diagnostic criteria at time of CSF collection [20, 21],
and further classified as having relapsing remitting
(RRMS), secondary progressive (SPMS), or primary pro-
gressive (PPMS) according to Lublin and Reingold [22].
Control groups consisted of individuals with other non-
inflammatory neurological diseases (NIND), inflammatory
neurological diseases other than MS (IND), Alzheimer’s
disease (AD), and idiopathic intracranial hypertension
(ITH). Neurologically healthy individuals (NHI) had been
assessed for a neurological disorder but were diagnosed
with either a systemic disease without neurological mani-
festations, or, for example, (tension-type) headache.

RNA isolation from CSF samples
CSF samples (0.5 ml) of cohorts 1 and 2 were spiked
with 1 pg MS2 carrier RNA (Roche Applied Science) to

Table 1 Demographic and clinical characteristics of multiple sclerosis patients and controls included in the CSF experiments

Cohort N Gender (male/female) Mean age £ SD in years Mean disease duration + SD in years
1 24
RRMS 7 2/5 404+89 74+54
SPMS 5 1/4 478+56 216105
PPMS 4 3/1 470+92 64+26
NHI 8 3/5 400+6.1 NA
2 115
cls 12 3/9 379+94 ND
RRMS 15 3/12 416+50 6.0£5.7
SPMS 12 4/8 49.1+92 153+99
PPMS 11 4/7 499+119 6.5+44
NHI 34 12/22 538+ 148 NA
IND 4 0/4 502+ 168 ND
AD 17 8/9 704 £9.1 ND
IIH 10 1/9 314+6.7 ND
Cohort N Gender (male/female) Median age (interquartile range) in years EDSS Interferon-beta used (%)
3 112
RRMS 44 18/26 406 (34.6-49.9) 3.0 (2.5-4.0) 364
SPMS 33 19/14 48.1 (43.9-53.8) 6.0 (4.0-6.8) 364
PPMS 13 8/5 52.2 (476-56.3) 40 (3.8-6.3) 0
IND 6 4/2 37.8 (23.1-60.1) 2.5° 0
NIND 16 10/6 432 (31.3-54.1) 1.0° 0

CIS clinically isolated syndrome, RRMS relapsing remitting MS, SPMS secondary progressive MS, PPMS primary progressive MS, NHI neurologically healthy

individual, AD Alzheimer’s disease, /IH idiopathic intracranial hypertension, NIND non-inflammatory neurological disease, IND inflammatory neurological disease,
EDSS Extended Disability Status Scale, NA not applicable, ND not determined
9EDSS measured in one patient only



Bruinsma et al. Journal of Neuroinflammation (2017) 14:235

increase the yield of RNA isolation [23]. Liquid was re-
moved by freeze-drying on an Alpha 1-2 LDplys freeze
dryer (Christ, Osterode am Harz, Germany) and samples
were resuspended with 200 pl RNase-free water. RNA was
isolated using the miRCURY RNA Isolation kit for bio-
fluids (Exiqon, Vedbaek, Denmark). Equivalent CSF vol-
umes were used as input for the RNA isolation. The
expression profiles of miR-24 and miR-16 have been re-
ported to be stable in several bodily fluids and tissues [24—
27], and were therefore used for normalization purposes.

RNA isolation of cohort 3 samples was performed on
300 pl CSF again using the miRCURY RNA isolation kit
for biofluids (Exiqon, Vedbaek, Denmark) according to
the manufacturer’s protocol and including the on-column
DNase treatment. To optimize RNA yield per sample,
2 pg glycogen carrier was added to the lysis solution. Sec-
ondly, to monitor RNA isolation and proper reference
miRNA normalization, per sample, 150 pmol synthetic
UniSP6 RNA spike-in (Exiqon) was added to the lysis so-
lution. Eluted RNA was directly stored at — 80 °C.

