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Abstract

Background: We previously demonstrated that neuregulin-1 (NRG-1) was neuroprotective in rats following
ischemic stroke. Neuroprotection by NRG-1 was associated with the suppression of pro-inflammatory gene
expression in brain tissues. Over-activation of brain microglia can induce pro-inflammatory gene expression by
activation of transcriptional regulators following stroke. Here, we examined how NRG-1 transcriptionally regulates
inflammatory gene expression by computational bioinformatics and in vitro using microglial cells.

Methods: To identify transcriptional regulators involved in ischemia-induced inflammatory gene expression, rats
were sacrificed 24 h after middle cerebral artery occlusion (MCAO) and NRG-1 treatment. Gene expression profiles
of brain tissues following ischemia and NRG-1 treatment were examined by microarray technology. The Conserved
Transcription Factor-Binding Site Finder (CONFAC) bioinformatics software package was used to predict
transcription factors associated with inflammatory genes induced following stroke and suppressed by NRG-1
treatment. NF-kappa B (NF-kB) was identified as a potential transcriptional regulator of NRG-1-suppressed genes
following ischemia. The involvement of specific NF-kB subunits in NRG-1-mediated inflammatory responses was
examined using N9 microglial cells pre-treated with NRG-1 (100 ng/ml) followed by lipopolysaccharide (LPS; 10 μg/
ml) stimulation. The effects of NRG-1 on cytokine production were investigated using Luminex technology. The
levels of the p65, p52, and RelB subunits of NF-kB and IkB-α were determined by western blot analysis and ELISA.
Phosphorylation of IkB-α was investigated by ELISA.

Results: CONFAC identified 12 statistically over-represented transcription factor-binding sites (TFBS) in our dataset,
including NF-kBP65. Using N9 microglial cells, we observed that NRG-1 significantly inhibited LPS-induced TNFα and
IL-6 release. LPS increased the phosphorylation and degradation of IkB-α which was blocked by NRG-1. NRG-1 also
prevented the nuclear translocation of the NF-kB p65 subunit following LPS administration. However, NRG-1
increased production of the neuroprotective cytokine granulocyte colony-stimulating factor (G-CSF) and the nuclear
translocation of the NF-kB p52 subunit, which is associated with the induction of anti-apoptotic and suppression of
pro-inflammatory gene expression.
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Conclusions: Neuroprotective and anti-inflammatory effects of NRG-1 are associated with the differential regulation
of NF-kB signaling pathways in microglia. Taken together, these findings suggest that NRG-1 may be a potential
therapeutic treatment for treating stroke and other neuroinflammatory disorders.

Keywords: Bioinformatics, Gene expression, Inflammation, Ischemia, Microarray, Neuregulin, Stroke, Transcription
factor-binding site (TFBS)

Abbreviations: BSA, Bovine serum albumin; CONFAC, Conserved Transcription Factor-Binding Site Finder;
DMEM, Dulbecco’s modified Eagle’s media; ECA, External carotid artery; ELISA, Enzyme-linked immunosorbent assay;
FBS, Fetal bovine serum; ICA, Internal carotid artery; IL-1β, Interleukin-1β; IkB, Inhibitory kappa B; IKK, IkB kinase;
IPA, Ingenuity Pathway Analysis; LPS, Lipopolysaccharide; MCA, Middle cerebral artery; MCAO, Middle cerebral artery
occlusion; NF-kB, Nuclear factor kappa B; NIK, NF-kB-inducing kinase; NO, Nitric oxide; NRG-1, Neuregulin-1;
PBS, Phosphate-buffered saline; PVDF, Polyvinylidene difluoride membranes; ROS, Reactive oxygen species;
SDS-PAGE, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TFBS, Transcription factor-binding sites;
TNF-α, Tumor necrosis factor α; TTC, Triphenyltetrazolium chloride

Background
The actions of neuregulins have been demonstrated in
normal brain function and in neuroprotection following
cerebral ischemia. Studies from our laboratory and
others demonstrated that neuregulin-1 (NRG-1) reduced
ischemia-induced neuronal death in rodent models of
focal stroke [1–3]. NRG-1 was neuroprotective with a
therapeutic window of >13 h and significantly im-
proved neurological function [2, 4]. Neuroprotection
by NRG-1 was also associated with the inhibition of
pro-inflammatory gene expression following ischemia
[2, 3, 5–8]. The anti-inflammatory effects of NRG-1
have also been shown in other animal models of neuro-
inflammation including cerebral malaria and nerve
agent intoxication [9, 10] and in vivo using cultured
macrophages and microglia [3, 11]. However, the cellu-
lar and molecular mechanisms involved in the immu-
nomodulatory effects of NRG-1 remain unclear.
Neuronal death following ischemic stroke involves the

