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Abstract

Background: The necessity of including both males and females in molecular neuroscience research is now well
understood. However, there is relatively limited basic biological data on brain sex differences across the lifespan despite
the differences in age-related neurological dysfunction and disease between males and females.

Methods: Whole genome gene expression of young (3 months), adult (12 months), and old (24 months) male and
female C57BL6 mice hippocampus was analyzed. Subsequent bioinformatic analyses and confirmations of age-related
changes and sex differences in hippocampal gene and protein expression were performed.

Results: Males and females demonstrate both common expression changes with aging and marked sex differences in
the nature and magnitude of the aging responses. Age-related hippocampal induction of neuroinflammatory gene
expression was sexually divergent and enriched for microglia-specific genes such as complement pathway components.
Sexually divergent C1q protein expression was confirmed by immunoblotting and immunohistochemistry.
Similar patterns of cortical sexually divergent gene expression were also evident. Additionally, inter-animal
gene expression variability increased with aging in males, but not females.

Conclusions: These findings demonstrate sexually divergent neuroinflammation with aging that may contribute to sex
differences in age-related neurological diseases such as stroke and Alzheimer's, specifically in the complement system.
The increased expression variability in males suggests a loss of fidelity in gene expression regulation with aging. These
findings reveal a central role of sex in the transcriptomic response of the hippocampus to aging that warrants further,

in depth, investigations.
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Background

Age-related changes across molecular and cellular pro-
cesses likely contribute to the development of neuro-
logical disorders and functional deficits as these become
more common at advanced ages. Understanding the
aging process and the contribution of aging to disease
and impairment of the CNS, also known as geroscience
[1], offers the potential to counteract these processes
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and thereby prevent, slow, and possibly reverse disease and
dysfunction. While we and others have examined changes
in hippocampal gene expression across the lifespan in
humans [2], monkeys [3], rats [4, 5], and mice [6, 7], most
of these studies included only male animals, did not
control for estrus cycle stage in females, or did not focus
explicitly on identifying sex differences and divergences in
gene expression with aging. The historical predominance
of male animal models in preclinical studies [8] remains to
be overcome despite efforts to include both sexes in pre-
clinical studies [9]. For this study, the terminology recom-
mendations stated in McCarthy et al. are followed. Sexual
dimorphisms are dialectic differences between males and
females (such as Y chromosome encoded gene expression
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is only in males). Sex differences are differences in average
level of a transcript or protein that are present throughout
life. Sex divergences are emergent, such as expression of a
gene at young age that is the same in males and females
but becomes different at old age [10].

The differential course and nature of brain aging
between males and females is a much needed area of
investigation as with improvements in medical care the
older population (>65 years) is growing rapidly. As age
increases, there is an enhanced prevalence of Alzheimer’s
and other neurodegenerative diseases, as well as non-
neurodegenerative cognitive impairments. Women have a
higher propensity of developing Alzheimer’s disease
compared to men [11, 12], a higher risk of mild cognitive
impairment [13] (though not all studies are in agreement
on the latter point [14]), and a lower risk of stroke but
poorer outcomes after stroke [15, 16]. In support of these
findings, greater age-related, non-neurodegenerative
impairments of spatial learning and memory have been
observed in female rats [17] and mice [18, 19] when
compared to age-matched males. Furthermore, females
demonstrate age-related changes in metabolic processes
in the brain earlier than males [20]. Together, these
data suggest differences in brain aging between the sexes
that may leave females more susceptible to cognitive and
neurological disorders later in life when compared to their
male counterparts. It is therefore imperative that studies
examine the molecular changes occurring in the brain
with aging in both males and females in an effort to better
determine how these changes contribute to disease and
dysfunction.

Age-related gradual loss in synapse number, strength,
and proper morphological phenotype occurs in both
sexes. However, changes in circulating sex hormones
may play a role in age-related alterations in synapse
physiology. High circulating concentrations of estrogen
enhance dendritic spine density, while high progesterone
levels cause decreases in density [21, 22]. These data
imply sex hormone changes may work through synapse
regulation in causing decreases in hippocampal volume
with age that have been reported to be greater in women
versus men [23]. However, sex-specific differences in
hippocampal volume with aging has not been consist-
ently observed [24]. Other factors that may contribute to
synaptic dysfunction with advanced age include the in-
duction of both peripheral inflammation and local neu-
roinflammation [25]. We have previously reported that
the major histocompatibility complex class I (MHCI)
pathway is induced with advanced age in hippocampal
synapses of old male rats [26] and that across the CNS
MHCI (and associated genes) are more highly induced
with aging in female than male mice [27]. This raises the
possibility that neuroinflammation with aging may differ
in nature and magnitude between the sexes. This is

Page 2 of 19

supported both by human gene expression data [2] and
the findings that female mice display higher numbers of
activated Mac-1 positive microglia in the dentate gyrus
(DG) and CA1l subregions of the hippocampus when
compared to age-matched males [28, 29]. The under-
standing of the molecular differences in the brain’s aging
response is limited with no reports comparing males
and females across the lifespan in in-bred, controlled
animal models. To further explore sex differences in hip-
pocampal aging, we examined gene expression in young
(3 months), adult (12 months), and aged (24 months)
male and female C57BL6 mice.

Methods

Animals

All animal experiments were executed according to proto-
cols approved by the Penn State University Animal Care
and Use Committee. Male and female C57BL/6 mice, sub-
strain NCr (NIA colony Charles River), aged 3 (young), 12
(adult), and 24 (old) months were purchased from the
National Institute on Aging colony at Charles River
Laboratories (Wilmington, MA). Mice were housed in the
Pennsylvania State University College of Medicine
Hershey Center for Applied Research facility in venti-
lated HEPA filtered cages with ad libitum access to
sterile food and water (Harlan 2918 diet, irradiated).
In this facility, all animals are free of helicobacter and
parvovirus. Following a 1-week acclimation period after
arrival, male mice were euthanized by decapitation.