Reverse transcription and pre-amplification in CSF
samples

The RT reaction in RNA samples of cohorts 1 and 2 was
performed as previously described [23] using the Tagq-
man MicroRNA RT Kit (Life Technologies, Landsmeer,
the Netherlands) and individual miRNA RT primers in a
specific stem-loop conformation. Individual reverse tran-
scription (RT) and quantitative polymerase chain reac-
tion (qPCR) primers for miRNAs (hsa-miR-16, hsa-miR-
24, hsa-miR-219) were obtained from Life Technologies.
RT products were directly subjected to a pre-
amplifaction step using Tagman PreAmp Master Mix
(Life Technologies) and individual Tagman miRNA
primers for qPCR. The procedure was carried out ac-
cording to the manufacturer’s protocol for multiplexed
pre-amplification. The pre-amplification product was
then diluted eight times in RNAse-free 0.1x TE (1 mM
Tris-HCl pH 8.0/100 pM EDTA) buffer. First strand
c¢DNA synthesis on the RNA samples of cohort 3 was
performed using the Universal cDNA synthesis kit II
(Exigon) according to the manufacturer’s protocol. Per
sample 1 pl RNA was used in a 10 pl reaction mixture.
An inter-plate control (IPC) was created by pooling
RNA of 10 samples and used for cDNA synthesis. To
control for potential DNA contamination the IPC reac-
tions were also performed omitting the enzyme mix
(-RT). cDNA samples were aliquoted and stored at -
20 °C until PCR.

Quantitative PCR in CSF samples

For samples of cohorts 1 and 2, 5 pl of diluted pre-
amplification products of CSF was used according to the
manufacturer’s procedure with Tagman Universal Master
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Mix II (Life Technologies) and individual Taqman
miRNA primers for qPCR. Samples were measured in
duplicate. Amplification was performed using a qPCR
Thermal Cycler (Applied Biosystems, Nieuwerkerk aan
den IJssel, The Netherlands) with a denaturation step at
95 °C for 10 min, followed by 50 cycles of 95 °C for 15 s
and 60 °C for 60 s. Data of these qPCR experiments
were normalized using the geometric mean [26, 28] of
the two uniformly expressed miRNAs, ie., miR-16 and
miR-24. Relative expression levels (REL) were calculated
using the formula REL=2 %%, where Ct is cycle
threshold, and ACt = Ct (miRNA) — Ct (geometric mean
of miR-16 and miR-24).

Quantitative PCR (qPCR) on the cDNA samples of co-
hort 3 was performed using the ExiLENT SYBR Green
master mix (Exiqon) in combination with primer-mixes
for UniSP6, miR-150, miR-219, and miR-204 (Exiqon).
c¢DNA samples were diluted 10x of which 1 pl was
added to each 10-pl reaction. qPCRs were done accord-
ing to the manufacturer’s protocol with the addition of
0.2 pl ROX reference dye (Invitrogen, Waltham, MA,
USA) per reaction. All samples were run in triplicate on
an ABI7300. On each 96-well plate, the IPC, the IPC-RT,
and non-template controls were included in triplicate.
Raw Ct (cycle threshold) values were extracted; mean
and SDs were calculated for each sample and adjusted
using the mean IPC Ct values. Sample values were only
included for further analysis when at least two measure-
ments were detectable with less than two Ct difference.
Based on the study performed by Bergman and co-
workers [29], miR-204 Ct values were used for
normalization after confirming high correlation with
UniSP6 spike-in Ct levels (Spearman’s rho p <0.0001, r
=0.7093), qualifying miR-204 as a reference miRNA in
CSF. Relative miRNA expression levels were calculated
using REL = 272", where ACt=Ct target miRNA — Ct
miR-204. To identify the causes for samples to be un-
detectable by qPCR for the miRNAs under investigation,
the levels of UniSP6 and miR-204 were used. The min-
imally required RNA isolation yield was determined by
identifying the highest detectable Ct value of UniSP6
providing detectable Ct values for each miRNA separ-
ately. The minimally required total miRNA level was de-
termined by identifying the highest detectable Ct value
of miR-204 providing detectable Ct values.

