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Abstract

Background: Microglia are the “professional” phagocytes of the CNS. Phagocytosis is crucial for normal CNS
development and maintenance, but it can be either beneficial or detrimental after injury or disease. For instance,
white matter damage releases myelin debris that must be cleared by microglia in order for re-myelination to occur.
However, phagocytosis can also produce damaging reactive oxygen species (ROS). Furthermore, microglia can
acquire pro-inflammatory (M1) or anti-inflammatory (M2) activation states that affect cell functions. Although
microglia are exposed to a changing cytokine environment after injury or disease, little is known about the
molecular and functional consequences. Therefore, we applied several microglial activation paradigms, with or
without myelin debris. We assessed (i) gene expression changes reflecting microglial activation and inflammatory
states, and receptors and enzymes related to phagocytosis and ROS production, (i) myelin phagocytosis and
production of ROS, and (iii) expression and contributions of several ion channels that are considered potential
targets for regulating microglial behavior.

Methods: Primary rat microglia were exposed to cytokines, individually or sequentially. First, responses to individual
M1 or M2 stimuli were compared: IFN-y plus TNF-a (I + T"; M1 activation), interleukin-4 (M2a/alternative activation),
and interleukin-10 (M2c/acquired deactivation). Second, sequential cytokine addition was used to assess microglia
repolarization and cell functions. The paradigms were M2a—M1, M2c—>M1, M1—M2a, and M1—M2c.

Results: M1 stimulation increased pro-inflammatory genes, phagocytosis, and ROS, as well as expression of Kv1.3,
KCa3.1, and Kir2.1 channels. M2a stimulation increased anti-inflammatory genes, ROS production, and Kv1.3 and
KCa3.1 expression. Myelin phagocytosis enhanced the M1 profile and dampened the M2a profile, and both
phagocytosis and ROS production were dependent on NOX enzymes and Kir2.1 and CRAC channels. Importantly,
microglia showed some capacity for re-polarization between M1 and M2a states, based on gene expression
changes, myelin phagocytosis, and ROS production.

Conclusions: In response to polarizing and re-polarizing cytokine treatments, microglia display complex changes in
gene transcription profiles, phagocytic capacity, NOX-mediated ROS production, and in ion channels involved in
microglial activation. Because these changes might affect microglia-mediated CNS inflammation, they should be
considered in future experimental, pre-clinical studies.
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Background

Phagocytosis is crucial during central nervous system
(CNS) development and in the healthy adult to both
promote and maintain appropriate synaptic connections
and homeostasis. After CNS injury or disease, phagocyt-
osis is crucial for clearing cellular debris, including
degenerated myelin after acute injury or degenerative
diseases, such as multiple sclerosis. For CNS repair to
occur, myelin debris must be rapidly removed because it
inhibits differentiation of oligodendrocyte precursor cells
and re-myelination, and promotes formation of
membrane attack complexes that further damage myelin
[1-3]. Microglia are the “professional” phagocytes of the
CNS. However, phagocytosis can have both beneficial
and detrimental effects (reviewed in [3-9]). Microglia
can exacerbate damage by producing excessive reactive
oxygen species (ROS) during phagocytosis [10-12]. This
ROS production, which is mediated by nicotinamide aden-
ine dinucleotide phosphate (NADPH) oxidases (NOX en-
zymes), can contribute to DNA damage, lipid peroxidation,
toxic protein alterations, and neurotoxicity [13-16].

In considering both harmful and helpful outcomes of
phagocytosis, it is important to note that microglia can
adopt several activation states or possibly a continuum of
states (reviewed in [17-20]). It is generally thought that
the pro-inflammatory (M1) state exacerbates tissue dam-
age and that anti-inflammatory (M2) states help in tissue
repair; however, very few studies have compared phagocyt-
osis and ROS production in different activation states. Ex-
perimentally, M1 activation is usually evoked by
lipopolysaccharide (LPS), with or without the pro-
inflammatory cytokine, interferon gamma (IFN-y). M2a
(alternative) activation is evoked by interleukin-4 (with or
without interleukin (IL)-13). M2c (acquired deactivation)
is usually evoked by IL-10 (less often by glucocorticoid
hormones). However, some suggest that IL-10 evokes gene
changes more closely resembling an M1 profile [21]. Fur-
ther complexity in microglial activation in vivo arises from
dynamic changes in the CNS environment over time after
injury or disease.

In vitro studies have addressed the microglial phago-
cytic capacity for plastic beads, bacteria, apoptotic cells,
red blood cells, and less often, myelin. Little is known
about the relationship between microglial activation
states, myelin phagocytosis and ROS production, and,
conversely, how myelin phagocytosis affects microglial
activation states. The limited studies report that M1 acti-
vation of rat microglia increases phagocytosis of myelin
(LPS or IFN-y stimulation) [22]. Results on M2-
activated microglia are inconsistent. M2a activation with
IL-4 and/or IL-13 increased myelin phagocytosis by hu-
man microglia [23] but not rat microglia [22]. M2c acti-
vation of rat microglia with IL-10 increased myelin
phagocytosis [22]. It is not known how sequentially
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exposing microglia to M1- versus M2-inducing cytokines
affects their activation state, phagocytic capacity, or ROS
production.

We began by comparing unstimulated, M1- and M2-
activated rat microglia, quantifying myelin phagocytosis,
ROS production, and expression of inflammatory media-
tors and receptors/enzymes related to phagocytosis and
ROS production. Then, we examined how all these re-
sponses were affected by applying an M1 stimulus
followed by an M2 stimulus and vice versa. Finally, under
all the activation paradigms, we assessed expression and
contributions of several ion channels that are known to
regulate other functions of rat microglia: KCa3.1, Kv1.3,
Kir2.1, as well as Orai and stromal interaction molecule
(STIM) subunits that form store-operated and Ca®*
release-activated Ca** (CRAC) channels.

