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miR-17-92 facilitates neuronal @
differentiation of transplanted

neural stem/precursor cells under
neuroinflammatory conditions
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Abstract

Background: Neural stem/precursor cells (NSCs) are of particular interest because of their potential application in
cell therapy for brain damage. However, most brain injury cases are followed with neuroinflammatory stress, which
affects the lineage selection of grafted NSCs by promoting astrocytogenesis, thus hampering the potential for
neural replacement. The present study investigated the role of miR-17-92 in protecting against detrimental effects
of neuroinflammation on NSC differentiation in cell therapy.

Methods: NSCs were treated with conditioned medium from lesioned astrocytes with/without neutralizing
antibodies of leukemia inhibitory factor (LIF) or/and ciliary neurotrophic factor (CNTF), respectively. Afterward, the
levels of p-STAT3 and p-JAK2 were determined by western blotting while expression of glial fibrillary acidic protein
(GFAP) and R-tubulin lll was assessed by immunostaining. The activation of JAK-STAT pathway and cell
differentiation were also evaluated after we overexpressed miR-17-92 in NSCs under different neuroinflammatory
conditions. After the transplantation of miR-17-92-overexpressing NSCs into injured mouse cortex, PH3, nestin,
GFAP, and NeuN were analyzed by immunostaining. In addition, motor coordination of mice was evaluated by
rotarod test.

Results: Conditioned medium from lesioned astrocytes activated JAK-STAT pathway and facilitated astrocytic
differentiation in NSCs while neutralizing antibodies of LIF and CNTF remarkably attenuated such effects. miR-17-92
cluster repressed the expression of multiple proteins including GP130, CNTFR, JAK2, and STAT3 in JAK-STAT
pathway. Overexpression of miR-17-92 in NSCs systematically blocked the activation of JAK-STAT pathway mediated
by LIF and CNTF, which facilitated neuronal differentiation in vitro. Furthermore, miR-17-92 increased neuronal
generation of grafted NSCs and reduced astrogliosis, which resulted in the improvement of motor coordination of
brain-injured mice.

Conclusions: Our results suggest that miR-17-92 promotes neuronal differentiation of grafted NSCs under
neuroinflammatory condition via inhibition of multiple proteins in JAK-STAT pathway.
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EGFP, Enhanced green fluorescent protein

Abbreviations: NSCs, Neural stem/precursor cells; LIF, Leukemia inhibitory factor; CNTF, Ciliary neurotrophic factor;
GP130, Glycoprotein 130; CNTFR, Ciliary neurotrophic factor receptor; JAK2, Janus kinases 2; STAT3, Signal transducer
and activator of transcription 3; CNS, Central nervous system; BMP, Bone morphogenetic protein; IL-6, Interleukin 6;
3'UTR, 3" Untranslated region; bFGF, Bovine fibroblast growth factor; hEGF, Human epidermal growth factor;

GFAP, Glial fibrillary acidic protein; OSP, Oligodendrocyte-specific protein; CM, Conditioned medium;

NeuN, Neuronal nuclei; PH3, Phospho-histone H3; DMEM/F12, Dulbecco’s modified Eagle’s medium: nutrient
mixture F-12; DAPI, 4'6-Diamidino-2-phenylindole; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase;

Background

Neural stem/precursor cells (NSCs) consist of a het-
erogeneous population of self-renewing progenitor/
precursor cells that can be expanded in vitro, which
further give rise to neurons, astrocytes, and oligodendro-
cytes after transplanting into the central nervous system
(CNS) [1, 2]. Recent studies suggest that transplantation
of NSCs has become a promising therapy for various
neurological disorders including ischemia, traumatic brain
injury, and several neurodegenerative diseases of CNS
[3, 4]. The tightly regulated cellular processes, espe-
cially the neural differentiation, are essential for grafted
NSCs to produce enough neurons to restore neural
damage in CNS [5]. The differentiation of NSCs is the
result of changes in stem-cell properties that are con-
trolled by both extrinsic and intrinsic cues [6]. Pro-
neural genes are intrinsic determinants that control
neurogenesis while astrocytogenesis can be initiated by
several extrinsic gliogenic signals, such as ciliary neuro-
trophic factor (CNTF), leukemia inhibitory factor (LIF),
and bone morphogenetic proteins (BMPs) [6, 7]. Sub-
stantial evidences suggest that neurological disease or
injury induces a neuroinflammatory response in the
CNS, which has great impact on endogenous neurogen-
esis as well as differentiation of grafted NSCs [8, 9].
Ideguchi et al. showed that inflammatory response by
the host brain suppresses neuronal differentiation of
transplanted ES cell-derived neural precursor cells [10].
The low yield of NSCs-derived neurons limits the po-
tential clinical application for neuronal replacement.

