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Abstract

Background: Cerebral microbleeds (CMB) are MRI-demonstrable cerebral microhemorrhages (CMH) which commonly
coexist with ischemic stroke. This creates a challenging therapeutic milieu, and a strategy that simultaneously protects
the vessel wall and provides anti-thrombotic activity is an attractive potential approach. Phosphodiesterase 3A (PDE3A)
inhibition is known to provide cerebral vessel wall protection combined with anti-thrombotic effects. As an initial step
in the development of a therapy that simultaneously treats CMB and ischemic stroke, we hypothesized that inhibition
of the PDE3A pathway is protective against CMH development.

Methods: The effect of PDE3A pathway inhibition was studied in the inflammation-induced and cerebral amyloid
angiopathy (CAA)-associated mouse models of CMH. The PDE3A pathway was modulated using two approaches:
genetic deletion of PDE3A and pharmacological inhibition of PDE3A by cilostazol. The effects of PDE3A pathway
modulation on H&E- and Prussian blue (PB)-positive CMH development, BBB function (IgG, claudin-5, and fibrinogen),
and neuroinflammation (ICAM-1, Iba-1, and GFAP) were investigated.

Results: Robust development of CMH in the inflammation-induced and CAA-associated spontaneous mouse models
was observed. Inflammation-induced CMH were associated with markers of BBB dysfunction and inflammation, and
CAA-associated spontaneous CMH were associated primarily with markers of neuroinflammation. Genetic deletion
of the PDE3A gene did not alter BBB function, microglial activation, or CMH development, but significantly reduced
endothelial and astrocyte activation in the inflammation-induced CMH mouse model. In the CAA-associated
CMH mouse model, PDE3A modulation via pharmacological inhibition by cilostazol did not alter BBB function,
neuroinflammation, or CMH development.

Conclusions: Modulation of the PDE3A pathway, either by genetic deletion or pharmacological inhibition, does
not alter CMH development in an inflammation-induced or in a CAA-associated mouse model of CMH. The role
of microglial activation and BBB injury in CMH development warrants further investigation.
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Background
Cerebral microbleeds (CMB) represent perivascular de-
positions of blood degradation products in the brain and
are a common MRI finding in cerebrovascular disease,
especially stroke and cerebral amyloid angiopathy (CAA)
[1]. The prevalence of CMB ranges between 18 and 68%
in patients with ischemic stroke, and presence of CMB
is associated with an increased risk for development of
intracerebral hemorrhage (ICH) [2]. Routine ischemic
stroke prevention strategies require anti-thrombotic
agents (platelet medications and anti-coagulants),
which may increase the risk for hemorrhage in patients
with CMB [2, 3]. Presence of CMB thus indicates a
hemorrhage-prone state of the cerebral blood vessels,
which may be exacerbated with anti-thrombotic agents.
Coexisting ischemic and hemorrhagic processes (“mixed
cerebrovascular disease”) thus pose a challenge to the
stroke neurologist. A therapeutic strategy that simultan-
eously protects the vessel wall and has anti-thrombotic
activity is therefore an attractive potential approach for
mixed cerebrovascular disease.
Phosphodiesterases (PDEs) are enzymes that catalyze

the hydrolysis of cyclic nucleotides (cyclic adenosine 3′-
5′-monophosphate (cAMP) and cyclic guanosine 3′-5′-
monophosphate (cGMP)) [4, 5]. Platelets possess several
PDEs (PDE2, PDE3, PDE5) that modulate the level of
cAMP and cGMP that are critical for platelet function
[6]. PDE inhibitors interfere with platelet activation
pathways by inhibiting the degradation of and thereby
increasing the intracellular levels of cAMP and cGMP.
Among the various PDEs, PDE3 has a high affinity for
both cAMP and cGMP with a preference for cAMP, and
the primary PDE3 isoform that regulates platelet func-
tion is PDE3A [7]. The PDE3A inhibitor cilostazol has
been shown to be clinically effective for secondary pre-
vention of ischemic stroke [8, 9]. In both in vitro and in
vivo experiments, PDE3A inhibition appears to provide
blood vessel wall protection by enhancing blood–brain
barrier (BBB) properties [10–12] and reducing
hemorrhagic injury [12–15]. These observations provide
a strong rationale for utilizing PDE3A inhibition as ther-
apy for brain microhemorrhagic disorders.
Given the above rationale, the aim of the current study

was to examine the effect of PDE3A pathway inhibition
on development of cerebral microhemorrhages (CMH),
the pathological substrate of CMB. We studied CMH
development in two well-characterized mouse models:
the inflammation-induced mouse model of CMH [16] and
an amyloid precursor protein transgenic (APP/Tg2576)
mouse model that develops CAA with spontaneous CMH
[17]. The overall hypothesis of the current study was that
the inhibition of the PDE3A pathway is protective against
inflammation-induced and CAA-associated CMH. To test
this hypothesis, two approaches for PDE3A pathway

modulation were used: genetic deletion of PDE3A and
pharmacological inhibition of PDE3A by cilostazol. The
effects of PDE3A pathway modulation on CMH develop-
ment, BBB function, and neuroinflammation were there-
fore investigated.