Methods

Primary cultures of rat microglia and activation states
Handling and sacrifice of rat pups was in accordance with
guidelines from the Canadian Council on Animal Care
and approved by the University Health Network Animal
Care Committee (Animal Use Permit #914). Pure micro-
glial cultures were prepared from 1-2-day-old Sprague-
Dawley rat pups (Charles River, St. Constant, PQ, Canada),
as before [24—27]. In brief, the meninges and cerebellum
were removed from the excised brain, and the remaining
tissue was mashed in cold minimal essential medium
(MEM; Invitrogen, Carlsbad, CA), strained, and centri-
fuged at 300xg for 10 min. After re-suspending in MEM,
cells were seeded in MEM that contained 10 % heat-
inactivated fetal bovine serum (FBS; Wisent St. Bruno,
PQ, Canada) and 0.05 mg/mL gentamycin (Invitrogen).
The cells were incubated at 37 °C with 5 % CO, for 48 h,
and then, the medium was changed to remove cellular
debris and non-adherent cells. After 5-6 days, microglia
were harvested by shaking the flasks for 3—4 h on an or-
bital shaker at 70 rpm (37 °C, 5 % CO,). The supernatant
that contained microglia was collected and centrifuged
(300xg, 10 min), and the pellet was re-suspended in fresh
MEM with 2 % heat-inactivated FBS and 0.05 mg/mL gen-
tamycin. Microglia were seeded onto 96-well tissue cul-
ture plates at 7-8 x 10* cells/well (for phagocytosis and
ROS assays), 7-8 x 10* cells/15 mm coverslip (for fluores-
cence microscopy), and >10° cells/coverslip (for mRNA
collection).

To induce different activation states, microglia were ex-
posed to recombinant rat cytokines (R&D Systems Inc.,
Minneapolis, MN). A classical (M1) state was induced by
20 ng/mL IEN-y plus 50 ng/mL TNF-« (for 24 h): a treat-
ment we refer to as “I + T”. Alternative activation (M2a)
was induced by 20 ng/mL IL-4 (for 24 h). Acquired deacti-
vation (M2c) was induced with 20 ng/mL IL-10 (for 24 h).
Stock solutions were made in sterile PBS with 0.3 %
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bovine serum albumin and stored at —20 °C. For sequential
cytokine additions, the first treatment (IL-4 or I+ T) was
applied for 2 h, and then, the second (IL-4, I+ T, IL-10)
was added for an additional 22 h without washing.

nCounter gene expression assay (NanoString)

This multiplexed assay quantifies expression of multiple,
investigator-selected genes in a single ribonucleic acid
(RNA) sample, with sensitivity comparable to real-time
quantitative RT-PCR [28]. We collected samples from
separate microglia cultures (n=6) and extracted total
RNA using TRIzol reagent (Invitrogen) and the RNeasy
Mini Kit (QIAGEN, Mississauga, ON, Canada), as previ-
ously described [24, 25, 29]. RNA samples were stored at
—80°C. Then, 200 ng of extracted RNA from each separate
sample was sent for analysis to the Princess Margaret Gen-
omics Centre (www.pmgenomics.ca; Toronto, Canada). A
custom CodeSet (Table 1) was designed by NanoString
Technologies (Seattle, WA) for genes we had selected
based on previously reported changes with M1 and M2 ac-
tivation states, their role in phagocytosis or ROS produc-
tion, and the channels being investigated in this study.
RNA integrity was assessed using Nanodrop 1000, and
then, the nCounter Gene Expression Assay (sample
hybridization, detection, scanning) was conducted accord-
ing to NanoString Technologies’ recommendations. Data
were normalized to the geometric mean expression of three
housekeeping genes: hypoxanthine guanine phosphoribosyl
transferase 1 (HPRT1), B-glucuronidase (GusB), and 60S
ribosomal protein L32 (Rpl32). Reporter probe counts,
which reflect the numbers of a particular mRNA transcript
in the 200 ng RNA sample, were analyzed and quantified
using the nCounterTM digital analyzer software2.

Myelin phagocytosis and ROS production

Myelin was isolated by homogenizing adult rat brains
(weighing 1.95-2.10 g) in iso-osmotic buffer, followed by
sucrose gradient centrifugation [30]. The myelin concen-
tration was calculated from the total protein concentra-
tion, using the Pierce bicinchoninic acid (BCA) assay
(Thermo Fisher Scientific, Waltham, MA), and adjusted
as required. Myelin was labeled in the dark with the
lipophilic dye, 1,1'-dioctadecyl-3,3,3",3"-tetramethyl-
indocarbocyanine perchlorate (Dil) (Molecular Probes,
Burlington, ON, Canada) (1:200; =2 min, 37 °C), as is
commonly done for phagocytosis studies [10, 31].
Microglia were seeded at 7-8 x 10* cells per 15-mm
glass coverslip. They were cultured for 1-2 days without
complement proteins [32] by using 2 % heat-inactivated
FBS at 37 °C, 5 % CO,, and then incubated with Dil-
labeled myelin. Extracellular myelin was removed by
washing with standard bath solution (for phagocytosis
and ROS assays), Trizol reagent (for RNA isolation) or
fixative (for fluorescence microscopy). The cells were
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plated at the same high density, and the plate reader was
configured to measure fluorescence intensity at the bot-
tom of the plate. At the end of every experiment, we
monitored the cell health and saw no evidence of dam-
age, death, or obvious differences in cell numbers.

Myelin phagocytosis was first optimized by incubat-
ing microglia with 5, 25, or 50 pg/mL myelin for 6 h
or with 25 pg/mL myelin for 1, 3, or 6 h. Phagocyt-
osis of Dil-labeled myelin fragments was verified by
fluorescence microscopy in microglia that were fixed
in 4 % paraformaldehyde (10 min, room temperature)
and stained with FITC-conjugated tomato lectin
(1:500, 15 min; Sigma-Aldrich, Oakville, ON) and the
nuclear stain, 4',6-diamidino-2-phenylindole (DAPIL;
1:3000, 5 min; Cayman Chemical, Ann Arbor, Mich-
igan). After washing (three times, 5 min), cells on
coverslips were mounted on glass slides with Dako
mounting medium (Dako, Glostrup, Denmark) and
stored in the dark at 4 °C until images were acquired
with an Axioplan 2 wide-field epifluorescence micro-
scope equipped with an Axiocam HR digital camera
(both from Zeiss, Toronto, ON, Canada).