In the condition of neuroinflammatory response, glia
cells are activated which have been proved to affect
neuronal survival [8]. In addition, it is also suggested
that activated astrocyte can modulate NSCs differentiation
[11]. As one of the key players mediating inflammatory re-
sponse, astrocytes may produce several cytokines includ-
ing LIF, CNTE, and interleukin 6 (IL-6) that have been
proved to modulate neural differentiation in vitro [12].
Particular attention has been paid to LIF and CNTF be-
cause of their roles in the developmental switch from
neurogenesis to astrocytogenesis [13]. LIF and CNTF pro-
mote premature generation of astrocytes in vitro via acti-
vation of the Janus kinase (JAK)-signal transducer and

activator of transcription (STAT) pathway [14]. Further-
more, cytokine-induced STAT signaling directly activates
JAK-STAT pathway in a positive, autoregulatory loop,
resulting a potentiation of JAK-STAT-induced astrocyto-
genesis [15]. Therefore, we believe that the inhibition of
JAK-STAT pathway in grafted NSCs under neuroinflam-
matory condition caused by brain injury may repress
astrocytogenesis while enhancing the number of generated
neurons, which may further exert beneficial effects on tis-
sue regeneration and functional recovery.

MicroRNAs are approximately 21-22 nucleotides
which modulate genes expression by targeting 3" un-
translated region (3" UTR) of mRNAs [16]. Substantial
evidences suggest that miRNAs are enriched in CNS in-
dicating their significant role in neural development and
physiology [17, 18]. Our previous work demonstrated
that miR-17 modulates neuron-astrocyte transition via
inhibiting BMPR2 expression [19]. Additionally, there
are evidences that a cluster of miRNAs repress multiple
targets coordinated in the same pathway, which show
that those small RNAs have great potential in modulat-
ing cell signals [20-22].

In the present study, we demonstrated that LIF and
CNTF secreted by astrocyte in neuroinflammatory
condition facilitated astrocytogenesis of NSCs through
activation of JAK-STAT pathway. We also showed
that miR-17-92 cluster effectively blocked the activa-
tion of LIF/CNTEF-JAK-STAT signal by repressing
multiple protein targets existed in this pathway, lead-
ing to the increase of neurogenesis of grafted NSCs
in vivo. Such improvement also benefited motor activ-
ity in injured mice after NSC transplantation.

Methods

Embryonic neurosphere culture and lentiviral
transduction

Embryonic neurospheres (NSCs) were derived from the
cortex of E14.5 wild-type C57BL/6] mice as previously
described [19]. The cortex was dissected and mechanic-
ally dissociated, and the resulting single-cell suspension
was placed in Dulbecco’s modified Eagle’s medium: nu-
trient mixture F-12 (DMEM/F12, Life Technologies,
Grand Island, NY, USA) supplemented with N2 plus
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media supplement (R&D Systems, Minneapolis, MN,
USA), 10 ng/ml recombinant bovine fibroblast growth
factor (bFGF; R&D Systems), and recombinant human
epidermal growth factor (hREGF; R&D Systems). After 5 days
in culture, free-floating neurospheres were redissociated
and allowed to reform spheres at least three times before
further use. For differentiation studies, whole-mount or dis-
sociated neurospheres were plated onto ploy-L-ornithine
(Sigma-Aldrich, St. Louis, MO, USA) and human fibronec-
tin (R&D Systems)-coated coverslips and further cultured
in the absence of bFGF/hEGF.

The lentiviral vector lenti-17-92 used for miR-17-92
cluster overexpression under the control of the elong-
ation factor 1-alpha promoter and the respective control
vector driving EGFP expression were generated by
GenePharma Inc. (Shanghai, China). For lentiviral tran-
duction, fourth-passage neurospheres were single-cell
dissociated, grown in suspension for 24 h, and then ex-
posed to lenti-17-92 or control lentivirus for 10 h.
Transduction efficiency was estimated by quantitative
real-time PCR (QPCR).

Quantitative real-time PCR

Total RNA was isolated using TRIzol reagent (Life
Technologies) according to the manufacturer’s instruc-
tions. Quantitative real-time PCR of mature miRNAs was
performed using TagMan microRNA probes (Applied
Biosystems, Foster City, CA, USA) according to the
manufacturer’s instructions. U6 snRNA was used for
normalization in miRNA expression studies. All of
the reactions were run in triplicates. A relative fold
change in expression of miRNA was calculated with
the equation 2747,