Methods
Animals and treatment
All animal procedures followed the “Principles of Labora-
tory Animal Care” (NIH Publication No. 85-23), were ap-
proved by the University of California, Irvine, Institutional
Animal Care and Use Committee, and followed the AR-
RIVE Guidelines for animal experiment reporting. To
study the effects of PDE3A inhibition on CMH develop-
ment, two approaches—genetic deletion and pharmaco-
logical inhibition of the PDE3A pathway—and two mouse
models—the inflammation-induced mouse model of
CMH and an amyloid precursor protein transgenic
(APP/Tg2576) mouse model that develops CAA and
spontaneous CMH—were used.

Genetic deletion of PDE3A and CMH development
PDE3A knockout (KO) mice were used in the inflam-
mation-induced mouse model of CMH. Heterozygous
PDE3A+/− KO breeding pairs (generously provided by
Dr. Vincent Manganiello [7, 18]) were bred in-house to
maintain a colony of homozygous PDE3A−/− KO and
wild-type (WT) littermate controls. All mice used in the
study were 16–18 months, and the average weight of the
WT and PDE3A−/− KO mice was 44 ± 1.9 and 41 ± 1.5 g,
respectively.
Lipopolysaccharide (LPS) derived from the gram-negative

bacterium Salmonella typhimurium (Sigma-Aldrich, St.
Louis, MO) was used to induce CMH development, as de-
scribed previously [16]. Briefly, PDE3A−/− KO mice (n = 14)
and WT littermate controls (n = 16) were given LPS
(3 mg/kg) intraperitoneally (i.p.) at 0, 6, and 24 h. Control
PDE3A−/− KO mice (n = 6) and control WT littermates
(n = 4) received an equal volume of sterile saline i.p.
(Teknova, Hollister, CA). Mice fed and drank ad lib and
received 1 mL sterile saline subcutaneously (s.q.) on an as-
needed basis to prevent dehydration. Mice were monitored
for 48 h, after which they were sacrificed (Fig. 1a). Mice that
died prematurely were excluded from histochemical and
biochemical analysis, but were used for survival analysis.

Pharmacological inhibition of PDE3A and CMH
development
The effect of pharmacological inhibition of PDE3A by
cilostazol, a selective PDE3A inhibitor [19], on CMH
development was studied in both the inflammation-
induced and CAA-associated APP/Tg2576 (Tg) mouse
models. To determine the achievable plasma cilostazol
concentration, 4-month-old Tg mice and WT littermates
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were fed with mouse chow formulated with 0.03, 0.3, or
3% of cilostazol (Harlan, Madison, WI) (six WT and six
Tg mice in each group), for 2 weeks. Plasma was col-
lected before introduction of the cilostazol diet (T0)
and after 2 weeks on the diet (T1). Cilostazol plasma
levels were measured on HPLC by Sumika Analysis &
Evaluation Service (Shanghai) Ltd.

To study the effect of cilostazol on CAA-associated
CMH, 22-month-old Tg mice and WT littermates were
housed under a 12-h light–dark cycle with free access to
chow and water. Mice were divided into four groups: Tg
mice fed regular chow (Tg; n = 6); Tg mice fed 0.3%
cilostazol diet formulated in regular chow (Tg-CIL; n = 8);
WT mice fed regular chow (WT; n = 8); and WT mice fed

Fig. 1 Experimental designs used in the current study. Workflow and treatment groups used to determine the effect of genetic deletion of
PDE3A on inflammation-induced CMH development (a), pharmacological inhibition of PDE3A with cilostazol on CAA-associated spontaneous
CMH development (b), and pharmacological inhibition of PDE3A with cilostazol on inflammation-induced CMH development (c)
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0.3% cilostazol formulated in regular chow (WT-CIL;
n = 7), for 10 weeks (Fig. 1b). Mice that died prema-
turely during the course of the 10 weeks were
excluded from histochemical and biochemical analysis,
but were used for survival analysis.
Nine weeks after initiation of the cilostazol or regular

diet regimen, LPS derived from the gram-negative bac-
terium S. typhimurium was administered (1 mg/kg dose
of i.p. at 0, 6, and 24 h) to a separate series of WT mice
fed regular chow (WT-LPS; n = 10) and WT mice fed
0.3% cilostazol formulated in regular chow (WT-CIL-
LPS; n = 8) to study the effect of pharmacological inhib-
ition of the PDE3A pathway on inflammation-induced
CMH development. WT mice fed regular chow and
treated with an equal volume of PBS (i.p. at 0, 6, and
24 h) served as control mice (WT-PBS; n = 8). Mice were
kept under standard vivarium conditions for 7 days after
the first LPS or PBS injection and observed twice daily
(Fig. 1c). Mice that died prematurely during the course
of the 7 days were excluded from histochemical and bio-
chemical analysis, but were used for survival analysis.

Brain preparation
Forty-eight hours after the first LPS or saline injection
(for genetic manipulation studies) or 10 weeks after initi-
ation of cilostazol or regular diet treatment (for pharma-
cological inhibition studies), animals were anesthetized
with a lethal dose of Nembutal (150 mg/kg, i.p.), cardiac
perfusions were performed using ice-cold PBS for 5 min
to flush the cerebral vasculature, and the brains were
harvested immediately. The left cerebral hemispheres
were flash-frozen using dry ice and stored at −80 °C for
biochemical analyses. The right hemispheres were fixed
in 5 mL of 4% paraformaldehyde (BM-154, Boston Bio-
Products, Ashland, MA) at 4 °C for 72 h for histo-
logical analyses.