An earlier study of murine microglia showed that mye-
lin debris was internalized within 1 h and accumulated in
LAMP-1-positive lysosomes, presumably targeted for deg-
radation [10]. We verified that unstimulated (control) rat
microglia rapidly phagocytose myelin fragments under the
present conditions. At 25 pg/mL myelin, uptake was sub-
stantial by 3 h, and by 6 h, Dil-labeled myelin fragments
had accumulated mainly in the perinuclear region, with a
small amount in other cell regions (Fig. 1a). For the
remaining study, we chose a 6-h incubation with 25 pg/
mL myelin. The washing procedure effectively removed
extracellular myelin debris (Fig. 1a); thus, we could use a
multi-label fluorescence plate reader to quantify myelin
phagocytosis.

To quantify ROS, microglia were incubated (1 h, 37 °C,
5 % CO,) with the membrane-permeant probe, a chloro-
methyl derivative of 2',7"-dichlorodihydrofluorescein dia-
cetate (CM-H,DCFDA; 5 uM; Invitrogen). The probe is
cleaved by intracellular esterases to release HyDCFDA,
which is then oxidized to a fluorescent compound,
dichlorodihydrofluorescein (DCF) that remains trapped in
the cells. DCF (495 nm excitation, 525 nm emission) is a
general ROS probe that is compatible with Dil-labeled
myelin (553 nm excitation, 570 nm emission), thus allow-
ing myelin phagocytosis and ROS production to be moni-
tored in the same samples. Extracellular CM-H,DCFDA
and myelin fragments were removed by washing the cov-
erslips with standard bath solution, which contained (in
mM) 125 NaCl, 5 KCl, 1 CaCl,, 1 MgCl,, 10 HEPES, and
5 D-glucose (pH 7.4; 290-300 mOsm). As a positive
control for ROS production, microglia were occasion-
ally stimulated for 1 h with the PKC activator,
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Table 1 Target sequences used to design custom CodeSet for nCounter assay

Gene Gene accession #  Target sequence

Aif1 (Iba1) NM_017196.2 ATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCATCTAGAGCTGAAGAAATTAATTAGA
GAGGTGTCCAGTGGCTCCG

Ccl22 NM_057203.1 TACATCCGTCACCCTCTGCCACCACGTTTCGTGAAGGAGTTCTACTGGACCTCAAAGTCCTGCCGCAAGCCTGGCGTCGTTT
TGATAACCATCAAGAACC

Cd11b (Itgam) NM_012711.1 CATCCCTTCCTTCAACAGTAAAGAAATATTCAACGTCACCCTCCAGGGCAATCTGCTATTTGACTGGTACATCGAGACTTCTC
ATGACCACCTCCTGCTT

Cd68 (ED1) NM_001031638.1  CTCTCATTCCCTTACGGACAGCTTACCTTTGGATTCAAACAGGACCGACATCAGAGCCACAGTACAGTCTACC
TTAACTACATGGCAGTGGAATACAATG

Cd163 NM_001107887.1  CCTCTGTAATTTGCTCAGGAAACCAATCGCATACACTGTTGCCATGTAGTTCATCATCTTCGGTCCAAACAACA
AGTTCTACCATTGCAAAGGACAGTGA

Clr XM_001061611.1  ACAAAGACCTTATGGGTTATGTCAGCGGCTTCGGGATAACAGAAGATAAAATAGCTTTTAATCTCAGGTTTGTC
CGTCTGCCCATAGCCGATCGAGAGGC

Cybb (Nox2) NM_023965.1 CAGTACCAAAGTTTGCCGGAAACCCTCCTATGACTTGGAAATGGATCGTGGGTCCCATGTTCCTGTATCTGTGT
GAGAGGCTGGTGCGGTTTTGGCGATC

Ptgs2 (COX-2) NM_0172323 TTCGGAGGAGAAGTGGG AGGATCATCAACACTGCCTCAATTCAGTCTCTCATCTGCAATAATGTGAAAGG
GTGTCCCTTTGCCTCTTTCAATGTGC

Cx3crl NM_133534.1 ATGTGCAAGCTCACGACTGCTTTCTTCTTCATTGGCTTCTTTGGGGGCATATTCTTCATCACCGTCATCAGCATCG
ACCGGTACCTCGCCATCGTCCTGG

FcyR1a NM_001100836.1  TGATGGATCATACTGGTGCGAGGTAGCCACGGAGGACGGCCGTGTCCTTAAGCGCAGCACCAAGTTGGAGCT
ATTTGGTCCCCAGTCATCAGATCCTGTC

FcyR2b NM_175756.1 CTGGTCCAAGGAATGCTGTAGATATGAAAGAAAACATCTAGAGTCCCTTCTGTGAGTCCTGAAACCAACAGACAC
TACGATATTGGTTCCCAATGGTTGA

FcyR3a NM_207603.1 GACTCTTGTTTGCAATAGACACAGTGCTGTATTTCTCGGTGCAGAGGAGTCTTCAAAGTTCCGTGGCAGTCTATGA
GGAACCCAAACTTCACTGGAGCAA

Gusb NM_017015.2 TCATTTGATCCTGGATGAGAAACGAAAAGAATATGTCATCGGAGAGCTCATCTGGAATTTTGCTGACTTCATGACG
AACCAGTCACCACTGAGAGTAACA

Haver2 (TIM-3)  NM_001100762.1  CGATGAAATTAAGGACTCTGGAGAAACTATCAGAACTGCTGTCCACATTGGAGTAGGCGTCTCTGCTGGGCTGGC
CCTGGCACTTATTCTTGGTGTTTTA

Hprt1 NM_012583.2 AGCTTCCTCCTCAGACCGCTTTTCCCGCGAGCCGACCGGTTCTGTCATGTCGACCCTCAGTCCCAGCGTCGTGATT
AGTGATGATGAACCAGGTTATGAC

Hven1 (Hv1) XM_006249369.2  ACCAAGAGGATGAGCAGGTTCTTGAAGCACTTCACAGTGGTGGGGGACGACTACCACACCTGGAATGTCAACTA
CAAGAAGTGGGAGAACGAGGAGGATG