Astrocyte culture and preparation of conditioned medium
Primary astrocytes were purified from neonatal PO
mice cortices and plated in DMEM/F12/10 % FBS in
poly-L-lysine (Sigma-Aldrich)-coated 75 c¢m?® culture
flasks, as previously described [23]. Medium was
changed after 3 days in culture and thereafter three
times per week. After incubating for 2 weeks, to ob-
tain pure astrocytes, the mixed cells were orbitally
shaken at 200 rpm for 6 h, and the supernatant was
removed. The attached cells were washed twice,
digested by trypsin and then replated. When the as-
trocytes have reached 90 % of confluence at passage
3, cells were washed and a defined serum-free
medium was added, containing DMEM/F12 and 1 % N2
plus supplement. After 6 h of equilibration in the
serum-free medium, the cultures were mechanically
lesioned with a pipette tip in a 2-cm-gird frame. Con-
ditioned medium (CM) was collected 48 h after the
injury, filtered at 0.22 um and immediately stored at
-80 °C until later use.
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Immunocytochemical and immunohistochemical procedures
Whole mount neurospheres and dissociated cells were
fixed for 20 min in 4 % paraformaldehyde (PFA)
followed by 1 h blocking with 5 % normal horse serum
in phosphate-buffered saline (PBS)/0.3 % triton X-100.
Incubation with primary antibodies was performed in
2 % BSA overnight at 4 °C. Cell nuclei were visualized
with DAPIL For immunohistochemistry on tissue sec-
tions, mice were perfused transcardially with 50 ml PBS
followed by 50 ml 4 % PFA. The brains were removed,
post-fixed in the same fixative overnight at 4 °C, and
cryoprotected in 15 % sucrose overnight followed by
30 % sucrose overnight. Cryostat sections (30 um thick)
were cut and processed for immunohistochemistry.
Free-floating sections were incubated for 1 h in PBS/
0.1 % triton X-100/5 % horse serum. The primary anti-
bodies used on cells or tissue sections for multiple label
immunofluorescence were as follows: rabbit polyclonal
to glial fibrillary acidic protein (GFAP) (ab7779; 1:1000;
Abcam, Hong Kong, China), chicken polyclonal anti-
nestin (ab81755; 1:1000; Abcam), rabbit polyclonal anti-
Sox2 (ab97959; 1:500; Abcam), mouse monoclonal to
MAP2 (ab11267; 1:1000; Abcam), mouse monoclonal to
CNPase (ab6319; 1:1000; Abcam), rabbit polyclonal
anti-oligodendrocyte specific protein (ab53041; 1:1000;
abcam), mouse monoclonal to neuron specific -tubulin
III (ab7751; 1:500; Abcam), mouse monoclonal anti-
neuronal nuclei (NeuN) (MAB377; 1:100; Millipore,
Billerica, MA, USA), rabbit polyclonal anti-p-histone
H3 (sc-8656-R; 1:1000; Santa Cruz Biotechnology,
Santa Cruz, CA), and rabbit polyclonal anti-
Doublecortin (ab18723; 1:1000; Abcam). Following pri-
mary antibodies, the appropriate secondary antibodies
were used: Alexa Fluor® 488-conjugated AffiniPure don-
key anti-chicken IgY (IgG) (H+L) (703-545-155; 1:1000;
Jackson ImmunoResearch, West Grove, PA, USA), Alexa
Fluor® 594-conjugated AffiniPure donkey anti-chicken IgY
(IgG) (H+L) (703-585-155; 1:1000; Jackson ImmunoRe-
search), Alexa Fluor® 488-conjugated donkey anti-mouse
IgG (H+L) (A-21202; 1:1000; Life Technologies, Grand
Island, NY, USA), Alexa Fluor® 594-conjugated donkey
anti-rabbit IgG (H+L) (A-21207; 1:1000; Life Technolo-
gies), Alexa Fluor® 594-conjugated donkey anti-mouse IgG
(H+L) (A-21203; 1:1000; Life Technologies). Finally, the
cells or brain sections were stained with DAPI. For quanti-
tative analysis, the numbers of each type of cell scored in
four random fields were averaged, utilizing the Image-Pro
Plus image analysis software.

Western blot analysis

The cultured cells were lysed using RIPA buffer (Thermo
Scientific, Rockford, IL, USA), and the protein was ex-
tracted according to the manufacturer’s instructions. Total
proteins were determined using a Bicinchoninic Acid
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Protein Assay Kit (Thermo Scientific, Rockford, IL, USA).
The samples were loaded onto 10 % SDS-polyacrylamide
gel electrophoresis separating gel and transferred onto
polyvinylidene difluoride membranes (Roche Diagnostics,
Indianapolis, IN, USA). Primary antibodies used were as
follows: goat polyclonal anti-p-JAK2 (sc-21870; 1:500;
Santa Cruz), rabbit polyclonal anti-JAK2 (SC-294; 1:500;
Santa Cruz), rabbit monoclonal anti-STAT3 (ab109085;
1:1000; Abcam), rabbit monoclonal anti-p-STAT3 (ab76315;
1:1000; Abcam), mouse monoclonal anti-CNTFR (sc-
393214; 1:500; santa cruz), rabbit polyclonal anti-GP130
(3732; 1:1000; Cell Signaling Technology, Beverly, MA,
USA), rabbit monoclonal to GFAP (ab68428, 1:2000;
Abcam), and rabbit monoclonal anti-GAPDH (ab181602;
1:2000; Abcam). Horseradish peroxidase-conjugated anti-
mouse, anti-rabbit, and anti-goat secondary antibodies
(1:1000; Santa Cruz Biotechnology) were used. Color
development was achieved by using the ECL Western
Blotting Detection Kit (Thermo Scientific). Quantification
of protein expression level was performed using the
Image] analysis software.

Luciferase assay

The CNTEFR or GP130 3" UTR containing the pre-
dicted target sequence was cloned and inserted into
the pMIR-REPORT™ luciferase vector (Ambion, Austin,
TX), respectively. The primers used were as follows. For
CNTER, forward primer: 5'CTAGACTAGTCACGAGGA
CATGCCAGAGC3/’, reverse primer: 5° CCCAAGCTT
CCATTGAGTCAGACTAGAAGGGAC3’; for GP130,
forward primer: 5"CTAGACTAGTCCTCACTCCCTG
AAGATAGGC3’, reverse primer: 5'"CCCAAGCTTGC
CACCCTTCAACAAACACC3'. Three mutated vec-
tors were generated by Life Technologies by replacing
the predicted target region with its reverse sequence
(mut CNTFR, from TTTGCAC to AAACGTG; mutl
GP130, from GCACTTT to CGTGAAA; mut2 GP130,
from TTTGCAC to AAACGTG). HEK 293T cells were
seeded onto 24-well plates for 12 h. Afterwards,
0.2 pg of firefly luciferase reporter plasmid; 0.2 pg of
[-galactosidase expression vector (Ambion); 0.2 pg of
expression vector pcDNA3.1-overexpressing miR-17-92
cluster; empty vector pcDNA3.1; or 10-, 20-, 50-nM miR-
17, miR-20a, miR-19a, and miR-19b mimics were trans-
fected into the cells. Cells were harvested for the luciferase
assay (Promega, Madison, W1, USA) 24 h later, and the lu-
ciferase activity was normalized to the p-galactosidase
activity.