In female mice, estrous cycle staging was performed
by daily vaginal lavage to control for cycling differences.
Estrous cycle staging for all female mice was performed
by daily vaginal lavage for 3—4 weeks, and animals were
euthanized during diestrous. Lavages were conducted as
described previously [27] and using well-established
methods [30]. Briefly, sterile filtered water was expelled
and aspirated approximately 4-5 times into the vaginal
canal until enough cells were obtained for cytological
analysis. Water from the vaginal wash was then placed
onto a glass slide, allowed to dry, then stained using
0.1% crystal violet. The estrous cycle consists of three
major phases: proestrus (high estrogen), estrus (low es-
trogen), and diestrus (low estrogen). The presence of
specific cell types is indicative of each stage of the cycle.
Specifically, proestrus is defined by having a predomin-
ance of round, nucleated epithelial cells, estrus by corni-
fied squamous epithelial cells, and diestrus by leukocytes
with few epithelial cells present [30].

Following euthanasia, the hippocampus (including CA1,
CA2, CA3, and dentate gyrus) and cortex (somatomotor/
orbital cortices, i.e., frontal cortex) were rapidly dissected.
Tissues were then frozen in liquid nitrogen and stored at
-80 °C until analysis. Mice used for immunohistochemical
analysis were processed as previously described [31].
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Animals were anesthesized with ketamine/xylazine and
then transcardially perfused with 1x phosphate-buffered
saline (PBS) followed by 4% paraformaldehyde buffered in
0.1 M sodium phosphate buffer (pH 7.4). Brains were then
postfixed in 4% paraformaldehyde overnight at 4 °C, cryo-
protected using 30% sucrose, embedded in Tissue-Tek
optimal cutting temperature and then frozen in isopen-
tane on dry ice.

RNA isolation

RNA preparation from hippocampus and cortex was per-
formed according to standard methods [AllPrep DNA/
RNA Mini (Qiagen)] as described previously [32]. RNA
quality was assessed by RNA 6000 Nano LabChip with an
Agilent 2100 Expert Bioanalyzer (Agilent, Palo Alto, CA).
Only samples with RNA integrity numbers greater than 7
were used in subsequent studies. RNA concentration was
assessed by relative fluorescence using the RiboGreen
assay (Invitrogen, Carlsbad, CA, USA).

Microarray analysis

Transcriptomic analyses were performed on hippocam-
pal samples derived from male and female young, adult,
and old mice (n = 4/group, N = 24) using Illumina Mouse
Ref8 microarrays (Illumina, San Diego, CA) according to
standard methods and as previously described [5, 33].
First-strand complementary DNA (cDNA) was synthe-
sized from 500 ng input RNA by 2-h incubation at 42 °C
with T7 Oligo(dT) primer, 10x first-strand buffer,
dNTPs, RNase inhibitor, and ArrayScript. Second-strand
c¢DNA was synthesized from first-strand ¢cDNA by 2-h
incubation at 16 °C with 10x second-strand buffer,
dNTPs, DNA polymerase, and RNase H, purified using
the Illumina TotalPrep kit (Ambion, Foster City, CA)
according to the manufacturer’s protocols and eluted in
19 pL 55 °C nuclease-free water. cRNA was synthesized
from second-strand cDNA using the MEGAscript kit
(Ambion) and labeled by incubation for 14 h at 37 °C with
T7 10x reaction buffer, T7 Enzyme mix, and Biotin-NTP
mix. Following purification with the Illumina TotalPrep
RNA Amplification kit (Ambion) according to manufac-
turer’s instructions, cRNA yields were quantitated using a
NanoDrop ND1000 spectrometer. Biotinylated cRNA
(750 ng) was hybridized by incubating for 20 h at 58 °C at
a rocker speed of 5. After incubation, BeadChips were
washed and streptavidin-Cy3 stained, dried by centrifuga-
tion at 275xg for 4 min, scanned and digitized using a
Bead Station Bead Array Reader.

Arrays were quality control checked, and initial data
analysis using average normalization with background
subtraction was performed in GenomeStudio (Illumina).
The full microarray dataset has been deposited in the
Gene Expression Omnibus, accession# GSE85084. Data
was mean normalized and then scaled to make the
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median of young males 1 in GeneSpring GX (Agilent).
Using detection p values generated by GenomeStudio,
probes were filtered for only those with present or mar-
ginal calls in 100% of the samples in at least one of the
six experimental groups (male, female/young, adult, or
old). This ensured that transcripts not reliably detected
in any group were excluded from statistical analysis and
that genes potentially expressed in only one experimen-
tal animal group were retained. A two-way ANOVA
design was used to identify transcripts differentially
expressed with the factors of age or sex and those with
interactions of the two factors. Pairwise post hoc analysis
(Student—Newman—Keuls, p <0.05) was performed on
those genes with a significant effect (p < 0.05) of age, sex,
or interaction effect. Rather than a global multiple test-
ing correction, genes passing the ANOVA and post hoc
statistical criteria were filtered for only those with an
absolute value fold-change cutoff of |1.2| in accordance
with standards for microarray analysis [34] and as previ-
ously described [26, 31, 35]. These two rounds of statis-
tical thresholds and fold-change cutoffs were used to
produce gene lists with a balance of minimizing type I
and type II errors rather than a blanket false discovery
rate correction which can produce a high type II error
rate [36]. For variance analysis, a gene-by-gene variance
(0°) for every gene that passed criteria as expressed was
calculated for each group (age x sex). Variance between
groups and data was visualized with by plotting the
density of variance for each group using R package
“ggplot2” version 3.3.0.