Cerebral microhemorrhage detection
Fixed mouse hemi-brains were examined for grossly
visible surface CMH using a ×10 magnifying glass. Sur-
face microhemorrhages were quantified and photo-
graphed using Canon PC2054 20 megapixel (Canon,
Tokyo, Japan). Fixed brains were placed in an agarose
mold and sectioned into 40-μm coronal sections with a
vibratome (Technical Products International, Inc., St.
Louis, MO). Every 4th, 5th, 6th, and 7th section was
collected, and approximately 30 sections were analyzed
per mouse brain.
The effect of PDE3A KO (genetic manipulation of the

PDE3A pathway) on acute CMH development was
assessed by examining the formation of hematoxylin and
eosin (H&E)-positive CMH in a 2-day study, as de-
scribed previously [20]. Prussian blue (PB) staining to
detect CMH was not used for the PDE3A KO acute

study based on previous studies from our lab [20]. For
H&E staining, every 6th section (approximately 30 sec-
tions per mouse brain) was stained with H&E by the re-
search service core at UCI Medical Center’s Department
of Pathology and Laboratory Medicine. CMH were iden-
tified as a collection of red blood cells (RBC) that appear
red-orange under H&E staining using a light microscope
with a ×20 objective by an observer blinded to the ex-
perimental groups. All brain sections were examined,
and all identified CMH were photographed using an
Olympus BX40 microscope and CC-12 Soft-Imaging
System with Olympus Microsuite™-B3SV software. Digi-
tized images were analyzed using NIH ImageJ version
1.46r to determine CMH number, size (μm2), and posi-
tive area (sum of the area occupied by all the individual
H&E-positive CMH expressed as a percentage of the
total area analyzed) per mouse by an observer blinded to
the experimental groups. To determine the total area an-
alyzed, H&E-stained slides were scanned using the
Canon MP250 scanner (Canon, Tokyo, Japan) under 600
dots per inch (DPI). The total area of each brain section
was quantified using NIH ImageJ software and added
to determine the total tissue area that was analyzed
per mouse. The total CMH positive area was then nor-
malized to the total tissue area for each mouse and
expressed as a percentage of the total area analyzed, as
mentioned above.
To study the effect of the PDE3A inhibitor cilostazol

on CAA-associated CMH development, the PB method
for hemosiderin (a marker of subacute CMH) was used
[17, 20]. Briefly, three coronal sections per brain with
coordinates −1.2, −2.2, and −3.2 mm posterior to the
bregma selected according to The Mouse Brain in
Stereotaxic Coordinates were stained with PB and coun-
terstained with nuclear fast red [21]. All brain sections
were examined, images of microscopic hemorrhages were
taken using Olympus BX-UCB microscope with a ×20 ob-
jective, and CMH were analyzed using NIH ImageJ soft-
ware by an investigator blinded to the experimental
groups. Eclipse tool was used as a convex hull to encircle
the CMH to determine the average size and total positive
area of the PB-positive lesion in square micrometers based
on the incorporated scale bar. For the total PB-positive
area, individual PB-positive lesions for all the three brain
sections were summed. The number, average size, and
total area of PB-positive CMH per section were reported
as described previously [17].

TNF-α and β-TG ELISA
In the genetic manipulation studies, blood samples were
obtained before and 26 and 48 h after LPS or saline in-
jection via the retro-orbital sinus using heparinized ca-
pillary tubes (Fisher Scientific, Hampton, NH). For this,
mice were briefly anesthetized using 3% isoflurane.
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Blood samples were collected on ice and centrifuged at
8000 × g for 15 min at 4 °C. For TNF-α (a marker of sys-
temic inflammation) ELISA, supernatant was collected
and assayed using a TNF-α ELISA kit (Life Technologies,
Carlsbad, CA) as per the manufacturer’s protocol. For β-
thromboglobulin (β-TG; a marker of platelet activation)
ELISA, blood was collected in 1-mL Eppendorf tubes
prefilled with a plasma collection solution (21% by vol-
ume of collected blood) to prevent in vitro platelet acti-
vation and assayed using a β-TG ELISA kit (US
Biological, 023697, Salem, MA) as per the manufac-
turer’s instructions. The plasma collection solution for
β-TG comprised acid–citrate–dextrose (ACD) National
Institutes of Health formula A (Sigma-Aldrich, St.
Louis, MO), aspirin (Sigma-Aldrich, St. Louis, MO),
and prostaglandin E1 (Sigma-Aldrich, St. Louis, MO) at
a 100:8:1 ratio, respectively [22].