induction of genes associated with a number of cellular
functions, including apoptosis, inflammation, and oxida-
tive stress [12, 13]. The initial inflammatory response
following brain injury is mediated by the activation of
its resident inflammatory cells, the microglia [14–16].
Activated microglia release inflammatory mediators
such as reactive oxygen species (ROS), nitric oxide (NO),
tumor necrosis factor α (TNF-α), and interleukin-1β (IL-
1β) [17–19]. While the initial activation of microglia is the
brain’s attempt to protect neurons, the over-activation of
microglia leads to uncontrolled inflammation which exac-
erbates neuronal death [18, 20, 21]. Nuclear factor kappa
B (NF-kB) is a transcription factor widely known to be as-
sociated with inflammatory responses following ischemia
and other neuroinflammatory disorders [22–24]. There
are five members of the NF-kB family which include p65
(RelA), RelB, c-Rel, p50/105 (NF-kB1), and p52/p100 (NF-
kB2), which exist in unstimulated cells as homo or

heterodimers bound to inhibitory kB (IkB) family proteins.
Activation of the canonical NF-kB pathway triggers IkB
kinase (IKK) activity, leading to phosphorylation and deg-
radation of IkB proteins and the release of NF-kB p65/p50
heterodimers. The released p65/p50 NF-kB dimers trans-
locate from the cytoplasm to the nucleus where they bind
to specific DNA sequences and promote transcription of
target genes [23, 24]. In the canonical pathway, NF-kB
activation triggers the production of pro-inflammatory cy-
tokines and NO [18, 25, 26]. Studies have shown that in-
hibition of the canonical NF-kB pathway prevents the
production of pro-inflammatory cytokines [27–29]. The
activation of the NF-kB alternative/non-canonical pathway
involves NF-kB-inducing kinase (NIK), a member of the
MAP kinase family, which activates IKKα, resulting in the
translocation of RelB/p52 NF-kB heterodimers to the nu-
cleus [30–34]. The alternative NF-kB pathway has been
shown to stimulate the production of anti-apoptotic and
anti-inflammatory molecules [31, 35–39]. The effects of
NRG-1 have been shown to be mediated by NF-kB signal-
ing during tumorigenesis in cancers and axonal myelin-
ation [40–45]. Specifically, NRG-1 has been shown to
activate NIK through its association with the NRG-1’s
erbB receptors [46].
To identify transcriptional regulators involved in

ischemia-induced inflammatory gene expression, we
examined gene expression profiles of brain tissues fol-
lowing ischemia and NRG-1 treatment. Using Conserved
Transcription Factor-Binding Site Finder (CONFAC)
software, we performed computational analysis to pre-
dict transcriptional regulators of genes that were induced
following ischemic stroke but were downregulated by
NRG-1. CONFAC identifies conserved transcription
factor-binding sites significantly over-represented in
promoter regions of a set of genes of interest compared to
random control set of genes [47]. NF-kB was identified as
one of the top potential regulators of NRG-1-suppressed
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genes following ischemia. Using N9 microglial cells, we
observed that NRG-1 blocked the phosphorylation and
degradation of IkB-α, leading to the attenuation of
classical NF-kB activation. NRG-1 increased the nuclear
translocation of the p52 subunit of NF-kB and the levels
of anti-apoptotic cytokines G-CSF and IL-9, suggest-
ing a role for the alternative NF-kB pathway. Under-
standing these mechanisms will provide insight into
the molecular processes behind the neuroprotective
and anti-inflammatory abilities of NRG-1.

Methods
Transient middle cerebral artery occlusion (MCAO)
All animals were treated humanely and with regard for
alleviation of suffering and pain. All surgical protocols
involving animals were performed by sterile/aseptic
techniques and were approved by the Institutional
Animal Care and Use Committee at Morehouse School
of Medicine prior to the initiation of experimentation.
Adult male Sprague-Dawley rats (250–300 g; Charles River
Laboratory International, Inc., USA) were housed in stand-
ard cages in a temperature-controlled room (22 ± 2 °C) on
a 12-h reverse light-dark cycle. Food and water were
provided ad libitum.
Animals were randomly allocated into three groups:

sham (control), middle cerebral artery occlusion
(MCAO) + vehicle treatment (MCAO) and MCAO +
NRG-1 (MCAO +NRG1). Rats were anesthetized with a
ketamine/xylazine solution (100/10 mg/kg, i.p.) prior to
surgery. After anesthesia administration, a rectal probe
monitored the core body temperature and a Homo-
eothermic Blanket Control Unit (Harvard Apparatus,
Hollister, MA) was used to ensure the body temperature
maintained at 37 °C. Cerebral blood flow was monitored
throughout the length of the surgery by a continuous
laser Doppler flowmeter (Perimed, Ardmore, PA), with a
laser Doppler probe placed 7 mm lateral and 2 mm pos-
terior to bregma in a thinned cranial skull window.
Rats in the treatment groups (MCAO and MCAO +