Bioinformatic analysis and visualization

Pathway, function, regulator, and cell-specificity analyses
were performed using Ingenuity Pathway Analysis—IPA
(Qiagen, Redwood City, CA) software and database
(March 2017 release). Cell-specific transcript lists were de-
veloped from previous reports [37, 38] (Additional file 1:
Tables S1-3) and then imported into IPA for analysis of
statistical over-representation. Microglial transcript signa-
tures of classical and alternative priming genes along with
the microglial sensome were derived from previous direct
sequencing of microglia [39]. M0-M1-M2 phenotype
gene expression markers (Additional file 1: Table S4) were
derived from [40]. These gene lists were imported into
IPA and compared to all gene sets from pairwise compari-
sons that passed statistical and fold-change cutoffs. For
each pathway, process, and regulatory analyses, an overlap
p value and an activation z score were computed [41]. For
the cell specificity and microglial gene set analysis, only
the p value was calculated as a z score is not applicable.
Custom gene set lists used are provided (Additional file 1:
Tables S1-4). The p value for enrichment of gene sets was
calculated using Fisher’s exact test with Benjamini—
Hochberg multiple testing correction based on overlap
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between genes in the list and known genes pertaining
to a function, targets of a transcriptional regulator, or
imported gene list. The activation z score is used to
infer likely activation states of a function or upstream
regulator based on the direction of changes in the gene list
and literature-derived functional or regulation directions.
A z score cutoff of >|2| was applied to limit lists to only
those functions and regulators with considerable activation
(positive z score) or inhibition (negative z score). Venn di-
agrams and heatmaps were generated with GeneSpring
v14.5 software (Agilent).

Quantitative PCR

cDNA was reverse transcribed with random primers
from 500 ng of total RNA [ABI High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems Inc.,
Foster City, CA)] as previously described [35]. qPCR was
performed with gene-specific primer probe fluorogenic
exonuclease assays (Additional file 1: Table S5) (TagMan,
Life Technologies) using standard methods [5]. Relative
gene expression was calculated with Expressionsuite v
1.0.3 software using the 27*“Ct analysis method with f-
actin as an endogenous control. Sample size for the qPCR
analysis was 7 =7-8/group for both confirmation of the
microarray findings in hippocampus and extension of
these targets to the cortex.

Immunoblotting

Hippocampal tissue was solubilized in a detergent-based
protein lysis buffer containing protease and phosphatase
inhibitors [100 mM NaCl, 20 mM HEPES, 1 mM EDTA,
1 mM dithiothreitol, 1.0% Tween20, 1 mM NazVO,, 1
Complete Mini EDTA-Free Protease Inhibitor Cocktail
Tablet (Roche Applied Science, Indianapolis, IN, USA)
for every 10 mL lysis buffer] using a bead mill (Retsch
TissueLyzer II; Qiagen, Valencia, CA, USA). Homogenates
were incubated at 4 °C with gentle rocking for 15 min,
and insoluble protein was removed by centrifugation
(10,000%g, 15 min, 4 °C). The soluble protein-containing
supernatant was collected, and protein concentrations
were determined by bicinchoninic acid quantitation
(Pierce, Rockford, IL, USA).

Immnoblotting was performed according to standard
methods [42, 43]. Protein samples were adjusted to a
concentration of 2 pug/uL in protein lysis buffer and LDS
sample buffer (Invitrogen, Carlsbad, CA, USA). Ten mi-
crograms of each prepared protein sample was denatured
at 95 °C prior to sodium dodecyl sulfate—polyacrylamide
gel electrophoresis separation using Criterion Tris—HCl
precast 4-20% acrylamide gradient gels (Bio-Rad,
Hercules, CA, USA). An independent gel containing
parallel aliquots of study samples was stained with Deep
Purple total protein stain (GE Healthcare, Piscataway, NJ,
USA) and quantitated by whole-lane digital densitometry
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(ImageQuant TL; Molecular Dynamics, Sunnyvale, CA,
USA) to ensure equal protein content between samples.
For immunoblotting, proteins were transferred to polyvi-
nylidene difluoride membranes (HyBond; GE Healthcare),
blocked with 3% BSA in PBS containing 1% Tween-20,
and incubated with primary antibodies (Additional file 1:
Table S6). Membranes were washed with PBS containing
1% Tween-20, incubated with species-appropriate sec-
ondary antibodies (Additional file 1: Table S6), and
visualized with enhanced chemiluminescence substrate
(GE Healthcare). Immunoreactive bands were imaged
on film, digitized at a resolution of 800 d.p.i. with a
transmissive scanner, and quantitated using automated
digital densitometry software with rolling ball background
subtraction (ImageQuant TL).

Immunohistochemistry
Cryosections of mouse brain were sectioned 14 pm thick
and processed for immunohistochemistry as previously
described [44]. Briefly, cryosections were incubated in
blocking solution (10% donkey serum, 5% bovine serum
albumin, and 0.5% Triton X-100 in PBS) for 1 h followed
by overnight incubation at 4 °C in primary antibodies
(Additional file 1: Table S6) diluted in blocking buffer.
Sections were then washed in PBS and incubated with
appropriate fluorophore-conjugated secondary anti-
bodies for 1.5 h. To label cell nuclei, sections were incu-
bated with Hoechst stain at 100 ng/ml for 30 min at
room temperature. Sections were then rinsed with PBS,
mounted with Aqua-Poly/Mount mounting medium
(Polysciences, Inc.) and covered with glass coverslips.
Sections were imaged with a Nikon Eclipse Ti-U
inverted research microscope. Whole brain images were
taken using x4 objective and stitched using 40% overlay.
Immunofluorescence assays of mouse brains were exe-
cuted as previously described [27]. Briefly, brains were
sectioned at 12 pm thick each, post-fixed in 2% parafor-
maldehyde, and rinsed in 1XPBS. Sections were then
blocked in 10% donkey serum diluted in 0.1% Triton X-
100 in PBS for 1 h at room temperature and incubated
overnight at 4 °C in a humid chamber with primary anti-
bodies to Clq and Ibal (Additional file 1: Table S6)
diluted in blocking solution. Slides were washed three
times with 0.1% Triton X-100/PBS, then incubated with
species-appropriate secondary antibodies (Additional file
1: Table S6) for 2 h at room temperature, protected from
light. Following three washes with 0.1% Triton X-100/
PBS, sections were rinsed with 1XPBS, and then cover-
slipped with ProLong Gold antifade mounting media
(ThermoFisher). Images were acquired using an Olympus
FV10i confocal microscope equipped with a x60 water
immersion objective. Background subtraction was done in
Image] (rolling ball radius = 50).
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Statistics