Traumatic brain injury and transplantation

All of the animal care and experimental procedures were
performed in accordance with the Laboratory Animal
Care Guidelines approved by the Model Animal Research
Center of Nanjing University. Traumatic brain injury was
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performed as previously described [3]. Female C57BL/6
mice 10-12 weeks old were deeply anesthetized and posi-
tioned in a stereotaxic frame. A burr hole was drilled at
coordinates AP 1.0, L 1.8 (relative to Bregma = 0) using a
dental drill, and stab wound injury was caused to the right
hemisphere of the cerebral cortex by inserting a 26-gauge
needle 1.0 mm deep from the brain surface (DV 1.0 rela-
tive to Bregma =0). The needle was then retracted and
reinserted five times. Immediately after injury, 1 pl of
freshly dissociated NSCs (10° cells), either transduced with
miR-17-92-overexpressing lentivirus or control lentivirus,
was injected 0.3 mm ventrally to the injury site using a 1-pl
syringe with a 26-gauge needle (SGE; Syringe perfection).
Cells were injected slowly over 5 min, the syringe was left
in place for an extra 5 min and then withdrawn gently, and
the skin was sutured. After surgery, mice were held on a
heated cushion before being returned to their home cages.

Rotarod test

The rotarod test described by Hamm et al. was modified
for use in mice [24]. Briefly, prior to surgeries, mice
were trained on the rotarod for three consecutive days
(three trials per day) at an accelerating speed increasing
from 4 to 40 rpm over 5 min. To test for motor coordin-
ation, three trials for fast speed (32 rpm) were performed
up to 5 min with 30-min intervals between trials and the
best performance value for each animal was recorded.
Mice that failed to stay on the rotarod for >30 s at 32 rpm
were excluded from the experiment. A trial was termi-
nated if the animal fell off the rotarod or gripped the de-
vice and spun around past the lowest point. Post-injury
testing was monitored at 1, 4, 6, and 12 weeks. Three dif-
ferent groups of mice were tested: (1) mice with brain in-
jury without cell transplantation (=8 mice), (2) mice
with brain injury that received control grafts of CON-
NSC (n = 8 mice), and (3) mice with brain injury that re-
ceived grafts of miR-17-92-NSC (n =8 mice). Mice were
cared for in accordance with institutional guidelines.

Statistical analysis

Data are presented as means + SEM of at least three in-
dependent experiments. Direct comparisons were made
using Student’s ¢ tests, and multiple group comparisons
were made using one-way analysis of variance (ANOVA)
followed by Tukey’s test. Statistical significance was de-
fined as P < 0.05, 0.01, or 0.001 (indicated as *, **, or ***,
respectively). PRISM 5.0 software (GraphPad Inc., La
Jolla, CA) was used for data analysis.