Statistical analysis

Statistical differences were determined using the
ANOVA procedure in SPSS 20.0 for Windows Software
(SPSS Inc., Chicago, IL, USA). Using cross tabulation,
the incidence of MS and/or CIS patients with undetect-
able miR-219 expression was compared with that in con-
trol patients by calculating odds ratios (OR) with 95%
confidence intervals (CIs) and its p value (two-tailed
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Fisher Exact test). OR above 1 denotes a positive associ-
ation between the non-measurability of miR-219 expres-
sion and MS. As data were not normally distributed as
tested with the Shapiro-Wilk test, differences between
multiple groups or two groups were analyzed using the
Kruskall-Wallis test and the Mann-Whitney U test, re-
spectively. Correlations were tested using Spearman’s
non-parametric correlation coefficient. For estimation of
a biasing effect of age, analysis of variance (ANOVA) on
the ranks was applied with age as covariate. A test was
considered significant when p < 0.05.

Results

Absence of CSF miR-219 expression correlates with MS
diagnosis in three independent cohorts

We investigated the potential of miR-219 as a CSF bio-
marker discriminating MS from NHI in a first explora-
tory cohort. miR-24 and miR-16, surrogate markers for
total miRNA expression, were detectable in all samples.
In contrast, miR-219 could not be detected in all sam-
ples (Fig. 1a). Mean relative expression of miR-219 in in-
dividuals with detectable miR-219 was significantly
lower in CSF of SPMS and PPMS patients compared to
NHI (Fig. 1b). The odds ratio (OR) for a diagnosis of
progressive MS (SPMS and PPMS) versus NHI was 20.8
(p =0.0294) times higher if CSF miR-219 was undetect-
able (Table 2).

We next sought to validate these findings in a larger, in-
dependent second cohort of MS patients, NHI and NIND,
such as AD and IIH and IND. Again, miR-24 and miR-16
were detected in all samples, while the proportion of indi-
viduals with undetectable miR-219 was higher in the MS
patients’ groups (Fig. 1c). However, mean relative expres-
sion of miR-219 in individuals with detectable miR-219 did
not significantly differ in MS patients compared to controls
in this cohort (Fig. 1d). There was no correlation between
CSF miR-219 levels and age, disease duration, CSF erythro-
cyte count, or CSF leukocyte count. The OR for a diagnosis
of MS (RRMS, SPMS, PPMS, CIS) versus controls was 2.6
(p =0.0262) times higher if CSF miR-219 was undetectable,
and the OR for a diagnosis of progressive MS versus non-
MS was 3.6 (p=0.0165) times higher if CSF miR-219 was
undetectable (Table 2). The OR for a diagnosis of CIS ver-
sus controls (NHI, AD, IIH, IND) was not significant.

In a third cohort consisting of 90 MS patients and
22 controls, by omitting the pre-amplification step,
we used a slightly different method to measure
miRNA levels. Pre-amplification has a higher chance
of resulting in false positive signals, especially in
miRNAs with very low expression levels such as
miR-219. The omission did result in less measurable
total miRNA providing 38 MS and 8 controls with
sufficient total miRNA to be included in the analysis of
miR-219 expression. No differences in mean expression
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levels were observed between groups (data not shown), but
again, individuals with undetectable miR-219 were more
frequent in the MS patients’ groups (Fig. 1e). In this cohort,
the OR for a diagnosis of MS (RRMS, SPMS, and PPMS)
versus controls (IND and NIND) was 39.7 (p=0.0002)
times higher if CSF miR-219 was undetectable (Table 2).
Significance was also observed when selecting specific MS
groups (RRMS, SPMS, or PPMS) versus controls. miR-219
absence of detection was not correlated with gender or
EDSS.