NRG1) were subjected to a left transient MCAO.
MCAO was induced by the intraluminal suture method
as previously described [3]. Briefly, a 4-cm length 4-0
surgical monofilament nylon suture coated with silicon
(Doccol Corp., Sharon, MA) was inserted from the ex-
ternal carotid artery (ECA) into the internal carotid ar-
tery (ICA) and then into the Circle of Willis, to occlude
the origin of the left middle cerebral artery (MCA). After
1.5 h of ischemia, the nylon suture was removed and the
ischemic brain was reperfused for 22.5 h before sacrifice.
Rats in the sham control group underwent the same
procedure as those in the treatment groups, but a fila-
ment was not inserted into the ICA. Animals were ran-
domly assigned into treatment groups and either
administered 50 μl of NRG-1β reconstituted with 1 %

bovine serum albumin (BSA) in phosphate-buffered sa-
line (PBS) (MCAO +NRG1; 20 μg/kg; EGF-like domain,
R&D Systems, Minneapolis, MN) or vehicle (MCAO;
1 % BSA in PBS) All treatments were administered by
bolus injection into the ICA through ECA immediately
before MCAO. Animals were sacrificed 24 h after
MCAO. All NRG-1 and vehicle treatment studies were
performed in a blinded manner.

RNA preparation and microarray analysis
Microarray analysis was performed as we previously
described [3, 48, 49]. Animals were sacrificed, and
their brains removed 24 h following MCAO. Removed
brains were sliced into 2-mm coronal sections (ap-
proximately +3.0 to −5.0 from bregma) using a brain
matrix. Tissue from the ipsilateral tissue from the two
middle slices (+1 to −3 from bregma) of MCAO
treated (n = 3) and MCAO + NRG1 treated (n = 3) and
sham animals (n = 3) were used for RNA isolation,
while the two outer slices of tissue were used for stain-
ing with 2,3,5-triphenyltetrazolium chloride (TTC), in
order to confirm infarct formation. Total RNA extrac-
tion was performed using TRIzol Reagent (Life Tech-
nologies, Rockville, MD, USA), cleaned (RNAqueous
Kit Ambion, Austin, TX, USA), and converted to
double-stranded complementary DNA (cDNA) (Invi-
trogen, Superscript Choice System, Carlsbad, CA,
USA) using T7-(dT)24 primer. Cleanup of double-
stranded cDNA used Phase Lock Gels (Eppendorf, West-
bury, NY, USA)-Phenol/Chloroform/Isoamyl Alcohol
(Sigma, St. Louis, MO, USA). cRNA was synthesized using
a RNA transcript labeling kit (Enzo Diagnostics, Farming-
dale, NY, USA). Biotin-labeled cRNA was cleaned up
using a GeneChip Sample Cleanup Module (Affymetrix
Inc., Santa Clara, CA, USA) and quantified using a spec-
trophotometer. Twenty micrograms of the in vitro tran-
scription product was fragmented by placing at 94 °C for
35 min in fragmentation buffer. Following fragmentation,
15 μg of the biotinylated cRNA was hybridized to an
Affymetrix Rat Genome U34A GeneChip. The chips
were hybridized at 45 °C for 16 h, and then washed,
stained with streptavidin-phycoerythrin, and scanned
according to the manufacturing guidelines.

Microarray data analysis
Affymetrix Expression Console software (Affymetrix,
Santa Clara, CA) was used for initial data processing.
Affymetrix microarrays contain the hybridization, labeling,
and housekeeping controls that help determine the
success of the hybridizations. The Affymetrix Expression
Analysis algorithm uses the Tukey’s biweight estimator to
provide a robust mean signal value and the Wilcoxon’s
rank test to calculate a significance or p value and
detection call for each probe set. The detection p value is
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calculated using a discrimination score (R) for all probes.
The discrimination score is a basic property of a probe
pair that describes its ability to detect its intended target.
It measures the target-specific intensity differences of the
probe pair (perfect match (PM)–mismatch (MM)) relative
to its overall hybridization intensity (PM+MM). Back-
ground estimation is provided by a weighted average of
the lowest 2 % of the feature intensities. Mismatch probes
are utilized to adjust the PM intensity. Linear scaling of
the feature level intensity values, using the trimmed mean,
is the default to make the means equal for all arrays being
analyzed. False-negative and false-positive rates are mini-
mized by subtracting nonspecific signal from the PM
probe intensities and performing an intensity-dependent
normalization at the probe set level. Calculation of fold
change and the presence of genes in the tissue were ana-
lyzed in Microsoft Excel. Changes in gene expression were
compared between the control (sham) and following
MCAO and MCAO+NRG-1 treatment. Gene expression
values that increased or decreased by twofold or more
were statistically significant (p < 0.05) using two-way
ANOVA. The list of genes upregulated twofold or more
by ischemia and decreased 50 % or more by NRG-1 was
analyzed using Ingenuity Pathway Analysis (IPA) software
(Qiagen, Redwood City, CA; www.ingenuity.com) overlaid
onto a global molecular network developed from informa-
tion contained in the Ingenuity Knowledge Base. Fischer’ s
exact test was used to calculate a p value determining the
probability that each biological function and/or disease
assigned to that network is due to chance alone. The
functions, canonical pathways, and gene networks that
were most significant to the dataset were identified.
IPA identified 64 inflammatory genes that were up-
regulated twofold or more by MCAO and reduced
50 % or more by NRG-1.