116 NM_012589.1 GGAACAGCTATGAAGTTTCTCTCCGCAAGAGACTTCCAGCCAGTTGCCTTCTTGGGACTGATGTTGTTGACAGCCA
CTGCCTTCCCTACTTCACAAGTCC

Kcna3 (Kv1.3)  NM_019270.3 GCCACCTTCTCCAGAAATATCATGAACCTGATAGACATTGTAGCCATCATCCCTTATTTTATTACTCTGGGCACTGAG
CTGGCTGAGCGACAGGGTAATG

Kenj2 (Kir2.1) NM_017296.1 GTTCTTTGGCTGTGTG GGTTGATAGCTCTGCTCCACGGGGATCTGGATGCTTCTAAAGAGAGCAAAGCGTGTGTG
TCTGAGGTCAACAGCTTCACG

Kenn4 (KCa3.1)  NM_023021.2 TACGTCTCTACCTGGTGCCTCGCGCGGTACTTCTGCGTAGCGGGGTCCTGCTCAACGCGTCTTACCGCAGCATCGGGG
CGCTCAACCAAGTCCGATTCCG

Mrct NM_001106123.1  CTTTGGAATCAAGGGCACAGAGCTATATTTTAACTATGGCAACAGGCAAGAAAAGAATATCAAGCTTTACAAAGGTTC
CGGTTTGTGGAGCAGATGGAAG

Msr1 (SR-A) NM_001191939.1  CACGTTCCATGACAGCATCCCTTCCTCACAACACTATAAATGGCTCCTCCGTTCAGGAGAAACTGAAGTCCTTCAAAGT
TGCCCTCGTCGCTCTCTACCT

Myc NM_012603.2 ACCGAGGAAAACGACAAGAGGCGGACACACAACGTCTTGGAACGTCAGAGGAGAAACGAGCTGAAGCGTAGC
TGCCCTGCGCGACCAGATCCCTG

Ncf1 NM_053734.2 TCCATTCCCAGCATCCCATAATTGGGCTTGTCCGTGTTCCAACATCTGGGCGGAATTTCACAGCCAAAGGTCAAGAGGA
CTGCTGTTACGTTCAAGGTCG

Nos2 (iNOS) NM_012611.2 ACGGGACACAGTGTCGCTGGTTTGAAACTTCTCAGCCACCTTGGTGAGGGGACTGGACTTTTAGAGACGCTTCTGAGG
TTCCTCAGGCTTGGGTCTTGTT

Nox1 NM_053683.1 CCGAGAAAGAAGATTCTTGGCTAAATCCCATCCAGTCTCCAAACGTGACAGTGATGTATGCAGCATTTACCAGTATTGC
TGGCCTTACTGGAGTGGTCGC

Nox4 NM_053524.1 TGTTGGACAAAAGCAAGACTCTACATATCACCTGTGGCATAACTATTTGTATTTTCTCAGGTGTGCATGTAGCTGCCCAC

TTGGTGAACGCCCTGAACTT



Siddiqui et al. Journal of Neuroinflammation (2016) 13:66

Page 5 of 22

Table 1 Target sequences used to design custom CodeSet for nCounter assay (Continued)

P2ry6 NM_057124.2 TGGCCCAACATGCCTGGCCCTCCAAAATTTCTATGTCAACCACAAAACTAAGACACCTGTGTTTCGGGGACTGGTCAGT
TCATGCTTGTTATACCAGAAT

Orail NM_001013982.1  GCCTTCTCCACCGTCATCGGGACGCTGCTTTTCCTGGCCGAAGTCGTGCTGCTCTGCTGGGTGAAGTTCTTACCGCTCAA
GAGGCAGGCGGGACAGCCAA

Orai3 NM_001014024.1  ACCTGTAATGTGCTTTACAGTTGGCATCCTGGGAGAGATTTTACATAGGCTCCTCAGATGAACCACTTTACACTTGGTGA
CTTGTGGTGGTGTGTCCCAC

Rpl32 NM_013226.2 CATCGTAGAAAGAGCAGCACAGCTGGCCATCAGAGTCACCAATCCCAACGCCAGGCTACGCAGCGAAGAGAATGAAT
AGATGGCTTGTGTGCCTGTTTTG

Sirpa NM_013016.2 AGGACATTCATTCTCGGGTCATCTGCGAGGTAGCCCACGTCACCTTGGAAGGACGCCCGCTTAATGGGACCGCTAACTT
TTCTAACATCATCCGAGTTTC

Stim1 NM_001108496.2 TATCTATCGTGATTGGTGTGGGTGGCTGCTGGTTTGCCTATATCCAGAACCGTTACTCTAAGGAGCACATGAAGAAAATG
ATGAAGGATCTGGAAGGATT

Stim2 NM_001105750.2  TTCACAATTGGACGCTTGAGGATACCCTGCAGTGGTTGATAGAATTTGTTGAACTCCCACAATACGAGAAGAA AGGG
ATAATAATGTGAAAGGAAC

Tnfa NM_012675.2 GGTGATCGGTCCCAACAAGGAGGAGAAGTTCCCAAATGGGCTCCCTCTCATCAGTTCCATGGCCCAGACCCTCACACTCA
GATCATCTTCTCAAAACTCG

Trem?2 NM_001106884.1  TCCGGCTGGCTGAGGAAGGGTGCCATGGAACCTCTCCACGTGTTTGTCCTGTTGCTGGTCACAGAGCTGTCCCAAGCCCTC
AACACCACAGTGCTGCAGG

phorbol 12-myristate 13-acetate (PMA; 100 nM, Results

Sigma), which produced a robust DCF signal (not
shown).