All qPCR and immunoblotting data were analyzed using
SigmaStat 3.5 (SyStat Software, San Jose, CA). Two-way
ANOVA analyses were performed with the factors of sex
and age. Post hoc testing was performed by Student—
Newman—Keuls (SNK) test with a < 0.05. For qPCR and
immunoblotting analysis, a Benjamini—Hochberg mul-
tiple testing correction was applied to the F test result to
correct for the number transcripts analyzed, and for im-
munoblotting, the correction was applied to the number
of proteins examined. Multiple testing correction was
applied to hippocampal and cortical analyses separately.
Gene expression variance was analyzed by two-way
ANOVA with SNK post hoc of the inter-animal vari-
ances in each group for each gene.

Results

To identify age and sex differences in hippocampal gene
expression, male and female mouse samples from ages
3 months (young), 12 months (adult), and 24 months
(old) were compared by microarray analysis. Estrous
cycle stage of the female mice was monitored daily for
3—4 weeks and all female mice were sacrificed during
diestrus. Old female mice were confirmed to be in
reproductive senescence (permanent diestrus).

Age-related gene expression changes in males and
females

Of the 25,697 probes on the microarray, 9540 passed fil-
tering as expressed in at least one of the experimental
groups. To compare the overall gene expression profiles
between groups, a principal component analysis (PCA)
was performed on the groups using the full set of 9540
expressed genes (Fig. 1a). Individual samples segregated
(female young—FY, female adult—FA, female old—FO,
male young—MY, male adult—MA, male old—MO) by
sex in first component by sex and by age in the second
component. Female mice showed a larger shift in global
gene expression profile with aging when compared to
age-matched males. To further assess age and sex-
specific differences in gene expression with aging, a two-
way ANOVA (factors of sex and age) was performed
with pairwise Student—Newman—Keuls post hoc testing
on all expressed genes. Genes passing ANOVA and SNK
post hoc were further filtered for only those with |>1.2|
fold change in the specific significant pairwise compari-
son. Five hundred sixty-four genes in total were signifi-
cantly altered in expression with aging in females and/or
males as visualized in the heatmap presented in Fig. 1b
and are given in Additional file 1: Table S7. Clustering of
the individual samples showed a separation by sex and
then age similar to that observed with the PCA. Compar-
ing the pairwise age-related differences in females, com-
monly regulated genes in multiple pairwise comparisons
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(Fig. 1c) were generally consistent in the direction of
change across comparisons. The exception being the 48
transcripts in the intersection of FA versus FY and FO ver-
sus FA, as these are not differentially expressed in the FO
versus FY comparison and demonstrated a “V” or
“inverted V” expression pattern across the lifespan. In
males, differences with age were consistent across pairwise
comparisons (Fig. 1d). Age-related changes in gene ex-
pression showed some commonalities between sexes
(Fig. 1le) and were almost always coordinately regulated
with age in males and females. However, the majority of
age-related changes were sex specific. Comparisons across
all six pairwise comparisons are presented in Additional
file 1: Figure S1.

Previous studies have also reported increased variabil-
ity of gene expression with aging at the cell-to-cell [45]
and inter-animal (animal-to-animal) [46, 47] levels, sug-
gestive of a loss of tight transcript control with aging.
Inter-animal variance (¢®) was computed for each
expressed gene within each group. Examining the distri-
bution of variance in males and females across the life-
span, an increase in gene expression variance was
evident with aging (two-way effect of age and interaction
of age and sex) (Fig. 2a). Post hoc testing (SNK) reveals
an increase in expression variance in old males as com-
pared to young and adult males. No differences with age
in variance were observed in females. Comparing differ-
ences in variance between sexes at each age, male gene
expression was more variant than females in old age but
not different at young and adult ages (Fig. 2b).

To place age-related changes in gene expression into a
biological context, each set of pairwise aging differences
was analyzed for over-representation of pathways
(Fig. 3a), processes (Fig. 3b), and regulators (Fig. 3c).
Activation of inflammatory pathways was evident in both
females and males with aging. Importantly, in females,
these changes are evident in both young versus old (FY vs
FO) and adult versus old (FA vs FO) comparisons indicat-
ing a more pronounced activation later in the lifespan
(Fig. 3a, b). Common upstream regulators were also
evident with aging (Fig. 3c), including a number of pro-
inflammatory factors. Full lists of pathways, regulators,
and processes are in Additional file 1: Table S8.