Immunohistochemistry
Immunohistochemistry was performed for ICAM-1 (in-
flammation-inducible protein intercellular adhesion
molecule-1; a marker of endothelial cell activation), IgG
(a marker of BBB damage), Iba-1 (ionized calcium-
binding adaptor molecule 1; a marker of microglia/mac-
rophages), and GFAP (glial fibrillary acidic protein; a
marker of astrocytes). Immunohistochemical analyses
[16] were performed using one coronal 40-μm section
per mouse approximately −2 to −2.4 mm posterior to
the bregma, and identical coordinate sections per stain-
ing from the analyzed groups were incubated in 0.5%
hydrogen peroxide in 0.1 M PBS (pH 7.4) containing
0.3% Triton X-100 (PBST) for 30 min at room
temperature to block endogenous peroxidase activity.
After washing with PBST, sections were incubated for
30 min with PBST containing 2% bovine serum albumin
(BSA) to block non-specific protein binding. Sections
were then incubated overnight at 4 °C with a rabbit anti-
mouse IgG antibody (1:200 dilution; Jackson ImmunoR-
esearch, West Grove, PA), rabbit monoclonal antibody
against ICAM-1 (1:500 dilution; Abcam, Cambridge,
MA), rabbit antibody against Iba-1 (1:200 dilution;
Wako Chemicals USA, Richmond, VA), or rabbit anti-
body against GFAP (1:2000 dilution; Abcam, Cambridge,
MA). After washing with PBST, sections were incubated
at room temperature for 1 h with biotinylated anti-
rabbit IgG (1:500 dilution; Jackson ImmunoResearch,
West Grove, PA), followed by 1 h incubation at room
temperature with ABC complex according to manufac-
turer instructions (Vector Laboratories, Burlingame,
CA). Sections were developed with 3,3′-diaminoben-
zidine (DAB) (Vector Laboratories, Burlingame, CA).
Sixteen images per brain section from the frontal cortex,
hippocampus, and thalamus areas were acquired ran-
domly at ×20 magnification, and the total positive

immunoreactive area (expressed as % of the total area
analyzed) was quantified using NIH ImageJ software by
an observer blinded to the experimental groups.

Claudin-5 and fibrinogen western blot
Frozen left cerebral hemispheres were pulverized, the
powder was homogenized in T-PER buffer (Thermo
Fisher Scientific, Waltham, MA) with protease inhibitor
cocktail (Roche Applied Science, Indianapolis, IN), and
soluble fraction was collected after 100,000g centrifuga-
tion for 1 h at 4 °C. Protein concentrations for western
blot analysis were determined using the Bradford protein
assay, and approximately 50 μg of protein was resolved
on SDS-PAGE 4–12% gel (Invitrogen, Carlsbad, CA).
Primary antibodies for claudin-5 (tight junction protein)
(Abcam, Cambridge, MA) and fibrinogen (a marker of
BBB permeability) (US Biological, Salem, MA) were used
at 1:2000 dilution followed by HRP-conjugated donkey
anti-rabbit secondary antibody (Jackson Immuno Re-
search, West Grove, PA). NIH ImageJ software was used
to quantify western blot band intensities. Control protein
GAPDH (Santa Cruz Biotechnology, Dallas, TX) was
used to normalize band intensity measurements.

Statistical analysis
Data were represented as mean ± SEM, and all statistical
analyses were performed using GraphPad Prism 5
(GraphPad Software Inc., La Jolla, CA). To compare more
than two groups, one-way ANOVA with Bonferroni’s post
hoc test was used for normal data and the Kruskal-Wallis
test with Dunn’s post hoc test for non-normal data.
The Student t test was used to compare two groups
with normally distributed data. Survival curves were
analyzed using the Log-rank test. One-sample t test
was used to compare group means with a hypothe-
sized mean = 0 when the values in the control group
were zero (e.g., surface microhemorrhages and TNF-α
levels in the control mice). A p value of <0.05 was
considered statistically significant.

Results
Survival
While studying the effect of genetic deletion of PDE3A
on CMH development, all the control mice (control
PDE3A−/− KO (n = 6) and control WT littermates (n = 4))
and LPS-treated WT mice (n = 16) survived the duration
of the study. The LPS-treated PDE3A−/− KO mice had a
significantly lower (p < 0.01) survival (9 of 14) compared
with the LPS-treated WT mice (Fig. 2a).
While studying the effect of pharmacological inhib-

ition of PDE3A with cilostazol on CAA-associated CMH
development, the survival of mice was as follows: 8/8 in
the WT group, 6/7 in the WT-CIL group, 5/6 in the Tg
group, and 8/8 in the Tg-CIL group (Fig. 2b). No
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significant difference in the survival was observed between
any experiment groups. While studying the effect of
pharmacological inhibition of PDE3A with cilostazol on
inflammation-induced CMH development, the survival of
mice was as follows: 8/8 in the WT-PBS group, 5/10 in
the WT-LPS group, and 5/8 in the WT-CIL-LPS group
(Fig. 2c). LPS treatment caused a significant reduction
(p < 0.05) in survival in the WT and WT-CIL treated
mice compared with the PBS-treated WT mice.

Genetic deletion of PDE3A and surface cerebral
microhemorrhages
No grossly visible CMH were visible on the brain surface
of mice treated with saline, in either WT or PDE3A−/−

KO mice. A 3 mg/kg dose of LPS at 0, 6, and 24 h in-
duced the development of grossly visible surface micro-
hemorrhages 48 h after the first LPS injection, in both
WT (9.5 ± 1.9 per brain; p < 0.05) and PDE3A−/− KO
(8.3 ± 2.9 per brain; p < 0.05) mice compared with saline
controls (Fig. 3a). Genetic deletion of PDE3A had no
significant effect on LPS-induced surface microhemor-
rhage development, and no significant difference be-
tween LPS-treated WT and LPS-treated PDE3A−/− KO
mice was observed.