CONFAC analysis
Using CONFAC software, we further examined the IPA-
identified inflammatory genes [47, 48]. A tab-delimited
text file containing the gene name and RefSEQ ID of the
clusters of interest (genes) was uploaded to the CON-
FAC web browser interface (http://confac.emory.edu/).
CONFAC software identified mouse orthologs from the
uploaded gene list (from UCSC and ENSEMBL ge-
nomes). CONFAC software next identified significantly
conserved sequences (e value <0.001), which were ana-
lyzed for transcription factor-binding sites (TFBS) using
MATCH™ software. The final output table consisted of
the cohort list of genes (column) and the position weight
matrix (collected in TRANSFAC® database) identified
potential TFBS and the number of TFBS determined
for each gene of interest. The CONFAC program then
allowed for additional analysis using the Mann-
Whitney U test, which facilitated the statistical analysis

of TFBS over-represented in the sample dataset com-
pared to the seven control random control datasets
provided by CONFAC.

N9 microglial cell culture
The murine N9 microglial cell line was kindly provided
by Dr. Celine Beamer (Department of Biomedical and
Pharmaceutical Sciences, University Montana). N9 cells
were cultured in Dulbecco’s modified Eagle’s media
(DMEM) with 4 mM L-glutamine, supplemented with
10 % fetal bovine serum (FBS), streptomycin (100 U/ml),
and penicillin (100 U/ml). The cells were maintained in
95 % air and 5 % CO2-humified atmosphere at 37 °C
and were passaged every 3 days. For culturing with
various stimulants, N9 cells were plated into 12-well
plates in prepared culture medium and NRG-1 and lipo-
polysaccharide (LPS) were applied at the following final
concentrations: LPS (10 μg/ml) and NRG-1 (100 ng/ml in
1 % BSA/PBS; recombinant human neuregulin1-beta1
EGF-like domain, R&D Systems). N9 cells were either pre-
treated with NRG-1 (100 ng/ml) for 24 h followed by
stimulation with LPS (10 μg/ml) or treated with LPS or
NRG-1 alone for the indicated times (1–24 h).

Luminex multiplex enzyme-linked immunosorbent assay
(ELISA)
Cell lysates were taken at 1, 3, 6, and 24 h time points fol-
lowing LPS treatment. The cytokine release was measured
in cell culture supernatants by Luminex technology using
the manufacturer’s protocol (Bio-Rad, Hercules, CA). Data
analysis was performed using Bio-Plex Manager software
on the Bio-Plex 200 system. Experiments were performed
four times in duplicate wells.

Protein isolation and western blot
Proteins were isolated using whole cell extraction
reagent M-PER (Pierce Biotechnology, Rockford, IL) or
NE-PER Nuclear and Cytoplasmic Extraction Reagent
(Thermo Scientific) according to the manufacturer’s
instructions. Protein concentrations were determined by
Bradford protein assay (Bio-Rad). Fifty micrograms of
protein lysate was subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to polyvinylidene difluoride membranes
(PVDF) (Bio-Rad, CA). The membranes were blocked
with 3 % nonfat dry milk in 0.1 % Tween-20/Tris-buff-
ered saline for 1 h at room temperature and subse-
quently incubated with the primary antibodies overnight,
followed by incubation in corresponding secondary
horseradish peroxidase-conjugated secondary antibody
for 1 h at room temperature. Blots were developed using
immuno-western star ECL detection kits (Bio-Rad). The
optical densities of the antibody-specific bands were
analyzed by a Luminescent Image Analyzer, LAS-4000
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(Fuji, Japan). The following antibodies from Santa Cruz
Biotechnology (Santa Cruz, CA, USA) were used: NF-kB
p65 (sc-372; 1:200), IkB-α (sc-371; 1:200), YY1 (sc-281;
1:200), and β-actin (sc-130656; 1:200).

IkB-α (total/phospho) InstantOne ELISA
The phosphorylation of IkB-α was determined using an
enzyme-linked immunosorbent assay (ELISA)-based assay
kit according to the manufacturer’s protocol (Affymetrix
eBioscience, San Diego, CA). To analyze the results, we
calculated the average values for each treatment group.
This assay was run four times in duplicate.

Active motif transAM NF-kB family ELISA
Nuclear extracts were isolated using NE-PER Nuclear
and Cytoplasmic Extraction kit according to the
manufacturer’s protocol (Thermo Scientific, Waltham,
MA). ELISA was performed using the manufacturer’s
protocol. To analyze the results, the optical density
was read using 450 nm with an optional reference
wavelength of 655 nm. This assay was run three
times in duplicate.