Recent studies have begun to define sets of genes that
are solely expressed/highly enriched (e.g., >10 fold) in
specific cell types using RNA sequencing of individual
cells with post hoc definition of the individual cell’s
identity [37] or purification of individual cell types
followed by RNA sequencing [38] (Additional file 1:
Table S1-3). Using cell-specific gene sets for neurons,
astrocytes, microglial, endothelial, mural, oligenodrocyte,
and other cells as references, it is possible to determine
if there are more age-related changes arising from
specific cell types than would be expected by random
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chance. In the current dataset, a high level of enrichment
in microglia-specific and to a lesser extent astrocyte-
specific genes was evident for age-related changes in gene
expression (Fig. 4a) but not of other cells types examined.
Similarly, recent work has sought to place microglial
genes in further subsets such as the sensome, classical
priming, and alternative priming. The microglial “sen-
some” is defined as a distinct set of messenger RNA
(mRNA) transcripts that encode for proteins involved in
microglial sensing of endogenous ligands and pathogens
[39]. Sensome genes were highly over-represented in age-
related changes with limited or no enrichment for classical
and alternative priming genes, potentially indicating an

altered surveilling state with aging but not consistent with
a prototypical microglial priming response (Fig. 4b). This
is further demonstrated by an enrichment of both M1 and
M2 activation state markers (from [40]) in males and
females with aging (Fig. 4c).

Sex differences in hippocampal gene expression across
the lifespan

The above analyses have focused on age-related changes
in gene expression but sex-differences within each of the
ages were also examined. For genes which were statisti-
cally significant for sex as a factor or showed an inter-
action of sex and age, pairwise sex comparisons within
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each age were also performed and filtered for fold differ-
ences |>1.2|. Most sex differences were found to be age
specific (Fig. 5a) with those changes common across
ages being coordinately regulated. Sex differences are
presented in heatmap form in Fig. 5b and full gene lists
are in Additional file 1: Table S9. Analyzing sex differ-
ences in expression for over-representation of pathways,
processes, and regulatory factors (Fig. 6a—c) reveals
primary effects at old age with females demonstrating
positive z scores, indicating activation, for inflammatory
processes as compared to old males (Additional file 1:
Table S10). When examining overrepresentation of
genes expressed by a single cell type, sex differences in
old age were highly enriched for microglia-specifc genes

(Fig. 6d) and sensome genes in particular (Fig. 6f).
Additionally, enrichment of MO and M1 marker genes
was evident in old animal sex differences with M2 markers
enriched in sex differences at the adult age (Fig. 6f).

Confirmation of differential gene and protein expression

With the clear enrichment of both sex- and age-
dependent changes in hippocampal gene expression of
microglial and inflammatory genes, a selection of micro-
glial ligands (Clqa, Clqc, and Ccl4; Fig. 7a), effectors
(Aifl, Lyz2, Tyrobp; Fig. 7b), and receptors (Ly86,
Gpr34, Cd52, TIr2; Fig. 7c) that were differentially
expressed from the microarray analysis were confirmed
by qPCR. These results confirm the microarray findings
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by an orthogonal method in a larger set of samples and
demonstrate the sexually divergent nature of age-related
changes. For all transcripts examined, there was an age-
related induction in females, while in males, smaller
magnitude increases in expression were evident (Ccl4,
Tyrobp, Ly86, Gpr34, Cd52, Tlr2). The increases in
expression with age in females was greater than in
males, resulting in sex differences at old age but not in
young animals (Clqa, Clqc, Ccl4, Lyz2, Tyrobp, Ly86,
Cd52, TIr2). Genes with alternate expression patterns
seen when comparing sexes and with aging were also

confirmed including Ccl21 where a sex difference at
young age dissipates with age-related induction in both
males and females, and Surfl with an age-related in-
crease in only males (Fig. 7d). Expression of X and Y
chromosome genes, Xist, and Jarid1d, respectively, were
analyzed as positive controls for sex differences/dimor-
phisms, as well as Dlgh4 as a negative control, a gene
that demonstrated no age or sex-dependent changes in
expression (Additional file 1: Figure S2).

To further confirm these findings at the protein level,
expression of Clqa and Clqc were examined in the
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hippocampus in the same set of male and female, young, Increased protein expression with aging was greater in
and old animals by immunoblotting. Concurrent with gene  females than males resulting in a sex difference in old ani-
expression, age-related increases in C1q protein expression  mals. C1q expression was qualitatively greater throughout

were evident in both females and males

(Fig. 8a, b). the brain as visualized by immunoreactive protein in both
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Fig. 5 Hippocampal gene expression sex differences across the lifespan.
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presentation of all sex differences in gene expression

females and males with aging (Fig. 8c—f). Recently, a prote-
omic analysis of isolated microglia from young (3-5 M)
and old (20-24 M) mice was reported [48]. Comparing the
proteins found to be differentially expressed with aging and
the transcripts observed here, common induction of
Dyncll2, Gltp, Tcirgl, Mobp, Ctsz, Ibal, Ly86, Cyba, and
H2-D1 were observed in both studies, with only Fgd2 dem-
onstrating opposite regulation, providing further support
that the transcript changes observed here are reflected at
the protein level.

Localization of protein expression was also examined,
and with aging, patches of Clq immunoreactivity were
evident in males and females (Fig. 8g, h), as previously re-
ported [49]. Continuing in this examination, Clq, with a
different antibody, was co-localized with Ibal in young and
old males and females (Fig. 8i-l). This further demon-
strated increased qualitative levels of C1q immunoreactivity
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with aging and the co-localization of this signal with the
microglial marker Ibal.

Lastly, to examine whether these sexually divergent
aging responses were evident in other brain regions, the
same set of microglial ligands, effectors, and receptors
was examined in cortex samples from the same animal
set. Significant pairwise differences are presented in
Fig. 9a—d. Cortical patterns were similar to those in the
hippocampus, with in many instances, a higher level of
induction evident in females vs. males. However, this
was not true for all of the genes examined.