Genetic deletion of PDE3A and H&E-positive acute
parenchymal cerebral microhemorrhages
Negligible H&E-positive acute parenchymal CMH were
observed in saline-treated WT (0.021 ± 0.008 per brain
section) and PDE3A−/− KO (0.06 ± 0.03 per brain sec-
tion) mice. A 3 mg/kg dose of LPS at 0, 6, and 24 h sig-
nificantly increased the formation of H&E-positive acute
parenchymal CMH in both the WT (0.71 ± 0.16 per
brain section) and PDE3A−/− KO (1.2 ± 0.46 per brain
section) mice compared with their respective saline-
treated controls (Fig. 3b). There was a trend toward a
higher H&E-positive CMH number in the LPS-treated
PDE3A−/− KO mice compared with the LPS-treated WT
mice (p > 0.05).

Fig. 2 Survival analysis for the different experimental groups.
Significant decrease in survival of PDE3A KO mice treated with LPS
compared with the WT, PDE3A KO, and LPS-treated WT mice while
studying the effect of genetic deletion of PDE3A on inflammation-
induced CMH development (a). No difference in the survival
between any experiment groups while studying the effect of
pharmacological inhibition of PDE3A with cilostazol on CAA-associated
CMH development (b). LPS treatment caused a significant reduction
in survival in the WT and WT-CIL treated mice compared with PBS-
treated WT mice while studying the effect of pharmacological
inhibition of PDE3A with cilostazol on inflammation-induced CMH
development (c). Statistical test: Log-rank test for survival analysis.
#p < 0.05 compared with WT, PDE3A KO, and LPS-treated WT,
*p < 0.05 compared with WT-PBS
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LPS treatment produced H&E-positive CMH that were
significantly larger in size compared with the saline con-
trols, in both the WT and PDE3A−/− KO mice. However,
the mean CMH size did not differ significantly between
LPS-treated WT and LPS-treated PDE3A−/− KO mice
(Fig. 3c). Similarly, the total CMH load (or the CMH
positive area) was significantly higher in the LPS-treated
WT and LPS-treated PDE3A−/− KO mice compared with
their respective saline-treated controls, but no difference
between LPS-treated WT and LPS-treated PDE3A−/−

KO mice was observed (Fig. 3d). Representative images
of H&E-positive CMH in the saline- and LPS-treated
WT and PDE3A−/− KO mice are shown in Fig. 3e.
Overall, genetic deletion of PDE3A did not significantly
alter H&E-positive inflammation-induced acute CMH
development in the current study.

Serum TNF-α and β-TG levels
TNF-α levels were close to the detection limit in the
saline-treated WT and PDE3A−/− KO mice (data not
shown). Two hours after the last LPS injection (or 26 h
after the first LPS injection), serum TNF-α levels were
significantly elevated in both the WT (265 ± 60 pg/mL)

and PDE3A−/− KO (131 ± 35 pg/mL) mice and the TNF-α
levels were significantly higher in the WT mice compared
with the PDE3A−/− KO mice (Fig. 4a). TNF-α levels con-
tinued to be significantly elevated at 48 h after the first
LPS injection compared with saline controls; however, no
significant difference was observed between LPS-treated
WT (61 ± 8 pg/mL) and LPS-treated PDE3A−/− KO (62 ±
11 pg/mL) mice (Fig. 4a). Serum TNF-α levels were sig-
nificantly associated (Spearman r = 0.48, p < 0.05) with the
CMH load in the LPS-treated WT mice (Fig. 4b), but no
significant correlation was observed in the LPS-treated
PDE3A−/− KO mice. No significant difference was ob-
served in the extent of platelet activation as measured by
plasma β-TG between the groups (data not shown).

Pharmacological inhibition of the PDE3A pathway with
cilostazol and CMH development
The plasma cilostazol readings were negligible in mice
before the diet introduction (0.15 ± 0.15 ng/mL) and in-
creased in the 0.03% (1175 ± 303.2 ng/mL), 0.3% (3676 ±
495.6 ng/mL), and 3% (4088 ± 670.4 ng/mL) groups. These
levels are comparable to the plasma levels of cilostazol in
humans following a 200 mg dose [23]. The mean cilostazol

Fig. 3 Genetic deletion of PDE3A and inflammation-induced CMH development: Significant increase in grossly visible surface CMH in the LPS-
treated WT and LPS-treated PDE3A KO mice compared with their respective saline controls (a). Significant increase in H&E-positive parenchymal
CMH number (b), size (c), and area (d) in the LPS-treated WT and LPS-treated PDE3A KO mice compared with their respective saline controls.
Representative images of H&E-positive CMH in saline- and LPS-treated WT and PDE3A−/− KO mice (e). Data are presented as mean ± SEM.
Statistical test: one-way ANOVA with Bonferroni’s post-test or Kruskal-Wallis test with Dunn’s post-test for parenchymal CMH and one-sample
t test with a hypothesized mean = 0 for surface CMH. *p < 0.05, **p < 0.01, ***p < 0.001