Statistical analysis
Statistical analysis for ELISAs and western blot data was
performed by ANOVA with Tukey’s post hoc test for
multiple comparisons where indicated. Significance was
determined using a p value less than 0.05.

Results
CONFAC analysis predicts transcription factor NF-kB to be
regulated following MCAO + NRG1
NRG-1 has been shown to prevent neuronal injury when
administered before or after MCAO. In these studies,
rats were treated with NRG-1 immediately prior to tran-
sient MCAO for maximal effect. In representative TTC-
stained coronal brain sections, rats were administered
vehicle (Fig. 1a) or NRG-1 before MCAO (Fig. 1b). The
white area indicates damaged neuronal cells (arrows)
and red staining indicates normally functioning cells.
RNA was isolated from the ipsilateral hemisphere of
each experimental group (sham controls, MCAO, and
MCAO +NRG1) and used to examine gene expression
profiles in brain tissues from each condition. Using
microarray and IPA analysis, we found that 64 inflam-
matory genes were increased twofold or more 24 h fol-
lowing MCAO and reduced by 50 % with NRG-1
treatment (Table 1). The list included a number of
well-characterized pro-inflammatory molecules, includ-
ing IL-1β, PTGS2/COX2 (protaglandin-endoperoxide
synthase-2/cyclooxygenase-2), CD36, SPP1 (secreted
phosphoprotein 1/osteopontin), and S100 calcium-
binding proteins. IL-1β and PTGS2/COX2 induction
by MCAO and in a monocytic cell line, respectively,
and attenuation by NRG-1 were previously validated by
qPCR [3]. CONFAC analysis software recognized 54
genes in our dataset and analyzed TFBS in the pro-
moters of those genes. CONFAC identified 12 TFBS as
over-represented in our dataset compared to the

Fig. 1 Neuregulin-1 administration reduces MCAO/reperfusion-induced brain infarction. Representative TTC-stained coronal brain sections are shown. Rats
were administered vehicle (a) or NRG-1 before MCAO (b). The white area indicates damaged neuronal cells (arrows) and red staining indicates normally
functioning cells
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random control datasets. The TFBS included MAZ,
NFKAPPAB65, XBP1, XFD1, SOX, ATF3, NFE2, IRF7,
GABP, EBF, and CACCBINDINGFACTOR (Fig. 2).
NFKAPPAB65 (NF-kB p65 subunit) has been previ-
ously associated with stroke and the effects of NRG-1
in breast cancer and neuronal myelination [40–43, 45],
so we further investigated the role of NF-kB in NRG-1-
mediated neuroinflammation.

NRG-1 suppressed the release of cytokines TNF-α and IL-6
in LPS-stimulated N9 microglial cells
We previously demonstrated the induction of IL-1β and
monocyte chemoattractant protein 1 (MCP-1/CCL2)
following MCAO and their inhibition by NRG-1 [3]. To
determine whether NRG-1 inhibits the general produc-
tion and release of pro-inflammatory cytokines, N9
microglia were pre-treated with NRG-1 followed by
stimulation with LPS. Cytokine levels in the conditioned
medium were measured by Luminex multiplex ELISA.
Following LPS stimulation, there was an increase in TNF-
α production and release at 3, 6, and 24 h from microglial
cells. NRG-1 pre-treatment significantly reduced the levels
of TNF-α at 3 h (p = 0.0003), 6 h (p = 0.0011), and 24 h
(p = 0.01) post-stimulation with LPS (Fig. 3a). LPS stimu-
lation also increased IL-6, which was significantly reduced
by NRG-1 at 6 h (p = 0.02) post-LPS stimulation (Fig. 3b).