Results

Inhibition of LIF and CNTF secreted by reactive astrocyte
reduced astrocytogenesis in neuroinflammatory condition
To investigate the effects of neuroinflammation on
embryonic-derived NSCs differentiation, we first isolated
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NSCs from E14.5 C57BL/6 mouse cortex. Almost all weak (Additional file 1: Figure S1A). These cultured
NSCs were well stained with anti-nestin and Sox2 anti-  spheres started to differentiate after withdrawing bFGF
body in the sphere culture (97.4+1.7 and 93.8+2.0 %, and hEGE, in which early neural marker B-tubulin III,
respectively) (Fig. la), while DCX staining is relatively = mature neural marker MAP2, astrocytic marker GFAP,
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Fig. 1 Effects of reactive astrocytes on NSC differentiation. a Immunofluorescence labeling of whole-mount embryonic cortical neurospheres showing
the expression of NSC marker nestin (green); DAPI (blue) was used for nuclear staining. Scale bar, 100 um. b The whole-mount neurospheres allowed to
differentiate for 7 days in the absence of bFGF and hEGF were stained with the neuron marker B-tubulin Il (green) and astrocyte marker GFAP (red);
DAPI (blue) was used for nuclear staining. Scale bar, 200 um. ¢ The dissociated neurospheres were exposed to DMEM/F12/1 % N2 plus
media supplement medium (CON) and reactive astrocyte-conditioned medium alone (CM), with LIF or/and CNTF neutralization antibody
(CM + a-LIF, CM 4+ a-CNTF, or CM + a-LIF + a-CNTF) to differentiate for 4 days in the absence of bFGF and hEGF, followed by fluorescence
staining with B-tubulin Il (green) and GFAP (red). Inset: DAPI staining of cell nuclei in the field of view. Scale bar, 100 um. d The proportions of
GFAP-positive or B-tubulin lll-positive cells from the experiment shown in ¢ were determined. Values are means + SEM. Asterisks indicate a statistically
significant difference compared with the CON or CM group (*P < 0.05, **P < 0.01, ***P < 0.001, one-way analysis of variance (ANOVA) followed by
Tukey's test, n = 3 independent experiments). e Western blot analysis and quantifications of p-JAK2, p-STAT3, and GFAP protein expressions in NSCs
treated with different conditioned media indicated in ¢ for 4 days. JAK2 and STAT3 were used as internal controls. Values are means + SEM. Asterisks
indicate a statistically significant difference compared with the CON or CM group (*P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA followed by
Tukey's test, n =4 independent experiments). For quantitative analysis, the numbers of each type of cell scored in four random fields were averaged,
utilizing the Image-Pro Plus image analysis software
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oligodendrocyte marker CNPase and oligodendrocyte-
specific protein (OSP) were observed (Fig. 1b, Additional
file 1: Figure S1B, C). Next, NSCs were cultured in
astrocytic-conditioned medium (hereafter refers to as
CM) from lesioned astrocytes which mimic neuroinflam-
matory condition in vitro. Compared to control group,
NSCs are subjected to CM treatment differentiated into
more astrocytes and less neurons (Fig. 1c, d). Since pre-
vious study has reported that LIF and CNTF are upregu-
lated in conditioned medium from reactive astrocytes
[25], we first confirmed that LIF and CNTF stimulation
activated JAK-STAT pathway and significantly increased
the ratio of GFAP-positive to -tubulin III-positive cells
in the NSC population under differentiation conditions
(Additional file 1: Figure S2). To investigate the role of
endogenous LIF and CNTF in CM on NSCs differen-
tiation, we employed LIF or/and CNTF-neutralizing
antibodies in CM, which remarkably decreased the
proportion of GFAP-positive cells, while increasing
that of P-tubulin IIl-positive cells compared to the
CM group (Fig. 1c, d). Additionally, we further evalu-
ated the activation status of JAK2/STAT3 signaling
pathway by western blot analysis. We found that CM
stimulation significantly increased the levels of p-
JAK2, p-STAT3, and GFAP in NSCs, while LIF or/and
CNTF-neutralizing antibody treatment blocked such
upregulation in those cells (Fig. le). These findings
suggest that LIF and CNTF secreted by reactive astro-
cytes activate JAK2/STAT3 pathway, which further in-
duce astrocytogenesis and inhibit neurogenesis of
NSCs while inhibiting these signals can significantly
reduce astrocytogenesis of NSCs in neuroinflamma-
tory condition.

miR-17-92 cluster targets multiple proteins in JAK2/STAT3
pathway mediated by LIF/CNTF

In our previous study, we demonstrated that miR-17
modulates the astrocytogenesis/neurogenesis transition
during the mouse corticogenesis by targeting BMP sig-
naling pathway [19]. In addition, miR-17 and miR-20a
are reported to target JAK2 and STAT3 [26, 27]. Further-
more, using TargetScan (http://Targetscan.org) and micro-
RNA.org (http://microRNA.org) bioinformatics tools, we
found that among those miRNAs in miR-17-92 cluster,
miR-19a/b may target CNTFR and miR-17, miR-20a,
and miR-19a/b may target glycoprotein 130 (GP130),
respectively (Fig. 2a, b). Luciferase assay revealed that
miR-17-92 cluster members bind to 3'UTR of CNTFR
and GP130 directly (Fig. 2c, d; Additional file 1:
Figure S3). When we overexpressed miR-17-92 clus-
ter in NSCs, we found that the levels of miR-17-92
cluster members were all enhanced in various de-
grees (Fig. 2e), while the levels of targeted proteins
including GP130, CNTER, JAK2, and STAT3 were
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all declined (Fig. 2f, g). Moreover, we found similar
miRNA-binding sites exited in these four genes in
human database indicating these miRNA gene regu-
lations may also exist in humans (Additional file 1:
Figure S4). Based on these results, it is believed
that miR-17-92 cluster can systematically regulate
LIF/CNTF and downstream JAK2/STAT3 signaling
by targeting multiple proteins (GP130, CNTER, JAK2, and
STAT3) in this pathway (Fig. 2h).

miR-17-92 cluster represses JAK2/STAT3 signaling
pathway and modulates neurogenesis/astrocytogenesis
transition of cultured NSCs

To investigate the role of miR-17-92 cluster in modulating
JAK2/STAT3 pathway mediated by LIF/CNTE, we overex-
pressed miR-17-92 cluster in cultured NSCs followed with
LIF, CNTE or CM treatment. Afterwards, we examined
the protein levels of JAK2, STAT3, phosphorylated JAK2,
phosphorylated STAT3, and GFAP (Fig. 3a). Our results
demonstrated that miR-17-92 cluster significantly reduced
the expression levels of JAK2 and STATS3, as well as their
phosphorylation levels and their downstream GFAP pro-
tein levels (Fig. 3b). These data suggest miR-17-92 cluster
overexpression in NSCs represses JAK2/STAT3 signaling
pathway activated by the secreted LIF/CNTF during
neuroinflammation.