Discussion

Summary of results

Consistent with previous data from human samples [2],
the studies presented here demonstrate an age-related
induction of inflammation-related gene expression in
both the hippocampus and cortex in the brains of aged
male and female mice. Importantly, changes in inflam-
matory genes were amplified in females, resulting in sex
divergences at old age—i.e., enhanced expression of
inflammation-related transcripts when compared to age-
matched males. Genes regulated with aging were highly
enriched for microglia-specific transcripts, and particu-
larly members of the complement pathway and the
microglial “sensome” [39]. Together, these data suggest
that while there are sex-common changes with aging in
the hippocampus, there is a significant difference in the
nature and magnitude of neuroinflammatory changes
between sexes. These effects of sex are also manifested
in an increase in inter-animal gene expression variability
with aging in males that is not observed in females.

Microglial activation with aging and sex differences
Microglia serve as the first line of defense in the CNS by
protecting the local environment against invading patho-
gens, helping recover from injury, and also playing sig-
nificant roles in synapse pruning and neurodevelopment
[50]. At homeostasis, microglia continuously monitor
the surrounding environment and as such, maintain a
ramified morphology with numerous long processes that
project out from the cell body. Upon activation by the
presence of an external pathogen, inflammation, or in-
jury, microglial morphology changes, and movement to
sites of injury or stress can occur along with a release
soluble immune mediators [51, 52].

Traditionally activated microglia have been split into
two distinct groups: M1 (classical) and M2 (activation/
deactivation) [52, 53]. Classical, M1 activation is trig-
gered by the presence of foreign antigen or pro-
inflammatory cytokines, whereby microglia become
more cytotoxic and release additional pro-inflammatory
cytokines and free radicals [54, 55]. Alternative activa-
tion (M2) of microglia yields a more anti-inflammatory,
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(See figure on previous page.)

Fig. 6 Pathway, function, and regulatory analysis of sex differences in gene expression. A selection of statistically over-represented pathways (a),

functions (b), and regulators (c) are presented with z scores is given in

are based on prior knowledge of known regulatory functions and direction of changes in the current dataset. Z scores >2 indicate significant activation
in females as compared to males and <—2 indicate significant inhibition in females compared to males. d Cell-specific transcripts from previous reports
[30, 31]) were compared to each pairwise set of sex differences. Fisher's exact test p values are plotted for cell types with significant over-representations.

Gen sets derived for the sensome, classical priming, and alternative microg|

(f) [33] were also examined for over-representation of age-related genes. Abbreviations are detailed in Additional File: Table S10

heatmap form with coloring according to the computed z score. Z scores

ial priming [32] (e),and gene sets indicative of MO, M1, and M2 microglial states

neuroprotective phenotype that is important in the tran-
sition between a classical inflammatory response, to a
decrease in inflammation [52, 54]. These microglia
secrete anti-inflammatory cytokines and neurotrophic
factors and help repair local damage [52]. Despite the

anti-inflammatory nature of M2 microglia, the irregular
abundance of both M1 and M2 type microglia may
underlie chronic neuroinflammation and parainflamma-
tion, with aging [52, 56]. In support of this, using an
Alzheimer’s disease mouse model, a distinct shift in

Hippocampus

i

*Rk 3w —

w
*
%
*

1‘_ -I-*é

T4 =

Microglial Ligands Q
Relative Expression
N
Relative Expression
N

o

Clqc Ccla

%

E =Ew

Relative Expression

® N

Microglial Effectors (=)
n

Relative Expression
Relative Expression

o

i
.
I
*
¥
¥
w
i
.
I
%
¥
¥

N
%
%
%

]

]
+
i

|

Relative Expression
X
%
i

o

(¢]
<
®
&

w

N
*
%
%

*

Relative Expression
[
I8y
I *
L
—
Relative Expression
N
L 3

o

o

o
*
%
%

I
i
b
**
t

Hl—
o
Relative Expression
N
(Y

o

Microglial Receptos

©

Relative Expression Q.

Relative Expression
D

o

EN

Relative Expression
N

—
-
I

i

]

—l—

o
i
i
i
%
¥

Alternative Expression Patterns

Pairwise age differences

I Female - Young [ Female - Adult [ Female - Old I Male-Young [ Male - Adult HEEE Male - Old

77777777 Pairwise sex differences

are the 25th and 75th percentiles, with median denoted by the b

the text. Solid comparison lines denote age-related changes with a sex and
of genes with alternate expression parameters were also confirmed

Fig. 7 gPCR confirmation of differential sex- and age-related hippocampal gene expression. Selected microglial ligands (a), effectors (b), and receptors
(c) targets identified in the microarray study were confirmed by gene-specific gPCR. Data is scaled to a mean value of 1 for young males. Boxes boundaries
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Clga-positive signals throughout the brain neuropil. Boxed area shows further magnified image to show the details of C1ga-positive patches.
Scale bars 1 mm. C1qg immunoreactivity was co-localized with Ibal immunoreactivity in young females (i), old females (j), young males (k), and
old males (I) demonstrating microglial expression. Scale bars 20 um wide view, 5 ym zoomed view

activated microglia phenotypes occurs between the be-
ginning of AP pathology (alternative phenotype) and ad-
vanced stages (classical phenotype), the latter of which
may cause disease-associated neuron loss [57]. As such,
aberrant induction or changes in the ratios of M1 and
M2 activated microglia with increasing age may be mal-
adaptive. However, the idea of M1 and M2 activation
states may be too simplistic [58]. These maladaptive re-
sponses may be due to miscommunication between

damaged neurons and microglia causing persistent para-
inflammation [59, 60] and failure of appropriate re-
sponses to different stimuli [60] that can switch from
being neuroprotective to neurotoxic with aging [61].
This altered response pattern with aging is observed in
response to pathogens [62], and injury [63]. Together,
these data suggest that with advanced age, microglia are
undergoing activation and alteration, potentially with a
shift from neuroprotection to neurotoxicity. More
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broadly, these findings add aging to the variety of stimuli
that demonstrate a sexually divergent or dimorphic neu-
roinflammatory response [64, 65].