To assess contributions of the ion channels, we
used well-known blockers at concentrations that we
previously validated are sufficient to block the chan-
nels in primary rat microglia. As before, there was
no toxicity at the concentrations used. KCa3.1 (also
known as IK1, SK4) was blocked with 1-[(2-chloro-
phenyl) diphenylmethyl]-1H-pyrazole (TRAM-34; 1
uM; Sigma) as before [24, 27, 33, 34]. Kir2.1 was
blocked with N-[(4-methoxyphenyl)methyl]-1-naph-
thalene-methanamine hydrochloride (ML133; 20 pM;
Tocris Bioscience, MO) as in our recent study [35].
Kv1.3 was blocked with 5-nM agitoxin-2 (Sigma) as
before [36—38]. CRAC channels were blocked with N-[4-
[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-
1,2,3-thiadiazole-5-carboxamide (BTP2; 10 uM; EMD
Millipore, San Diego, CA). We previously showed that
10 uM BTP2 blocks Ca* signaling through CRAC [33, 35].
Stock solutions were made in sterile double distilled
water (agitoxin-2) or DMSO (TRAM-34, ML133,
BTP2) and stored at —20 °C. When used, the channel
blockers were applied together with myelin.

Statistical analysis

All graphical data are presented as mean * standard
error of the mean (SEM) for the # values indicated. The
statistical significance of results was analyzed with a
one- or two-way analysis of variance (ANOVA) and post
hoc analysis as indicated in the figure legends. Results
were considered significant if p < 0.05

Myelin phagocytosis affects the activation state of primary
rat microglia
When unstimulated (control) microglia were exposed to
25 pg/mL of myelin debris for 6 h, myelin was seen
mainly in the perinuclear region, with a small amount in
other cell regions (Fig. 1a). We then examined expres-
sion of over two dozen genes to create a profile of
microglial responses to the activating stimuli and to
myelin debris. Previously, by assessing several well-
known inflammatory genes, we found that unstimulated
rat microglia were in a relatively resting state [25, 29, 39].
This was confirmed, based on very low expression of well-
established pro-inflammatory (M1) molecules (NOS2/
iNOS, TNF-a, COX-2, IL-6), and of some markers of ‘al-
ternative’ (M2) activation (cluster of differentiation
(CD)163, CCL22). Two M2-associated molecules, c-myc
and MRC1, were expressed at moderate levels, and MRC1
expression was similar to our recent study [24]. When un-
stimulated cells were allowed to phagocytose myelin for
6 h, none of these markers changed significantly (Fig. 1b).
The same inflammatory markers were quantified after
microglia were treated with cytokines to evoke two differ-
ent activation states, and again, after myelin phagocytosis
(Fig. 1b, c). Previously validated M1 markers included in-
creased NOS2, COX-2, IL-6, and a loss of M2a markers
[21]. Here, classical (M1) activation was evoked by 24 h
treatment with a combination of IFN-y and TNF-a (which
we call “I+T”). As expected, there was a dramatic in-
crease in expression of pro-inflammatory molecules
(NOS2, TNF-a, COX-2); IL-6 increased to a lesser degree.
Conversely, IL-4 (M2a, alternative activation) increased
expression of several M2-associated molecules (MRC1,
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Fig. 1 Effects of microglial activation state and exposure to myelin on inflammatory gene expression. a Myelin phagocytosis. Representative
images showing myelin fragments inside primary rat microglia at 6 h after adding 25 ug/mL Dil-labeled myelin (red). Microglia were co-labeled
with tomato lectin (7L, green) and the nuclear stain, DAPI (blue). Scale bar, 10 um. Short arrows show peri-nuclear accumulation of myelin; long arrows
show myelin in other cell regions. b, ¢ Gene expression of inflammatory markers (b) and “ionized Ca®* binding adapter molecule 1” (c Iba1; also known
as AIF-1). Microglia were unstimulated (control, CTL) or stimulated for 24 h with 20 ng/mL IFN-y and 50 ng/mL TNF-a (I +T) or 20 ng/mL IL-4, with or
without a subsequent 6-h exposure to 25 ug/mL myelin (30 h total time after cytokine addition; plus or minus sign indicates presence/absence of myelin).
Expression of each gene is shown as normalized mRNA counts (described in the “Methods” section). On the scatterplots, the mean + SEM is indicated for
six different microglia cultures. Data were analyzed by two-way ANOVA with Bonferroni's post hoc test. The comparisons are as follows. Asterisk Between
unstimulated microglia (CTL) and cells treated with | + T or IL-4. Dagger sign CTL versus activated cells in the presence of myelin. Number sign Effects of
myelin within a particular activation state. One symbol p < 0.05, two symbols p < 0.01, three symbols p < 0.001
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CD163, c-myc, CCL22). Interestingly, while Ibal ex-
pression increased in the M1 state and decreased in
the M2 state, it was robustly expressed under all con-
ditions (Fig. 1c) and is thus not strictly an activation
marker.

Microglia were treated with cytokines (as above),
exposed to myelin for a further 6 h, and gene expres-
sion was again quantified. After myelin phagocytosis,
M1-polarized microglia showed increased expression
of some pro-inflammatory molecules (TNF-«, IL-6).
In M2a-polarized microglia, phagocytosis decreased
several genes associated with alternative activation
(MRC1, CD163, c-myc). Overall, these results suggest
that myelin can rapidly exacerbate some pro-
inflammatory responses of M1l-polarized microglia
and reduce M2a polarization.

The microglial activation state affects myelin phagocytosis
and expression of phagocytosis-related molecules