Table 1 Inflammatory genes induced by ischemia and
downregulated by NRG-1

A kinase anchor protein 12 Akap12

Actin-related protein 2/3 complex subunit 1B Arpc1b

Activating transcription factor 3 Atf3

Annexin A1 Anxa1

Annexin A2 Anxa2

Benzodiazepine receptor (peripheral)-associated protein 1 bzrp

Brain-derived factor Bdnf

CAMP responsive element modulator Crem

Cartilage oligomeric matrix protein Comp

Catechol-O-methyltransferase Comt

CCAAT/enhancer-binding protein, delta Cebpd

CD36 antigen cd36

Cellular retinoic-binding protein 2 Crabp2

Crystallin, alpha B Cryab

Cytochrome P450 family 1 Cyp1b1

Deiodinase iodothyronine type III Dio3

Dyskeratosis congenita 1 Dkc1

Early growth response 1 Egr1

Endothelin converting enzyme 1 Ece1

Fx receptor, IgG, low-affinity III Fcgr3

Galanin Gal

Glycosylation-dependent cell adhesion molecule 1 Glycam1

Guanine nucleotide-binding protein gamma 11 Gng11

Guanylate-binding protein Gbp2

Heat shock protein 4 Hspa4

High mobility group of box 2 Hmgb2

Homer scaffolding protein 1 Homer1

Inhibitor of DNA binding 1 Id1

Insulin-like growth factor-binding protein 3 Igfbp3

Interleukin 1 beta IL1b

Isopentenyl-diphosphate delta isomerase 1 Idi1

Kininogen 1 Kng

Kruppel-like factor 4 Klf4

Lectin galatoside-binding soluble 2 LgalS2

Lipocalin 2 Lcn

Lipopolysaccharide-binding protein Lbp

Lysozyme Lyz

Matrix gla protein Mgp

Matrix metallopeptidase 9 MMP9

Mitogen-activated protein kinase e, E3 Map

Oxidized low-density lipoprotein receptor 1 Olr1

Phospholipase A1 Pspla1

Phosphoribosyl pyrophosphate synthase-associated protein 1 Prpsap1

Phosphorylase glycogen liver Pygl

Table 1 Inflammatory genes induced by ischemia and
downregulated by NRG-1 (Continued)

Plasminogen activator tissue Plat

Potassium channel member 12 Kcnj12

Potassium channel, two pore domain subfamily K member 3 Kcnk3

Protaglandin-endoperoxide synthase 2 Ptgs2

Rentinol-binding protein 1 Rbp1

Ret proto-oncogene Ret

Ribosomal protein S15 Rps15

S100 calcium-binding protein A10 S100a10

S100 calcium-binding protein A4 S100a4

S100 calcium-binding protein A8 S100a8

S100 calcium-binding protein A9 S100a9

Secreted phosphoprotein 1 Spp1

Serpin peptidase inhibitor Serpin1

Syndecan 1 Sdc1

Thyrotropin releasing hormone Trh

TIMP metallopeptidase inhibitor 1 Timp1

Transgelin Tagln

V-ETS avian erythroblastosis virus E26 oncogene homolog 1 ETS1

VGF nerve growth factor inducible Vgf

Vimentin Vim
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NRG-1 attenuated LPS-stimulated phosphorylation and
degradation of IkB-α in N9 microglial cells
In the canonical NF-kB pathway, IkB kinase (IKK)
phosphorylates IkB-α triggering its ubiquitination and
degradation. This allows the NF-kB p56 and p50 sub-
units to translocate to the nucleus, resulting in the
production and secretion pro-inflammatory cytokines
and chemokines. Here, we examined whether NRG-1
regulates LPS-stimulated IkB-α phosphorylation in N9
microglia cells. N9 cells were either pre-treated with
NRG-1 for 24 h followed by stimulation with LPS or
treated with LPS or NRG-1 alone for the indicated
times (1–24 h). Using an ELISA system, phosphoryl-
ation of IkB-α in microglial cell lysates increased 1 h
post-LPS stimulation, peaked at 3 h, and then
returned to baseline 6–24 h following LPS stimulation
(Fig. 4a, b). Pre-treatment with NRG-1 significantly
reduced the phosphorylation of IkB-α in response to
LPS stimulation at both the 1- and 3-h time points.
We used western blot analyses to determine the effect
of NRG-1 on the degradation of IkB-α. N9 cells were
pre-treated with NRG-1 for 24 h followed by stimula-
tion with LPS or treated with LPS or NRG-1 alone
for 1 and 3 h. At the l-h time point, there was a re-
duction in IkB-α in LPS-treated cells when compared
to controls; however, this was reversed in cells
pre-treated with NRG-1 followed by LPS treatment
(p = 0.008) (Fig. 5).

NRG-1 attenuated P65 nuclear translocation in N9 microglia
cells
To determine if NRG-1 had an effect on the canonical
NF-kB pathway, we used nuclear extracts for ELISA and
western blot to examine the translocation of the NF-kB

p65 subunit identified by CONFAC. We observed an in-
crease in nuclear translocation of p65 in N9 cells treated
with LPS alone. However, LPS-induced p65 translocation
was significantly reduced in cells pre-treated with NRG-
1 followed by LPS using ELISA (Fig. 6a; p = 0.004) and
western blot (Fig. 6b, p = 0.003).

NRG-1 increased the nuclear translocation of the P52
subunit
It has been previously shown that NRG-1 is able to
activate NF-kB-inducing kinase (NIK) which is a medi-
ator of the alternative NF-kB pathway [46]. Here, we
investigated if NRG-1 could affect LPS-mediated nuclear
translocation of the p52 and RelB NF-kB subunits. LPS
stimulation resulted in a decrease in nuclear p52 at 3
and 24 h post-treatment (Fig. 7a). NRG-1 pre-treatment
significantly increased nuclear p52 levels at 3, 6, and
24 h post-LPS stimulation. Neither LPS nor NRG
treatment altered nuclear levels of RelB in these studies
(Fig. 7b).