Previous focused examinations have found sex differ-
ences at early ages in selected microglial genes at ages
equivalent to the young and adult ages examined here
[66]. We have demonstrated distinct differences in the
induction of MHCI pathway genes in the brains of aged
male and female 24-month-old mice, where aged
females exhibit significantly higher expression [27] when
compared to males, a finding with support in human
datasets [2]. The findings here expand the analysis to the
broader transcriptome and identify an enrichment of
microglial-specific genes in age changes and sex

differences. Many of the neuroinflammatory genes chan-
ged in expression with aging were common between the
sexes with females demonstrating greater magnitude
changes. The sexually divergent induction of Tyrobp is
of special interest give the recent identification of
Tyrobp, also known as TREM2, as a causal regulator in
microglia associated changes in AD [67] through the
exact mechanistic role of Tyrobp in AD etiology is still
being determined [68]. Confirmation of selected micro-
glial ligands, effectors, and receptors validates this pat-
tern of gene expression. Reproducibility of expression
signatures for microglial aging with previously reported
data suggests a robustness to this phenomenon [69]
though this study is the first to our knowledge to
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examine sex differences with aging in detail. Selected
transcripts were also found to be sexually divergent in the
cortex with some differences as compared to the hippo-
campus, indicative of the microglial heterogeneity observed
between brain regions [70].

Our findings demonstrate that neuroinflammation
with aging may represent a pattern presents a phenotype
more complex than the previous hypotheses of micro-
glial as existing in activated or resting. These states may
be too simplistic, with microglial having surveilling,
classically activated/M1, and alternatively activated/M2
states or an even more complex combination of activa-
tional states and not all microglia in a brain region being
in the same state [39, 71, 72]. Future studies examining
isolated microglial cells with new high-throughput single
cell technologies [73] would greatly extend these findings
to determine if these patterns are shared across individual
microglial cells, or if the activation is heterogenous. Add-
itionally, interventional studies to determine if these
changes are positively adaptive or maladaptive are needed,
as well as examinations of the regulation of age-related
changes by sex hormones or non-sex hormone mediated
mechanisms [74].

A potential concern with these findings is the effects
of a change in microglial that microglia cell numbers
with age. Changes in the number of hippocampal micro-
glial with age remain an unresolved controversy. Studies
have reported no changes in microglial number in mice
[29] and rats [31], decreased microglial number [75],
and increased microglial number in females but not
males with aging [28]. Microglial quantitation was not a
goal of this study but clearly is an important question to
be resolved in the field and if there are changes in
microglial population numbers they could play a role in
the findings presented here. Arguing against this inter-
pretation are the findings of similar patterns of gene in-
duction in isolated microglial from aged mice [39], an
experimental design that would normalize out differ-
ences in cell number. Ultimately, detailed analysis of
microglial number and activation state with aging in
both females and males are needed [76] and application
of single cell analysis techniques will allow further
refinement of these findings.

Complement pathway and neuroinflammation

Previous reports have detailed alterations in neuroin-
flammation in the aged brain (as reviewed in [25]) as
well as the participation of cellular senescence in the
pathogenesis of brain aging [77]. A notable finding pre-
sented here is the significant induction in expression of
complement pathway components in both males and fe-
males but to a much greater extent in females, in the
hippocampus with advanced age. These findings are sup-
ported by data in the aged human hippocampus [78]
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and in studies in male mice [49]; however, to date, no
between sex comparisons has been conducted. Previous
work has generally examined sexually divergent differ-
ences in gene expression in the brain with aging com-
paring the number of gene expression changes in both
males and females and separating gene expression pro-
files based on up or downregulation [2]. The study pre-
sented here used a more holistic approach and examined
over-representation of classes of genes as well as both
inductions and reductions in gene expression that may
act synergistically.

Recent evidence has shown the importance of comple-
ment pathway components including Clq and C3 in
activity-dependent synaptic refinement during develop-
ment [79-82]. Complement factors expressed in the
brain effectively label cells that need to be eliminated by
local complement receptor-expressing microglia, includ-
ing weak synaptic inputs [79, 80]. In response to a
pathogen, West Nile Virus, Clqa induction is a driver of
synapse loss with greater Clqa induction associated with
poorer cognitive performance [83]. Given the role of
complement pathway components in the homeostatic
regulation of synapse formation and health, aberrant ex-
pression of complement proteins may play a significant
role in synapse loss with aging and neurodegenerative
disease [80, 82]. Previous studies have demonstrated an
induction in the expression of complement factors with
advanced age in both the aged mouse neocortex and
cerebellum [6] and the aged rat striatum [84] as well as
in neurodegenerative disease (as reviewed in [85]). Re-
cently, complement pathway factors have been shown to
play strong roles in synapse loss with normal aging [86]
and the pathogenesis of neurodegenerative disease [87].
This suggests that aberrant neuron—microglial communi-
cation via the complement pathway leads to inappropriate
synapse loss which may lead to cell death and the mani-
festation of neurodegenerative disease [80]. In further sup-
port of this, findings from a mouse model of glaucoma
demonstrated elevated Clq expression is evident in adult
retinal synapses prior to neuron cell death, suggesting
aberrant expression of complement components leads to
synapse loss and disease progression [80, 82].