It is very difficult to quantify phagocytosis in vivo;
thus, many studies use surrogate phagocytosis
“markers” such as the glycoprotein, CD68 (ED1) [3].
Here, we compared expression of a panel of
phagocytosis-related molecules in untreated, M1- and
M2a-activated microglia (Fig. 2a). The molecules were
chosen for the following reasons. To phagocytose
myelin in vitro, microglia primarily use the scavenger
class A receptor (SR-A), complement receptor 3 (CR3)
(also called oy, and comprised of CD11b and CD18),
and immunoglobulin Fc gamma receptors (if anti-
myelin antibodies are present) [2, 3, 40]. We quanti-
fied expression of SR-A, FcyRIa, FcyRIIb, FcyRlIlla,
and CD11b. FcyRIa (CD64) and FcyRIlla (CD16)
stimulate phagocytosis; whereas, FcyRIIb (CD32) is in-
hibitory [41], as is signal regulatory protein alpha
(SIRPa) (CD172a), which interacts with CD47 ligand
on myelin [1]. CD68 and CR3 are often used as
general markers of microglial activation because their
staining intensity increases after CNS injury [7, 42—44].
Clr is an essential protease that initiates the classical com-
plement pathway to opsonize particles with complement
proteins for targeted phagocytosis [45]. Nucleotides re-
leased by damaged cells act as “find-me” signals for phago-
cytes, and UDP acts on metabotropic P,Y¢ receptors to
facilitate phagocytosis. This receptor is up-regulated in
microglia in response to dying neurons [7, 46]. Recently,
triggering receptor expressed on myeloid cells 2 (TREM2),
CX3CR1, and T-cell immunoglobulin and mucin-domain
containing 3 (TIM-3) have been added to the list of recep-
tors involved in microglial phagocytosis. TREM2 senses
lipid components of damaged myelin, is required for deb-
ris clearance, and is mainly expressed on microglia [47]. In
the CNS, CX3CR1 is expressed exclusively by microglia
and perivascular macrophages [48] and is required for
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effective clearance of myelin debris [49]. TIM-3 is present
in human microglia that are specifically localized to white
matter [50]. LPS increases TIM-3 expression in murine
microglia, and blocking its activity decreases their phago-
cytosis of apoptotic neurons [51].

(i) In untreated microglia, there was substantial ex-
pression (arbitrary cutoff, >5000 mRNA counts/
200 ng RNA) of several stimulatory receptors
(CD11b, SR-A, FcyRIa, FcyRIlla, CD68, TREM2) and
the inhibitory receptors, FcyRIIb and SIRPa (Fig. 2a).
There was lower expression of Clr, P,Ys CX3CRI,
and TIM-3. (ii) Following I+ T (M1) treatment, three
stimulatory receptors increased (Clr, FcyRIIla, TIM-3)
and the inhibitory receptor, SIRPa, decreased. While
this might mean that M1 cells have a higher phago-
cytic capacity for a wider range of targets, there were
concomitant decreases in the stimulatory receptors,
SR-A, FcyRIa, CD68, TREM2, and CX3CRI1. (iii) After
IL-4 treatment (M2a state), there were decreases in several
stimulatory receptors (CD11b, SR-A, FcyRIa, CD68,
TREM2) and an increase in the inhibitory receptor,
FcyRIIb, suggesting a reduced phagocytic capacity. How-
ever, P,Yg increased and the inhibitory receptor, SIRP« de-
creased. Surprisingly, both M1 and M2a activation
decreased SR-A, FcyRIa, CD68, TREM2, and SIRPa.

The complex changes in  expression  of
phagocytosis-related receptors made predictions diffi-
cult. Thus, it was important to next assess whether
myelin phagocytosis was affected by the activation
state and, conversely, whether myelin altered recep-
tor expression. (i) In unstimulated microglia, many
receptors were unaffected by myelin (CD11b, SR-A,
FcyRIa, FcyRIIb, FcyRIIla, Clr, TREM2) or slightly
decreased (CD68, SIRPa). However, there were in-
creases in three receptors not known to mediate
myelin phagocytosis: P,Ys, CX3CR1, and TIM-3. (ii)
In I+ T-treated cells, myelin increased the stimula-
tory receptors, P,Ys and TIM-3 and, to a lesser ex-
tent, FcyRIIla and Clr. None were decreased. (iii) In
IL-4-treated cells, myelin increased P,Ys and
CX3CR1, and although CD68 was slightly decreased,
its mRNA counts remained very high. Interestingly,
P,Y¢ increased under all three activation states.
Overall, effects of myelin were modest. (iv) Phagocyt-
osis was unchanged by IL-4 and increased ~20 % by I+ T
(Fig. 2b). Here, we also tested IL-10 to represent an M2c
phenotype that is thought to resolve pro-inflammatory
states (reviewed in [18, 19]). We did not examine the mo-
lecular profile after IL-10 alone, mainly because the
markers are less clear and some overlap with M1 markers
[21]; however the IL-10-evoked increase in phagocytosis
was similar to I+ T. These small differences in phagocyt-
osis are very unlikely to account for large differences in
gene expression after exposure to myelin (Fig. 2a).
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The microglial activation state affects production of ROS Based on these changes in ROS production, we exam-
and expression of ROS-related molecules ined expression of several molecules related to ROS pro-
Phagocytosis is often accompanied by a considerable duction. NADPH oxidase enzymes (NOX1-5) are
ROS production. Thus, we next compared ROS produc- homologs of NOX2/gp91phox, the catalytic subunit that
tion in unstimulated (control) microglia and after I+ T, is present in cell membranes [52]. It was previously re-
IL-4, or IL-10, with and without myelin phagocytosis  ported that primary rat microglia express NOX1, NOX2,
(Fig. 2c). Without myelin, ROS production increased in  and NOX4, while NOX3 was not detected [53], and our
M1 (I+T) and M2a (IL-4) states. Myelin phagocytosis  results corroborate this (we did not examine NOX3).
further increased ROS production in all activation states. =~ NOX2 is well-studied and is largely responsible for the
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phagocytosis-induced ROS  production (respiratory
burst) of microglia [4, 54] and other phagocytes [55].
Activation of NOX2 at the plasma membrane requires
phosphorylation of the accessory subunit, Ncfl (neutro-
phil cytosolic factor 1/p47phox) [56, 57].

NOX2 and Ncf1 were highly expressed in unstimulated
rat microglia, increased in Ml-activated cells, and de-
creased in the M2a state (Fig. 3a). Myelin phagocytosis
had minor effects, slightly decreasing NOX2 in the M1
state only. Our results are consistent with an earlier study
of [FN-y-stimulated microglia showing that myelin phago-
cytosis increased ROS production without affecting Ncf1
transcription [10]. NOX4 is unique in several respects. Its
contribution is regulated by transcription without
accessory subunits [58, 59], and it is located in membranes
of the ER, nuclear envelope, and mitochondria [60]. We
found that NOX4 expression was extremely low in un-
stimulated rat microglia and increased slightly in the M1
state only. NOX1 can contribute to production of both
ROS and reactive nitrogen species [13], which are both in-
volved in eradicating pathogens [55]. We found that
NOX1 expression was always very low, was further de-
creased after I + T or IL-4 treatment, and was not affected
by myelin phagocytosis. Thus, it seems most likely that
NOX2 was responsible for the observed changes in ROS
production (Fig. 2). The voltage-gated proton channel,
Hvl, was also examined because it can facilitate ROS pro-
duction by allowing H" efflux as charge compensation for
NOX-generated electrons [61, 62]. Hvl was moderately
expressed in unstimulated microglia and increased in the
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M1 state. Overall, only the M1 stimulus increased known
facilitators of ROS production in microglia. Myelin phago-
cytosis further increased Hvl in unstimulated and M1-
activated cells.