To evaluate the effects of miR-17-92 cluster on NSC
differentiation, we overexpressed miR-17-92 cluster in
NSCs before LIF, CNTE, or CM stimulation, respectively.
Afterwards, we assessed the level of astrocytogenesis and
neurogenesis of differentiated NSCs. As compared to the
control group, overexpression of miR-17-92 cluster de-
creased the percentage of GFAP-positive cells in the total
EGFP-positive cells (41.9+2.8 vs.54.3+2.7 %, p<0.05;
45.0+2.6 vs. 57.8+2.6 %, p<0.05 37.0+£3.7 vs. 50.7 +
24 %, p<0.05; Fig. 4a, c¢), while increasing the DCX-
positive cell ratio in the total EGFP-positive cells (29.5 +
1.3 vs. 204 £2.7 %, p<0.05; 25.6 £ 1.5 vs. 17.5+ 2.4 %, p <
0.05; 33.9 + 1.8 vs. 23.9 £ 2.7 %, p < 0.05; Fig. 4b, d) in dif-
ferentiated NSCs upon these stimulations.

Taken together, these results suggest that miR-17-92
cluster members can effectively repress LIF/CNTF-me-
diated JAK2/STAT3 signaling pathway by targeting
GP130, CNTEFR, JAK2, and STAT3, which further facili-
tates neuronal differentiation at the expense of astrocy-
togenesis of NSCs in vitro.

miR-17-92 cluster represses astrocytogenesis and
increases neurogenesis in grafted NSCs in vivo

To further investigate the effects of miR-17-92 cluster
on the differentiation of grafted NSCs in vivo, we first
generated a stab wound injury in the motor cortex of
adult C57BL/6 mice. We examined the status of astro-
cytes activation by staining GFAP around the injured
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Fig. 2 miR-17-92 cluster members target multiple proteins in JAK2/STAT3 pathway. a The schematic genomic organization of the miR-17-92 cluster on
the mouse chromosome 14 (Chr.14). b Sequence alignment of mature miR-19a, miR-19b, miR-17, and miR-20a revealed their seed sequences that were
reverse complementary to the seed-matched sequence within the 3" UTR of mouse CNTFR or GP130, respectively. The mutated sequences in the 3'
UTRs of CNTFR (mut CNTFR) and GP130 (mut1 GP130, mut2 GP130) are indicated. ¢, d Luciferase activity was measured 24 h after transfecting HEK
293T cells. Reporter plasmids with the wild-type (wt CNTFR, wt GP130) or mutated (mut CNTFR, mut1 GP130, or mut2 GP130) 3'UTR of CNTFR or

GFAP

GP130 were transfected either alone (vector) or with the expression vector pcDNA3.1-overexpressing miR-17-92 cluster (miR-17-92) or empty pcDNA
3.1 (con). Values are means + SEM. Asterisks indicate a statistically significant difference compared with the control (*P < 0.05, one-way ANOVA followed
by Tukey's test, n = 3 independent experiments). @ Quantitative real-time PCR was used to determine the efficiency of overexpressing miR-17-92 cluster

members using lentivirus (miR-17-92). Values are means + SEM (n = 3 independent experiments). f Western blot analysis of GP130, CNTFR, JAK2, and
STAT3 protein expressions in NSCs 72 h after infecting them with lentivirus overexpressing miR-17-92 cluster (miR-17-92) or control lentivirus (CON).
g Quantifications for the protein expression levels from the experiment shown in f. Values are means + SEM. Asterisks indicate a statistically significant
difference compared with the control group (*P < 0.05, unpaired two-tailed t test, n = 3 independent experiments). h Schematic representation of
multiple proteins regulated by miR-17-92 cluster in JAK2/STAT3 signaling pathway

area. We found that 1 day after injury, there were
already an amount of reactive astrocytes and the number
of reactive astrocytes increased 1 week after the injury
(Additional file 1: Figure S5A), indicating a progressive
inflammatory condition. Four weeks after injury, the
damaged area was basically healed where there were no
neuron-specific nuclear protein NeuN-positive cells
(Additional file 1: Figure S5B). The temporal course of

transplantation, immunohistochemical test, and behav-
ioral analysis were depicted in Fig. 5a. Immediately after
injury, NSCs were grafted 0.3 mm ventrally to the
injured area just above the subcortical white matter
(Fig. 5b). There were no mitotic marker phospho-
histone H3 (PH3)-positive signals in NSCs overexpress-
ing miR-17-92 cluster (miR-17-92-NSC) as well as
control cells (CON-NSC) 1 day (Fig. 5¢) and 7 days (data
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were analyzed by western blot. GAPDH was used as an internal control. b Quantification of the protein expression levels from the experiment shown
in a. Values are means + SEM. Asterisks indicate a statistically significant difference compared with the Lenti-CON group (*P < 0.05, **P < 0.01, unpaired
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not shown) after transplantation, excluding the possibil-
ity of tumor formation which also indicates that miR-17-
92 cluster has little effect on NSC proliferation in the
lesioned brain.

To explore whether grafted NSCs retained their
neural stem/precursor cell identity, the expression of
NSCs marker nestin was determined. One day after
transplantation, both miR-17-92-NSC and CON-NSC
groups highly expressed nestin (64.9 + 4.2 vs. 62.6 + 3.2 %,

p =0.68), and there were no nestin-positive cells 1 week
after transplantation (Fig. 5d—f). These findings reveal that
miR-17-92 cluster has little effect on grafted NSCs in
retaining their neural stem cell identity in the injured area.