In addition to miR-219, we measured miR-150 levels
in this cohort, as two groups independently showed dis-
criminative power to differentiate MS patients from con-
trols using this miRNA [29, 30]. This miRNA was thus
used to validate the reliability of the miR-219 measure-
ments in our study. miR-150 was detectable in 55 of the
112 CSF samples, while the frequency of undetectable
miR-150 was similar between groups in terms of insulffi-
cient RNA yield, insufficient total miRNA level, or insuf-
ficient miR-150 level. Pair-wise comparisons showed
significant differences in mean levels of miRNA-150 be-
tween RRMS and PPMS (p=0.007), and between
progressive-onset (PPMS) and relapse-onset (RRMS +
SPMS) disease (p = 0.023), but there were no differences
compared to controls (Fig. 1f). MiR-150 level was nega-
tively correlated to age (r=-0.298, p =0.027). To esti-
mate the biasing effect of age, analysis of variance
(ANOVA) on the ranks was applied with age as covari-
ate. This led to a loss of significance between RRMS and
PPMS (p=0.092), and between progressive-onset
(PPMS) and relapse-onset (RRMS + SPMS) disease (p =
0.089). No significant differences were found between
miR-150 levels in relapse-onset patients who did or did
not use interferon-beta. miR-150 expression levels were
not correlated with gender or EDSS.

Discussion

Differentiation of neural precursor cells, including
OPCs, is—amongst others—regulated by miR-219 [14—
18]. This suggests that the differentiation failure of
OPCs into mature oligodendrocytes in MS might be
(partially) due to the lack of miR-219 expression. In this
study, we investigated the levels of miR-219 in CSF in
relation to MS diagnosis. MS patients show the highest
rate of undetectable miR-219 compared to controls. In
addition, there is a strong positive association between
undetectable miR-219 and the diagnosis of MS (OR 2.9
and 39.7 in cohorts 2 and 3, respectively). We observed
these findings in three independent cohorts, by applying
two independent analytical procedures.

Our control groups consisted of neurologically healthy
individuals and individuals with non-inflammatory
neurological diseases (such as AD and IIH), but also
consisted of individuals with inflammatory neurological
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Fig. 1 Expression of miR-219 in CSF of MS patients and controls. a Percentage of CSF samples with undetected miR-219 in cohort 1. b Scatter
plot of miR-219 relative expression levels in CSF of individuals with detectable miR-219 levels of cohort 1. miR-219 levels were significantly
decreased in SPMS and PPMS compared to controls. Levels were normalized using the geometric mean of miR-24 and miR-16. ¢ Percentage of
CSF samples with undetected miR-219 in cohort 2. d Scatter plot of relative expression levels of miR-219 in CSF of individuals with detectable
miR-219 levels of cohort 2. Mean miR-219 levels in CSF of individuals with detectable miR-219 were similar in all groups. Levels were normalized
using the geometric mean of miR-24 and miR-16. e Percentage of CSF samples with undetected miR-219 in cohort 3. f Scatter plot of miR-150
relative expression levels in CSF of individuals with detectable miR-150 levels of cohort 3. miR-150 levels were significantly increased in RRMS
compared to PPMS, and in relapse-onset (RRMS, SPMS) compared to progressive-onset (PPMS). Levels were normalized using miR-204 levels. Black
horizontal lines = median REL values + interquartile range. * p < 0.05, ** p < 0.01. Abbreviations: RRMS relapsing remitting MS, SPMS secondary
progressive MS, PPMS primary progressive MS, CIS clinical isolated syndrome, IIH idiopathic intracranial hypertension, AD Alzheimer's disease, NHI
neurologically healthy individuals, NIND non-inflammatory neurological diseases, IND inflammatory neurological diseases

diseases other than MS. This study therefore particularly
looked into the specificity of miR-219 decrease in MS
compared to a wide range of other neurological diseases
for which a molecular biomarker does not necessarily
have clinical relevance in differentially diagnosing MS.
Future studies will therefore be necessary to further
evaluate the performance of miR-219 in more clinically
pertinent situations in which MS cannot be

differentiated from other neurological diseases that
mimic the MS phenotype.