We then used the pan-NOX inhibitor VAS2870 [63] to
assess overall contributions of NOX enzymes. The drug
was non-toxic. In control cells and in all three activation
states, VAS2870 decreased phagocytosis to below the level
of unstimulated microglia (Fig. 3b). Exposure to myelin al-
ways increased ROS production (as in Fig. 2¢), and this
was essentially abolished by VAS2870 in all three activated
states (Fig. 3c). (Statistical comparisons of phagocytosis in
different activation states were shown in Fig. 2.)

Attempting to repolarize microglia using sequential
cytokine stimulation

To model a changing inflammatory environment, such
as can occur after CNS injury (see Background), we used
sequential addition of cytokines that induce M1 then
M2 activation and vice versa. The same panel of inflam-
matory, phagocytosis-related, and oxidative stress-
related genes was assessed as in Figs. 1, 2, and 3. (i)
Microglia were stimulated with IL-4 followed by I+ T,
which we refer to as an “M2a—M1” stimulus paradigm
(Fig. 4a). Several changes were consistent with I+ T
skewing (re-polarizing) them toward an M1 state. Two
M2 markers (MRC1, CD163) were dramatically reduced
(to control levels), and three pro-inflammatory media-
tors (NOS2, TNF-a, COX2) were higher than with IL-4
alone. The cells were not fully re-polarized to M1, as
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Fig. 3 Expression of ROS-related molecules and contribution of NOX enzymes to myelin phagocytosis and ROS production. a Expression of ROS-related
molecules. Rat microglia were stimulated with cytokines for 24 h with or without a subsequent 6-h exposure to myelin (plus or minus sign indicates
presence/absence of myelin), as in Figs. 1a and 2a. b Effect of NOX inhibition on phagocytosis of myelin fragments. The activation treatments, assay, and
normalization of data were the same as Fig. 2b, but now comparing the pan-NOX inhibitor, 5 uM VAS2870. ¢ Effect of NOX inhibition on ROS levels in
microglia that were treated as in Fig. 2b. As above, ROS levels were normalized to unstimulated microglia without myelin (dashed line), data are expressed
as mean + SEM (n = 6 individual cultures), and results were analyzed by two-way ANOVA with Bonferroni's post hoc test. The comparisons are as follows:
asterisk unstimulated (CTL) versus different activation states in the absence of myelin, dagger sign unstimulated (CTL) versus different activation states in the
presence of myelin, number sign effects of myelin (a) or VAS2870 (b, c) within a particular activation state. One symbol p < 0.05, two symbols p < 001, three
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some pro-inflammatory genes remained lower than with
I+ T alone: NOS2/iNOS (a 3.6-fold increase vs 1444
fold), Ibal (0.6 vs 1.8 fold), TNF-« (0.8 vs 4.3 fold), and
COX-2 (7.1 vs 259 fold). Not all genes were affected.
The changes in IL-6 and CCL22 were not different from
IL-4 alone. While c-myc was increased in the M2a—M1
stimulus paradigm, the change was small (3.6 vs 2.5

fold). (ii) In the reverse paradigm, the cells were first
stimulated with I + T, followed by IL-4 or IL-10 (Fig. 4b).
Secondary IL-4 treatment (M1—M2a paradigm) gener-
ally dampened the M1 response and further skewed
microglia toward an anti-inflammatory M2a state rela-
tive to I+ T alone. That is, IL-4 prevented induction of
Ibal and down-regulated several pro-inflammatory
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molecules; NOS2 (5.9 vs 1444 fold), TNF-a (1.0 vs 4.3
fold), and IL-6 (1.1 vs 3.1 fold). It also increased expres-
sion of some M2a-associated molecules; CCL22 (151 vs
2.1 fold), c-myc (3.5 vs 0.2 fold), and MRC1 (0.9 vs 0.03
fold). Overall, some re-polarization of the activation
state was evident between M1 and M2a. In contrast, sec-
ondary IL-10 treatment (M1—M2c paradigm) failed to
reverse any I+ T-induced changes, and instead, it
increased expression of NOS2.

Next, we examined the same phagocytosis-related
(Fig. 5) and ROS-related molecules (Fig. 6) as in Figs. 2
and 3. (i) In the M2a—M1 stimulus paradigm (Fig. 5a),
there was a dampened response compared with IL-4
alone. Eight out of 12 phagocytosis-related receptors de-
creased, including 6 stimulatory receptors (CD11b, SR-
A, CD68, TREM2, CX3CR1, TIM-3) and 2 inhibitory re-
ceptors (FcyRIIb, SIRPa). Three stimulatory receptors
were unchanged (FcyRIa, FcyRIlla, Clr), and only P,Yq
increased. For ROS-related molecules, Ncfl increased
but the others generally decreased (Fig. 6a). (ii) In the
M1—M2a paradigm (Fig. 5b), compared with 1+ T
alone, there was a dampened response of several stimu-
latory receptors (CD11b, FcyRIlla, CD68, Clr, TIM-3),
the inhibitory receptor, SIRPa, and all ROS-related genes
(Fig. 6b). Genes that were unchanged were the stimula-
tory receptors, SR-A, FcyRIa, and TREM2, and the in-
hibitory receptor, FcyRIIb. Again, only P,Ys was
increased. (ii¢) The M1—M2c paradigm did not dampen
responses compared with I+ T alone, except for a small
decrease in Ncfl (Figs. 5b and 6b). Instead, there were
increases in 5/17 phagocytosis- and ROS-related mole-
cules: NOX4, the stimulatory receptors, CD11b,
FcyRIlla, and TIM-3, and the inhibitory receptor, SIRPa.
Together, these results indicate substantial repolarization
in the M2a—M1 and M1—M2a paradigms but not the
M1—M2c paradigm.