NRG-1 increased anti-apoptotic cytokines G-CSF and IL-9
Granulocyte colony-stimulating factor (G-CSF) is a tar-
get of NF-kB and has been shown to be neuroprotective
in stroke by inducing anti-apoptotic pathways [50–53].
The NF-kB inducible cytokine IL-9 has also been re-
ported to prevent apoptosis. LPS stimulation of micro-
glial cells did not affect G-CSF levels in medium.
However, NRG-1 increased G-CSF levels significantly at
3, 6, and 24 h alone or in the presence of LPS (Fig. 8a).
NRG-1 significantly increased IL-9 levels at 3 h follow-
ing LPS stimulation (Fig. 8b). IL-9 was increased by all
treatment conditions 6 and 24 h following NRG-1 and
LPS administration.

Fig. 2 Predicted transcription factor-binding site (TFBS) activity for gene promoters using CONFAC analysis. CONFAC compared our gene list to seven
random control datasets to identify statistically over-represented TFBS in genes altered by stroke and reversed by NRG-1. CONFAC identified 12 TFBS
that were statistically over-represented. Blue bars represent the average number of TFBS/promoter for each transcription factor in our data set. Red bars
are the average number of TFBS/promoter for each transcription factor in the control datasets. p < 0.05 for all transcription factors in the graph
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Discussion
NRG-1 has been shown to be neuroprotective and re-
duce inflammation in experimental models of ischemic

stroke and neuroinflammation [1–3, 9, 10]; however, the
molecular mechanism involved remains to be elucidated.
Using CONFAC software, we were able to predict that

Fig. 3 NRG-1 suppresses TNF-α and IL-6 concentrations in LPS-stimulated N9 microglia cells. N9 microglia cells were pre-treated with NRG-1
(100 ng/ml) for 24 h with or without LPS stimulation (10 μg/ml) for the indicated time points. Supernatants were collected, and TNF-α (a) and
IL-6 (b) levels were determined by Luminex. Results are expressed as the mean +/− SD. Asterisk denotes a significant difference compared to cells
treated with only LPS (p < 0.05)
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the ability of NRG-1 to suppress ischemia-induced pro-
inflammatory genes involved the modulation NF-kB
pathways. NF-kB is known to be a master regulator of
inflammation, which is the key contributor the pathology
of ischemic stroke [24]. In post-mortem human brain
samples of stroke patients, the NF-kB p65 subunit in

particular has been found around the necrotic infarct
core [22]. The NF-kB canonical pathway involves the
phosphorylation and degradation of IkB leading to the
nuclear translocation of p65/p50 NF-kB heterodimers to
the nucleus where they stimulate the production of pro-
inflammatory molecules [23, 24]. Using microglial cell

Fig. 4 NRG-1 suppresses the phosphorylation of IkB-α in LPS-stimulated N9 microglia cells. N9 microglial cells were pre-treated with
100 ng/ml NRG-1 for 24 h followed by the absence or presence of LPS (10 μg/ml) for indicated time points. a, b Cell lysates were taken
and were assayed using ELISA. Results were expressed as the mean +/− SD. Asterisk denotes significant difference compared to cells
treated with only LPS (p < 0.05)
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cultures, we demonstrated that NRG-1 inhibited the
LPS-induced phosphorylation and degradation of IkB-α,
while also reducing the nuclear translocation of p65.
This suggests that the mechanisms behind the anti-
inflammatory/neuroprotective effects of NRG-1 involve
the attenuation of the canonical NF-kB pathway.
The transcription factors identified by CONFAC did

not change in mRNA expression in our analysis, includ-
ing NF-kB family members. One of the primary reasons
we chose a computational tool such as CONFAC is that
it predicts transcription factors that change in activity,
but not necessarily mRNA or protein levels. Indeed, in-
duction of pro-inflammatory gene expression by NF-kB
requires that cytoplasmic NF-kB p65/p50 translocates to
the nucleus, but a change in NF-kB protein levels is not
needed to mediate this effect. Over-representation of the
NF-kB p65 TFBS indicates that it is more prevalent in
the promoters of the genes in our dataset compared to a
random set of genes. It does not indicate whether that
promoter is activated or inhibited by the experimental
paradigm. What our data suggest is that stroke causes
transcriptional activation via the NF-kB p65-binding
site, and NRG-1 prevents the binding of p65 to the
TFBS by sequestering it in the cytoplasm.