Age-related complement Clq induction with aging has
previously been described in male rodents and in human
brain [49]. Little data exists detailing sex divergences in in-
flammatory gene expression in the brain. In the human
brain, a higher basal level of complement cascade genes
and interleukin 1 receptor-like 1 (IL1RL1) was evident in
women versus men [88]. However, to date, no studies have
directly described a sexually divergent neuroinflammatory
response with aging. The data presented here demon-
strates a heightened neuroinflammatory profile in aged
female mice in comparison to males. This is true at
mRNA and protein levels and can be seen across the brain
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with patches of Clq immunoreactivity developing with
aging, that have previously been demonstrated to overlap
with microgial markers [49].Elevated levels of complement
pathway components and other immune factors may
cause aberrant synapse elimination mediated by microglia
potentially underlying the sexually divergent hippocampal
volume loss seen in humans with aging [23]. Together,
these data suggest sex may be a risk factor for the devel-
opment of immune related diseases and CNS neuroin-
flammation [23, 89-91], specifically post-menopause
when estrogen levels drop [92]. These sex dependent
biases seen in gene expression may possibly be driven by
differences in circulating sex hormones, sex-specific devel-
opmental program, or direct actions of sex chromosomes
[93]. As such, including females in preclinical geroscience
research studies is imperative in order to develop a full
understanding of the “sexome” [94] with brain aging.

Other pathways and expression entropy with aging

In addition to the microglial and neuroinflammatory
findings, significant decreases in the activation of both
Notchl and Presenilin 1 and 2 (PSEN1, PSEN2) regu-
lated genes with aging were evident in both males and
females. Importantly, both pathways are associated with
neurogenesis. Specifically, Notchl expression is neces-
sary for neural stem cell maintenance [95] while PSEN1
expression regulates neuroprogentor cell differentiation
[96]. Notchl expression has previously been reported to
be downregulated in the subventricular zone (SVZ) with
aging [97]. Additionally, defects in PSEN1 expression are
associated with the manifestation of Alzheimer’s disease
in old age [98]. Decreased expression of these pathways
may contribute to the known impairment of neurogen-
esis with aging in the hippocampus [99]. It is also im-
portant to note that microglia play important roles in
neurogenesis [100, 101]. As such, the altered microglia-
derived gene expression and the inhibition of pro-
neurogenesis pathways evident with aging in the present
study could be interrelated [102].

Another finding from the present study was decreased
expression of tuberous sclerosis complex 2 (TSC2) regu-
lated genes in both males and females with advanced
age, and also in aged females when compared to age-
matched males. TSC2 forms a complex with TSC1, and
together, the complex functions to inhibit the mamma-
lian target of rapamycin (mTOR) [103]. mTOR serves as
a master regulator of many cellular processes including
protein synthesis, proliferation, and cell survival. In the
brain, mTOR has a multitude of different functions such
as neuronal development, growth of dendrites and
axons, neuronal migration, synaptic plasticity, neuro-
transmission, and DNA repair (see review [104]). Im-
portantly, aberrant expression of TSC1 or TSC2 causes
significant neurological disease, and overactivation of
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mTOR has been linked to the development of neurode-
generative disorders [103]. mTOR is a strong negative
regulator of autophagy. As such, dysregulated mTOR
activity following decreased TSC2 expression may lead
to increased protein aggregation and decreased autoph-
agy. Pharmacological inhibition of mTOR via rapamycin
treatment has shown increases in life span [105] and
neuroprotection [106], suggesting dysregulated mTOR
signaling with age may contribute to brain aging. How-
ever, evidence exists documenting the requirement of
mTOR in the development of proper dendritic arbor
morphology [107] and in the stress-induced induction of
post-synaptic density 95 (PSD-95) protein expression
[108], hypothesized to underlie long-term potentiation
(LTP) and long-term depression (LTD). These data high-
light the need to study alterations in mTOR activity and
responsiveness in both young and aged population to
better understand aberrant activity with age.

The finding of increased inter-animal gene expression
variance with aging in males but not females provides a
different view on hippocampal gene expression with
aging. Given that the mice used in this study (C57BL/6)
are inbred and spent their entire lives under the same
controlled conditions, males demonstrated an increased
animal-to-animal variance with aging that was not evi-
dent in females. Previously increased cell-to-cell variabil-
ity of gene expression in cardiomyocytes [45] with aging
has been reported, as well as animal-to-animal increases
in gene expression variance in a variety of tissues in
males [46, 47, 109]. We observe that males steadily in-
crease in variance across the lifespan while females do
not, ultimately resulting in a higher level of inter-animal
variance in old age in males as compared to females.
The only report we are aware of examining males and
females also found that inter-animal variance increased
only in males [109]. The functional implications of this
difference are not clear, but this may be a result of
underlying epigenetic changes [110]. Confirmation stud-
ies across multiple tissues and with higher sample num-
bers are needed to explore this intrinsic variability with
aging in males. Lastly, for both the sex divergences in
gene expression and the increased variance in gene ex-
pression only observed in males, future studies will need
to dissect the causes of these differences at the level of
development, direct action of gonadal hormones, or sex
chromosomes [93] and whether these age-related alter-
ations are associated with cognitive impairment [111].

Conclusions

The results presented here demonstrate that aged fe-
males experience a distinct difference in brain aging
when compared to age-matched males, suggesting fe-
males undergo a higher level of microglial activation
with age. These data have significant implications on the
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molecular mechanisms underlying brain aging, and the
development of neurodegenerative disease in males and
females, highlighting the importance of studying both
sexes in geroscience research. This study did not seek to
mechanistically explain sexually divergent responses
with aging. Future studies, preferably from isolated cell
types or single cells, are needed to address the origin of
these sex-specific responses in gene expression. Add-
itionally, examinations of the functional implications of
sexually divergent aging responses are needed. Nonethe-
less, these data provide a compelling rationale for the in-
clusion of both female and male rodents in basic aging
research and offer important new avenues for future
investigation.
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