To further evaluate the potential role of miR-17-92
cluster on NSC differentiation in injured brain under
inflammatory condition, we examined the percentage
of GFAP or NeuN-positive cells among grafted cells
12 weeks after transplantation. As compared to the
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\

control group, miR-17-92 cluster significantly decreased  significantly decreased astrogliosis by 32.2 % at the le-
the proportion of astrocytes (32.1+2.9 vs. 46.8+  sion site (Fig. 7a, b). This is partly because of the re-
3.5 %, p<0.05; Fig. 6a, b), while that of neurons was duced astrocytogenesis of grafted NSCs, which directly
remarkably increased (13.4+2.0 vs. 4.8+0.9 %, p<0.05; diminished the number of reactive astrocytes. Mean-
Fig. 6¢, d). while, the result also points to a potential non-cell au-
tonomous effect of grafted NSCs on host astrocytes that
miR-17-92 cluster overexpression reduces astrogliosis and  contributes to the reduction of astrogliosis.
improves the motor coordination of brain-injured mice Due to the mild injury in the motor cortex, no obvious
We observed that there are large amount of reactive as-  motor defects related to walking, climbing, or feeding
trocytes gathering around the lesion site, which normally  abilities were observed among almost all the operated
reflects the recovery situation after brain injury. There- animals. Therefore, we checked the potential effect of
fore, we assessed the potential effect of miR-17-92 clus- miR-17-92-NSC transplantation using a rotarod test, a
ter overexpression on astrogliosis 12 weeks after NSC  more sophisticated task of motor coordination. We
transplantation by immunostaining of GFAP. Our results ~ showed that mice that received cell grafts of either type
showed that miR-17-92 cluster overexpression in NSCs  appeared to be doing better than the group that received
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Fig. 5 PH3 and nestin immunoreactivity in grafted NSCs. a Schematic presentation of temporal course of transplantation, immunohistochemical
test, and behavioral analysis. b Diagram illustrating the injury site (red line) in the motor cortex (MC) and NSC grafting (green dot). ¢ Immunofluorescence
labeling of coronal sections for the mitotic marker PH3 (red), 1 day after transplantation of either control (CON-NSC) or miR-17-92-overexpressing
(miR-17-92-NSQ) cells (green). No positive signal was observed in the grafted cells. Scale bar, 50 um. d, f Immunofluorescence labeling of coronal
sections for the NSC marker nestin (red), 1 day and 1 week after transplantation of either CON-NSC or miR-17-92-NSC (green). Both types of grafted cells
express nestin at 1 day, while no positive signal was observed at 7 days. Scale bar, 50 um. e The ratio of nestin-positive to EGFP-positive cells from the

two-tailed t test, n = 3 independent experiments)
.

experiment shown in d was determined. There was no statistically significant difference between the two groups (N.S. not significant, unpaired

no cells, especially the miR-17-92-NSC group. The mice
that received NSC-overexpressing miR-17-92 cluster
showed no significant differences in performance com-
pared to control-NSC group until 12 weeks after trans-
plantation (168.8 £ 13.6 vs. 129.8 + 9.5, p < 0.05; Fig. 7c).
These data indicate that miR-17-92 cluster may improve
the motor coordination of brain-injured mice via in-
creasing neurogenesis of grafted NSCs.

Discussion

Transplantation of NSCs into the injured CNS becomes
a promising strategy to overcome the regenerative limi-
tations of the lesioned brain [28]. However, the patho-
logical environment in the injured brain strongly affects
grafted NSC properties and their lineage selection, which
results in low yield of differentiated neurons [10, 29]. It
is demonstrated that reactive astrocyte during CNS in-
jury facilitates astrocytic differentiation of NSCs in vitro
[25]. Those activated astrocyte under neuroinflammatory

condition can secret several cytokines such as LIF and
CNTF, which have been proved to regulate NSC differ-
entiation in vitro [30]. In the present study, we have
demonstrated that astrocytic CM strongly induces astro-
cytogenesis from NSCs and this induction is mitigated
by the addition of neutralizing antibody of LIF and
CNTF. These data indicate that LIF and CNTF are the
major factors produced in astrocytic CM which promote
glial cell fate of NSCs. In the nervous system, the effects
of LIF and CNTF are complicated which depend on the
stages of development. In the gliogenic phase, there are
evidence that LIF and CNTF enhance generation, matur-
ation, and survival of oligodendrocytes [31]. It is also re-
ported that LIF is secreted by grafted NSCs and provides
protective effects in animal model of multiple sclerosis
by promoting survival, differentiation, and the remyeli-
nation capacity of both endogenous oligodendrocyte
precursors and mature oligodendrocytes [32, 33]. How-
ever, in the early neurogenic phase when NSCs mainly
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give rise to neurons, LIF and CNTF can modulate
neuron-astrocyte transition by promoting astrocytic dif-
ferentiation from NSCs [34]. There is a similar, post-
transplantation transition of neurons into astrocytes
[35]. It is believed that inhibition of LIF and CNTF sig-
nals can reduce astrocytogenesis and enhance neuronal
generation from NSCs [34].