Sumbria et al. Journal of Neuroinflammation  (2017) 14:114 Page 7 of 14



plasma levels were similar in the 0.3 and 3% groups and
significantly higher than in the control and 0.03% groups.
Based on this, a 0.3% cilostazol supplemented diet was
used for the pharmacological inhibition studies.
In the studies examining the effect of cilostazol on

CAA-associated spontaneous CMH development, we
found that APP/Tg2576 (Tg) mice had a significantly
higher number of spontaneously developed CAA-asso-
ciated PB-positive CMH (12 ± 1.1 CMH per brain section;
p < 0.01) compared with the WT littermates (3 ± 0.6 CMH
per brain section) (Fig. 5a). Ten weeks of treatment with
cilostazol, however, did not significantly alter the number
of PB-positive CMH in both the Tg (8 ± 2 CMH per brain
section) and WT (5 ± 2 CMH per brain section) mice as
shown in Fig. 5a. Similarly, the average size and total area
of the PB-positive lesions were significantly higher in the
Tg mice compared with the WT littermates, and cilostazol
treatment did not affect the size and area in WT or Tg
mice (Fig. 5b, c). The PB-positive lesion size and total area
was 701 ± 189 and 2608 ± 970 μm2 in the WT mice and
497 ± 161 and 2086 ± 800 μm2 in the WT-CIL mice, re-
spectively. Similarly, the PB-positive lesion size and total
area was 5040 ± 1206 and 61,971 ± 15,561 μm2 in the Tg
mice and 9918 ± 2412 and 91,594 ± 30,473 μm2 in the Tg-
CIL mice, respectively. Representative images showing
PB-positive lesions in the WT and Tg mice with and with-
out cilostazol treatment are shown in Fig. 5d. Overall, Tg
mice had significantly higher CAA-associated PB-positive
CMH development compared to WT mice, and 10-week
cilostazol treatment did not alter PB-positive CMH devel-
opment in the WTand Tg mice.
In the studies examining the effect of cilostazol on in-

flammation-induced PB-positive (subacute) CMH devel-
opment, we found that the PB-positive lesion number,
size, and area were significantly higher in the LPS-treated
WT mice fed regular diet compared with the PBS controls
fed regular diet (Fig. 6a–c). Cilostazol treatment did not

alter the PB-positive lesion number, size, or total area in
the LPS-treated WT mice (Fig. 6a–c). Representative im-
ages showing PB-positive lesions in the WT, WT-LPS,
and WT-LPS-CIL mice are shown in Fig. 6d. Overall,
10-week cilostazol treatment did not alter PB-positive
inflammation-induced CMH development.

Genetic and pharmacological modulation of the PDE3A
pathway, neuroinflammation, and blood–brain barrier
function
Figures 7 and 8 show the effect of PDE3A modulation
on the various markers of neuroinflammation and BBB
function in the inflammation (LPS)-induced and CAA-
associated CMH mouse models.
In the inflammation-induced CMH mouse model used

for the PDE3A KO studies, LPS treatment produced a
significant increase in brain levels of ICAM-1 (a marker
of endothelial activation) (Fig. 7a), markers of neuroin-
flammation (Iba-1 and GFAP) (Fig. 7b, c), and BBB func-
tion (IgG, fibrinogen, and claudin-5) (Fig. 7d–f ) in the
WT and PDE3A−/− KO mice compared with saline-
treated controls. With genetic deletion of PDE3A, there
was a significantly reduced ICAM-1 positive immunore-
active area in both the presence and absence of LPS.
GFAP positive immunoreactive area was significantly
lower in the LPS-treated PDE3A−/− KO mice compared
with the LPS-treated WT littermates (Fig. 7a, c). Genetic
deletion of PDE3A did not alter microglial activation
(Iba-1) or BBB function (IgG, claudin-5, and fibrinogen),
either in the presence or absence of LPS.
In the CAA-associated CMH mouse model used for

the pharmacological inhibition studies with cilostazol,
the ICAM-1 and Iba-1 positive immunoreactive areas
were significantly higher in the Tg mouse brains com-
pared with the WT littermates, while increases in the
GFAP positive immunoreactive area in the Tg mice
reached statistical significance only in those mice treated

Fig. 4 Significant increase in serum TNF-α levels in LPS-treated WT mice compared with LPS-treated PDE3A KO mice, 26 h after the first LPS
injection (or 2 h after the last LPS injection) (a). No significant difference in the serum TNF-α levels between the LPS-treated WT mice compared
with the LPS-treated PDE3A KO mice, 48 h after the first LPS injection (a). No detectable TNF-α levels were observed in the saline-treated WT
and PDE3A KO mice. Significant correlation between the serum TNF-α levels of LPS-treated WT mice and number of H&E-positive CMH (N = 15).
(b). Data are presented as mean ± SEM (a) and scatter plot with Spearman correlation coefficient (b). Statistical test: Student’s t test for TNF-α
level comparison at 26 h and Spearman correlation coefficient. *p < 0.05
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with cilostazol (Fig. 8a–c). Markers of BBB function
(brain parenchymal IgG, fibrinogen, and claudin-5) did
not differ significantly between the WT and Tg mice
(Fig. 8d–f ). Cilostazol treatment had no significant effect
on any marker of endothelial activation, neuroinflamma-
tion (except GFAP), or BBB function in either WT or Tg
mice compared with their respective regular feed controls
(Fig. 8a–f ). In the inflammation-induced CMH mouse
model, cilostazol treatment did not reduce markers of
endothelial, astrocyte, or microglial activation, or injury to
BBB (data not shown).