The alternative NF-kB pathway is thought to have
anti-inflammatory and anti-apoptotic roles [31, 35]. The
alternative pathway activates NIK, a member of the
MAP kinase family, which activates IKKα, resulting in
the translocation of RelB/p52 NF-kB heterodimers to
the nucleus. NIK-mediated activation of NF-kB is associ-
ated with the induction of anti-apoptotic and anti-
inflammatory cytokines [30, 34, 37, 38, 50, 54, 55]. The
alternative pathway is delayed relative to the canon-
ical pathway, and only certain inducers are able to in-
duce its activation [33]. In microglial cells, NRG-1
administration increased the nuclear levels of p52. In
addition to dimerization with RelB, the p52 subunit
is also able to homodimerize and considered to have
a repressive role due to its lack of a transcription ac-
tivation domain [32]. It has been previously shown
that NRG-1 activates NIK [46]. These finding indicate
that NRG-1 could both activate the alternative path-
way and/or suppress NF-kB transcriptional activity
via p52 [23, 32, 56].
Previous studies demonstrated that NRG-1 can acti-

vate the NF-kB signaling pathway cancer cells and
Schwann cells [40–46]. In these studies, it appears that
NRG-1 signals by activating NF-kB p65; however, the

Fig. 5 NRG-1 inhibits the degradation of IkB-α in LPS-stimulated N9 microglia cells. N9 microglial cells were pre-treated with 100 ng/ml NRG-1 for
24 h followed by the absence or presence of LPS (10 μg/ml) for 1 h (a) and 3 h (b). Whole cell extracts were taken from untreated cells or cells
pre-treated NRG-1 alone or the absence or presence of LPS (10 μg/ml) and were assayed using western blot. The band intensity was quantified
using studio lite imager and is presented relative to the level of β-actin. Data are presented for three independent experiments. Results were
expressed as the mean +/− SD. Asterisk denotes significant difference compared to cells treated with only LPS (p < 0.05)
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activation of NF-kB by NRG-1 in breast cancer cells is
associated with the increased expression of anti-
apoptotic genes. The discrepancy in the findings may be
due to the differential expression of erbB receptors on

the cells. In cancer cells and Schwann cells, NRG-1
signals through erbB2 and erbB3 receptors. Neuropro-
tection in stroke by NRG-1 is mediated by erbB4 which
physically associates with NIK [46, 57]. Interestingly,

Fig. 6 NRG-1 reduces nuclear translocation of P65. N9 microglial cells were pre-treated with 100 ng/ml NRG-1 for 24 h followed by the absence
or presence of LPS (10 μg/ml) for 3 h. Nuclear (a) and cytoplasmic (b) extracts were assayed using western blot. Nuclear extracts were assayed
using ELISA (c). Data are presented from three independent experiments. Results were expressed as the mean +/− SD. Asterisk denotes significant
difference compared to cells treated with only LPS (p < 0.05)
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NRG-1 alone has little effect on NF-kB in our in vitro
studies. So, the anti-inflammatory effects of NRG-1 ap-
pear to be contextually related to the presence on a pro-
inflammatory response.
Consistent with regulation of the alternative NF-kB

pathway, NRG-1 induced the production of G-CSF
and IL-9 in cell cultures. G-CSF has been shown to

be neuroprotective in ischemic stroke models by in-
ducing anti-apoptotic pathways, and IL-9 is known
to promote cell proliferation and inhibit apoptosis
[53, 58]. It has been reported that G-CSF signifi-
cantly reduced the expression of microglial p65,
reduced pro-inflammatory mediators, and promoted
anti-inflammatory responses in models of multiple

Fig. 7 NRG-1 increased nuclear translocation of P52. N9 microglial cells were pre-treated with 100 ng/ml NRG-1 for 24 h followed by the
absence or presence of LPS (10 μg/ml) for 3–24 h. Cell lysates were taken and were assayed using ELISA measuring levels of p52 (a) and
RelB (b). Results were expressed as the mean +/− SD. Asterisk denotes significant difference compared to cells treated with only LPS (p < 0.05)
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Fig. 8 NRG-1 increases G-CSF and IL-9 concentrations in N9 microglia cells. N9 microglia cells were pre-treated with NRG-1 (100 ng/ml) for 24 h
with or without LPS stimulation (10 μg/ml) for the indicated time points. Conditioned medium was collected and G-CSF (a) and IL-9 (b) levels
were determined by Luminex. Results are expressed as the mean +/− SD. Asterisk denotes a significant difference compared to cells treated with
only LPS (p < 0.05)
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sclerosis [59, 60]. There are reports which suggest
that IL-9 may have the ability to downregulate spe-
cific sets of genes induced by NF-kB by inducing the
expression of BCL-3 [61]. BCL3 is an IkB protein
that specifically associates with homodimers p50 and
p52 and has been shown to regulate pro-survival
genes. BCL3 is also able to repress transcription by
increasing p52 homodimer binding to kB sites on
DNA [62].

Conclusions
Stroke is a leading cause of death and disability in the
USA. There is an urgent need to better understand the
pathophysiology associated with stroke in order to de-
velop more effective therapies. Here, we show that the
neuroprotective and anti-inflammatory effects of
NRG-1 are associated with the regulation of both
canonical and alternative NF-kB signaling pathways.
NRG-1 is currently in clinical trials for heart failure
and has been shown to be safe and efficacious in
phase I and phase II patient studies [63, 64]. These
findings have major implications for the development
of NRG-1 as a clinical therapy for stroke and other
inflammation-mediated disorders.
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