There are circumstantial evidences suggesting that
JAK-STAT pathway, which plays a crucial role in astro-
cytogenesis, is activated upon LIF, CNTF, and IL-6
stimulation [36, 37]. Furthermore, several studies suggest
that inhibition of JAK-STAT pathway can induce fate
switch and facilitate neuronal differentiation [38, 39].
We have demonstrated that astrocytic CM stimulation
activates JAK-STAT pathway, while blocking LIF and
CNTF in astrocytic CM significantly repress such activa-
tion leading to the increase of neuronal differentiation.
These results together suggest that inhibition of LIF/
CNTF signal and JAK-STAT pathway in NSCs under

inflammatory conditions may increase neurogenesis at
the expense of astrocytogenesis.

Our previous work demonstrated that miR-17 modu-
lates neuron-astrocyte transition via inhibiting BMPR2
expression [19]. Meanwhile, Naka-Kaneda et al. also re-
ported the role of miR-17 in controlling neurogenic to
gliogenic transition of NSCs [40]. In the present work,
we found that miR-17-92 cluster has multiple protein
targets in LIF/CNTF signal pathway including CNTEFR,
GP130, JAK2, and STAT3. Among these four identified
targets, JAK2 and STAT3 have been proved to be regu-
lated by miR-17 in several models [26, 41, 42]. In
addition, there are similar miRNA-binding sites in these
four genes in the human database, indicating that such
regulation of miR-17-92 cluster is conserved in humans.
Further investigation showed that overexpression of
miR-17-92 cluster significantly reduces those protein
levels in NSCs leading to strong inhibition of JAK-STAT
pathway under LIF/CNTF or astrocytic CM stimulation.
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As a result, such multi-targeted inhibition promoted
neurogenesis while reducing astrocytic differentiation
from NSCs subjected to LIF/CNTF or astrocytic CM
treatment. These results demonstrated great potential of
miR-17-92 cluster in promoting neuronal differentiation
from NSCs under inflammatory condition in vitro.

Next, we assessed the effect of miR-17-92 cluster in
modulating NSC differentiation under inflammatory
conditions in vivo. Although it is reported that miR-17-
92 cluster promotes cell expansion in vitro and in vivo
[43, 44], in our study, overexpression of miR-17-92 clus-
ter showed no significant impact on the proliferation of
grafted NSCs since a majority of NSCs stop dividing
1 day after transplantation. Meanwhile, overexpression
of miR-17-92 cluster significantly reduced astrocytogen-
esis and increased neuronal differentiation after NSCs
transplantation in our brain injury model. Besides, we
demonstrated that overexpression of miR-17-92 cluster
in NSCs also reduced astrogliosis in the lesion site after

cell transplantation. There are evidences that miRNA-
containing microvesicles regulate inflammation in a cell-
to-cell manner [45]. Additionally, miR-17-92 cluster is
suggested as a key player in control inflammation [46].
Furthermore, several evidences suggest that miRNA-
containing microvesicles are involved in cell-to-cell com-
munication in CNS under pathological conditions re-
lated to neuroinflammation [23, 47]. Together, these
data suggest that grafted NSCs may secrete microvesicles
containing miR-17-92 cluster, which further modulate the
inflammatory response of resident astrocytes that ultim-
ately contributes to the reduction of astrogliosis.
Behavioral test of brain-injured mice showed remark-
able improvement of motor coordination when miR-17-
92 cluster-overexpressing NSCs were grafted, which is in
agreement with our morphological findings. It is well
known that increased neuronal differentiation is helpful
to the functional recovery after CNS insults [3]. Be-
sides, another potentially beneficial effect of miR-17-92
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cluster-overexpressing NSCs is the significant inhibition
of astrogliosis since reactive astrocyte as well as glial
scar may have detrimental consequences after CNS
damage [48, 49].

It is undoubted that during brain lesion, both astrocyte
and microglia are activated, which result in a neuroin-
flammatory condition [50]. Cytokines secreted by both
cell types may affect the cell lineage selection of grafted
NSCs. In addition to the LIF and CNTF secreted by acti-
vated astrocyte, it is demonstrated that activated micro-
glia also facilitates astrocytogenesis via producing IL-6
and LIF [8, 10]. Notably, all these cytokines affect NSCs
differentiation through the modulation of JAK-STAT
pathway [51, 52]. Furthermore, one of the targeted pro-
teins of miR-17-92 cluster, GP130, controls IL-6, and
downstream JAK-STAT pathway that regulates NSC
lineage selection [31, 51]. Therefore, we believe that
overexpression of miR-17-92 cluster in grafted NSCs can
remarkably block the activation of JAK-STAT pathway
mediated by LIF/CNTEF/IL-6 under neuroinflammatory
condition in vivo.

Conclusions

Taken together, our results suggest that LIF and CNTF
produced by reactive astrocyte activate JAK-STAT path-
way in NSCs. miR-17-92 cluster effectively inhibits the ac-
tivation of JAK-STAT pathway under neuroinflammatory
condition via targeting multiple proteins, leading to the in-
crease of neuronal differentiation from grafted NSCs after
brain injury. These findings not only provide a better un-
derstanding of NSC differentiation regulated by neuroin-
flammation but also potentiate the clinical application of
neural cell replacement.
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