Discussion
In the current study, we investigated the effects of
PDE3A pathway modulation in two mouse models of
CMH: the inflammation-induced mouse model and the
amyloid precursor protein transgenic mouse model that
develops CAA and spontaneous CMH. Our main finding
is that PDE3A pathway modulation, either by genetic
deletion of PDE3A or pharmacological inhibition of the
PDE3A isoform by cilostazol, did not alter CMH

development. This effect of PDE3A pathway modulation
on CMH development is consistent with no reduction in
BBB injury that was observed with both genetic deletion
of PDE3A and cilostazol treatment.
CMH is the pathological substrate of CMB and repre-

sents a hemorrhage-prone state of the brain. In the
current study, we used two models of CMH. Because
inflammation plays a central role in CMB development
[16], in our first model, LPS was used to induce the for-
mation of CMH. Consistent with previous work, LPS
treatment resulted in robust development of acute H&E-
positive CMH, and LPS-induced acute CMH formation
in this model was associated with an increase in endo-
thelial activation (ICAM-1), markers of neuroinflamma-
tion (Iba-1 and GFAP), and BBB injury (IgG and
fibrinogen) [16]. Interestingly, LPS-induced acute H&E-
positive CMH development was accompanied by an in-
crease in claudin-5 levels. Claudin-5 is a dynamic tight
junction protein that is shown to undergo temporal
changes with BBB disruption, and studies report in-
creased claudin-5 expression with BBB disruption [24].

Fig. 5 Pharmacological inhibition of PDE3A and CAA-associated spontaneous CMH development. Significant increase in Prussian blue (PB)-
positive CMH number (a), size (b), and area (c) in the Tg mice compared with the WT mice. No significant effect of PDE3A inhibition by
cilostazol on any of these CMH parameters. Representative images of PB-positive lesions (indicated by arrows) in WT and Tg mice with or
without cilostazol treatment (d). Data are presented as mean ± SEM. Statistical test: one-way ANOVA with Bonferroni’s post-test or Kruskal-
Wallis test with Dunn’s post-test. *p < 0.05, **p < 0.01
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This may explain the elevated claudin-5 levels in mice
treated with LPS that have increased BBB permeability
as indicated by an increase in brain IgG and fibrinogen
(Fig. 7d, e). Further, LPS-induced acute CMH were asso-
ciated with peripheral TNF-α levels, corroborating other
work showing a link between peripheral inflammation
and CMH development [25]. These results support the
notion that inflammation-induced injury at multiple sites
of the cerebral vasculature results in reduced BBB func-
tion, which is central to acute CMH development [26].
PDE3, also known as cGMP-inhibited PDE, comprises

two subfamilies, PDE3A and PDE3B. Both isoforms show
unique expression patterns; PDE3A is highly expressed by
the cardiovascular system, whereas PDE3B is highly
expressed in the cells involved in lipid metabolism and
glucose regulation [27]. Both isoforms are expressed in
mouse brain regions including the cortex, subcortex, and
cerebellum [28]. Inhibition of PDE3A, either by genetic
manipulation or pharmacologically, increases the levels of
cAMP, thus interfering with platelet activation pathways
[29]. PDE3A inhibition also provides anti-oxidant, anti-
inflammatory, and microvascular vessel wall protection

[3]. These properties of PDE3A inhibition make this ap-
proach particularly attractive for CMH treatment when
both ischemic and hemorrhagic lesions coexist [3]. PDE3A
inhibition by cilostazol has been reported to protect the
BBB via mechanisms including nitric oxide production
[30], MMP-9 modulation [15, 31], protection of tight
junction proteins [11, 32], and increase in phospho-CREB
[32]. These effects of cilostazol appear to result in reduced
hemorrhagic transformation in mouse models of ischemic
stroke [15, 31].
In the current study, genetic deletion of the PDE3A

isoform did not alter CMH development in the LPS-
induced mouse model of CMH and provided no protec-
tion against BBB injury and microglial activation. PDE3A
KO mice treated with LPS had lower survival compared
with the other experimental groups, for reasons that are
unclear. Genetic deletion of PDE3A significantly reduced
LPS-induced markers of peripheral (serum TNF-α) and
brain (ICAM-1 and GFAP levels) inflammation. Reduc-
tion in LPS-induced peripheral TNF-α in the PDE3A
KO mice in the current study is consistent with previous
work showing significant reduction in LPS-induced