In the third CSF cohort, we also measured miR-150
levels as an additional technical validation of the miRNA
analysis. We found miR-150 to be significantly upregu-
lated in relapse-onset (RRMS and SPMS) compared to
PPMS patients. However, after correction for age, only
trends remained for the differences in the mean miR-
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Table 2 Association between absence of miR-219 detection and MS

Subject comparisons

OR (95% Cl) p value two-tailed Fisher's Exact test

Cohort 1
MS (RRMS, PPMS, SPMS) vs. NHI
Progressive MS (PPMS, SPMS) vs. NHI
SPMS vs. NHI
Cohort 2
MS (RRMS, PPMS, SPMS, CIS) vs. controls (NHI, AD, IIH, IND)
Progressive MS (PPMS, SPMS) vs. controls (NHI, AD, IIH, IND)
SPMS vs. controls (NHI, AD, IIH, IND)
CIS vs. controls (NHI, AD, IIH, IND)
Cohort 3
MS (RRMS, PPMS, SPMS) vs. controls (NIND, IND)
RRMS vs. controls (NIND, IND)
PPMS vs. controls (NIND, IND)
SPMS vs. controls (NIND, IND)

10.52 (0.5156-214.8) 0.0664
20.78 (0.9238-467.3) 0.0294
23.80 (0.8934-634.0) 0.0350
2619 (1.173-5.847) 0.0262
3.636 (1.336-9.898) 0.0165
4.667 (1.291-16.87) 0.0314
1.821 (04777-6.945) 04594
39.67 (4.104-3834) 0.0002
26.25 (2.458-280.4) 0.0025
65.00 (2.237-1889) 0.0047
45.50 (3.479-595.1) 0.0010

Significant values are italicized

OR odds ratio, C/ confidence interval, CIS clinically isolated syndrome, RRMS relapsing remitting MS, SPMS secondary progressive MS, PPMS primary progressive MS,
NHI neurologically healthy individual, AD Alzheimer’s disease, /IH idiopathic intracranial hypertension, NIND non-inflammatory neurological disease, IND inflamma-

tory neurological disease

150 levels between groups. Previous studies on miR-150
in CSF by Bergman and coworkers and Quintana and co-
workers [29, 30] did not discriminate between the differ-
ent subtypes of MS, but found higher levels of miR-150 in
MS patients compared to controls, which we could not
confirm. Although the study by Bergman and coworkers
also reported a significant correlation with age (r=-0.22,
p =0.002), they did not correct for this potential bias [29].
The study by Quintana and coworkers did not report any
correlation analyses [30]. It is therefore unknown if the
differences identified in either study would still be signifi-
cant after correction for age. The effect of age on miRNA
levels should require more attention in miRNA research,
as age has been shown before to significantly modulate
miRNA expression levels in CSF [31].

Our study further shows that detection of miRNAs
in CSF is still challenging due to low levels of miR-
NAs in this body fluid leading to high amounts of
samples with undetectable levels. The differences in
the amount of undetectable samples from the differ-
ent cohorts in our study can be explained by the dif-
ferent analytic methods used, which included a pre-
amplification step in cohorts 1 and 2, not performed
in cohort 3. This step was omitted in cohort 3 as
pre-amplification has a higher chance of resulting in
false positive signals, especially in miRNAs with very
low expression levels such as miR-219. Detection
might further be increased by increasing the total
CSF volume used in the miRNA isolation procedures
or by further optimization of the miRNA isolation
procedure from biofluids to increase sensitivity.

miRNAs are interesting biomarker candidates as they
are highly stable in body fluids [32] and, unlike proteins,
the detection assays themselves are easily developed and
multiplexed. Therefore, once the issues described above
are evaluated further and more experience is gained,
miRNAs, and more specifically, miR-219, may emerge as
promising biomarkers for use in accurate diagnosis,
prognosis, and treatment options in MS disease.

Conclusion

We have been able to identify and validate absence of
miR-219 detection in CSF of MS patients compared to
controls, suggesting that it may emerge as a candidate
biomarker for MS diagnosis.
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