Fig. 6 Pharmacological inhibition of PDE3A and inflammation-induced CMH development. Significant increase in LPS-induced PB-positive CMH
number (a), size (b), and area (c) in the WT mice compared with PBS controls. Representative images of PB-positive lesions (indicated by arrows) in
WT controls, mice treated with LPS or with LPS and cilostazol (d). No effect of cilostazol treatment on any of these CMH parameters. Data are pre-
sented as mean ± SEM. Statistical test: one-way ANOVA with Bonferroni’s post-test or Kruskal-Wallis test with Dunn’s post-test. *p < 0.05, **p < 0.01
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TNF-α production in vitro with PDE3A inhibition [33].
Peripheral TNF-α and brain ICAM-1 and GFAP were
significantly associated with CMH development in WT
mice [16]. However, in spite of reduction in these
markers of inflammation, we saw no reduction in LPS-
induced CMH development in the PDE3A KO mice. We
also observed that the peripheral TNF-α levels were not
associated with LPS-induced CMH in the PDE3A KO
mice. These results imply that BBB injury and microglial
activation, rather than endothelial and astrocyte activa-
tion, are involved in LPS-induced CMH development, a
subject requiring further investigation.
Clinical evidence shows that the use of platelet medica-

tions increases the prevalence of CMB and ICH in patients
with ischemic stroke and CAA [3]. In CAA patients, pres-
ence of CMB predicts the risk of future ICH, and studies
show that the use of anti-thrombotic agents increases the
risk of ICH in patients with CAA [34]. A recent study in a

transgenic mouse model of CAA reported protective ef-
fects of PDE3A inhibition on degeneration of pericytes
and microvascular smooth muscle cells, as well as im-
provement in perivascular drainage and rescue of CAA-
associated behavior deficits, when applied early and long
term [35]. The same study reported a dramatic increase in
PDE3A expression in cerebral vessels severely affected by
CAA. In our study, 22-month-old Tg2576 showed robust
development of CAA-associated spontaneous PB-positive
CMH; these subacute or chronic CMH were primarily
associated with markers of neuroinflammation rather than
active BBB dysfunction, consistent with previous work
[36]. The dose of cilostazol used in our experiment was
comparable to that used by Maki and group [35]; however,
we did not observe significant changes in CAA-associated
number, size, or area of spontaneous CMH after PDE3A
inhibition. Further, cilostazol intervention in Tg2576 mice
did not affect neuroinflammation and BBB function. The

Fig. 7 Effect of genetic deletion of PDE3A on neuroinflammation and BBB function in the inflammation-induced CMH mouse model. Significant
increase in ICAM-1 (a), Iba-1 (b), and GFAP (c) positive immunoreactive area in the LPS-treated WT and LPS-treated PDE3A KO mice compared
with their respective saline controls. Significant reduction in ICAM-1 in both the saline-treated PDE3A KO and LPS-treated PDE3A KO mice
compared with their respective WT controls (a). Significant reduction in GFAP positive immunoreactive area in the LPS-treated PDE3A KO
mice compared with LPS-treated WT mice (c). No effect of PDE3A deletion on Iba-1. Significant increase in brain IgG (d), fibrinogen (e), and
claudin-5 (f) in the LPS-treated WT and LPS-treated PDE3A KO mice compared with their respective saline controls. No significant difference in
any of these markers of BBB function with PDE3A deletion. Data are presented as mean ± SEM. Statistical test: one-way ANOVA with Bonferroni’s
post-test or Kruskal-Wallis test with Dunn’s post-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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lack of changes in Tg2576 mice may be due to the shorter
period of intervention (10 weeks in the current study vs 8,
14, or 17 months, reported in [35]) and the late start of
intervention (22 months old), when Tg2576 mice have
significant CAA and CAA-associated CMH. Prophylactic
intervention may be more efficient than therapeutic treat-
ment (e.g., 10 weeks in the current study), for the modula-
tion of CAA and CAA-associated CMH.
This is the first study to report the effects of genetic

deletion of the PDE3A isoform on neuroinflammation
and BBB injury associated with microscopic lesions such
as CMH. A limitation of our study is that we cannot rule
out the possibility that global inhibition of the PDE3A
pathway in this model caused an increase in other PDE
isoforms that are ubiquitously expressed in the brain
[37] as a compensatory mechanism to degrade cAMP
[38, 39]. Another limitation of our study is that the work
analyzed only inflammation- and CAA-induced CMH,
and did not address other causes of CMH, e.g., hyper-
tension. Further, two different histology protocols were
used for the genetic deletion and pharmacological
inhibition studies: H&E for acute CMH detection in the
genetic deletion studies and PB for the detection of
subacute CMH in the pharmacological inhibition studies.
Finally, absence of protection against CMH development
in these models does not rule out a potential therapeutic
role for PDE3A modulation in mixed cerebrovascular

disease. Given the known anti-thrombotic effects of
PDE3A inhibition, absence of enhanced CMH develop-
ment is modestly encouraging. This positive feature is mit-
igated by the absence of BBB protection in these studies.

Conclusions
Our study showed that modulation of the PDE3A pathway
does not alter development of CMH. These findings were
similar for mouse models using either genetic deletion
or pharmacological inhibition of the PDE3A pathway.
Neither CMH development nor BBB function was
altered with PDE3A pathway modulation in both the
inflammation-induced and CAA-associated mouse models
of CMH. The role of microglial activation and BBB injury
in CMH development warrants further investigation.
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