The observed changes in expression of phagocytosis-
and ROS-related genes led us to directly examine myelin
phagocytosis and ROS production following sequential
treatments with M2 and M1 stimuli. (i) M2—M1: When
IL-4 (M2a)- or IL-10 (M2c)-treated microglia were sub-
sequently treated with I+ T, both phagocytosis and ROS
production increased compared with IL-4 or IL-10 alone
(Fig. 7a), which suggests that some re-polarization oc-
curred. (ii) M1—>M2: In the reverse paradigm (I+T,
then IL-4 or IL-10), phagocytosis was slightly increased
by IL-4 (M1—M2a) but not by IL-10 (M1—M2c). ROS
production was unchanged compared with 1+ T alone
(Fig. 7b). (iii) Myelin effects: Without myelin, I+ T in-
creased ROS and subsequently adding IL-4 or IL-10 had
no further effect; whereas, adding I + T after IL-4 or IL-
10 increased ROS production. Adding myelin always in-
creased ROS production compared with control cells
(no treatment, no myelin). In the presence of myelin,
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there was some functional re-polarization from M2a/c—M1
(increased phagocytosis and ROS production). In contrast,
compared with I+ T alone, ROS production was not altered
by M1—M2a (which slightly increased phagocytosis) nor
M1—M2c (which did not).

NOX enzymes were involved in both myelin phagocyt-
osis and ROS production under almost all conditions
(Fig. 7c). That is, the NOX inhibitor, VAS2870, de-
creased myelin phagocytosis under all conditions and
decreased ROS production in all stimulated cells (but
not in control cells).

Expression of K" and CRAC channels and their
contributions to myelin phagocytosis and ROS production
Rat microglia express several K" channels, including
KCa3.1, Kv1.3, and Kir2.1, as well as store-operated Ca**
entry (SOCE) channels. Pore-forming Orail and
accessory STIM1 subunits form CRAC channels, while
Orai3 and STIM2 are also involved in SOCE [64]. We
first examined whether expression of these channels dif-
fers in M1 and M2 microglial activation states and
whether it is altered by myelin phagocytosis (Fig. 8a). (i)
In unstimulated (control) cells, the only change evoked
by myelin was an increase in Kv1.3 expression. (ii) I+ T
(M1) stimulation increased expression of all the genes
examined (except Orail), i.e.,, KCa3.1 (1.8 fold), Kv1.3
(2.3 fold), Kir2.1 (5.2 fold), Orai3 (2.2 fold), STIM1 (2.2
fold), and STIM2 (1.2 fold) (Fig. 8a). In I+ T treated
cells, myelin phagocytosis increased expression of
KCa3.1, Kv1.3, Orail, and Orai3. (iii) IL-4 (M2a) stimu-
lation increased expression of KCa3.1 (2.1 fold) and
Kv1.3 (1.6 fold) and decreased STIM2 (by 26 %). It did
not affect Kir2.1, Orail, Orai3, or STIM1. Myelin phago-
cytosis did not alter any of these genes. (iv) In the
M2a—M1 paradigm (IL-4 then I+ T; Fig. 8b), all the
genes decreased to the control level or lower, except
Kir2.1. (v) In the M1—M2a paradigm (I+T then IL-4;
Fig. 8¢), all the genes (except Orail) decreased compared
with I+ T and were then at or below the control level.
(vi) In the M1—M2c¢ paradigm (I + T then IL-10; Fig. 8c),
IL-10 did not exert the same effects as IL-4. KCa3.1 was
slightly elevated compared with I + T but no other genes
were affected.

A panel of ion channel blockers was used to assess
their involvement in myelin phagocytosis and ROS pro-
duction. Blocking KCa3.1 (Fig. 9a) or Kv1.3 (Fig. 9b) did
not alter myelin phagocytosis or ROS production under
any activation state tested. Blocking Kir2.1 had no effect
on control cells (Fig. 9c) but it abolished the increase in
phagocytosis under all activation paradigms. Most strik-
ing was that whenever I+ T was present, Kir2.1 block
reduced the myelin-induced increases in ROS produc-
tion. CRAC channel inhibition greatly decreased myelin
phagocytosis under all activation paradigms (Fig. 9d).
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Fig. 5 Sequential cytokine addition affects expression of phagocytosis-related molecules. a M2a—M1 paradigm. Microglia were treated with 20 ng/mL
IL-4 for 2 h followed by 20 ng/mL IFN-y + 50 ng/mL TNF-a (1 +T) for 22 h. b M1—M2 paradigm. Microglia were treated with | + T for 2 h followed by either
IL-4 (M1—M2a) or 20 ng/mL IL-10 (M1—M2c) for 22 h. Data are expressed as mRNA counts in 200 ng total RNA (mean + SEM, n =6 individual cultures)
and were analyzed by one-way ANOVA with Tukey's post hoc test. The dashed lines indicate expression levels in unstimulated (control) microglia. The
comparisons are as follows: asterisk differences from control microglia, number sign effects of the second stimulus on the first stimulus. One symbol p < 0.05,
two symbols p < 001, three symbols p < 0.001

ROS production was also reduced, except in control and
IL-10-treated cells, where the CRAC blocker showed a
trend toward a decrease that did not reach statistical sig-
nificance. However, the myelin-stimulated ROS compo-
nent was relatively small under these conditions, and
there was less likelihood of seeing a blocker effect. There

appear to be multiple components of total ROS produc-
tion: a background component (without myelin) and one
that was stimulated by myelin phagocytosis under all
conditions (Fig. 2c), as well as a component that was not
reduced by the NOX inhibitor (Fig. 3c). In principle,
channel blockers could reduce ROS by affecting any
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Fig. 6 Sequential cytokine addition affects expression of ROS-associated
genes. a M2a—M1. Microglia were treated with 20 ng/mL IL-4 for 2 h
followed by 20 ng/mL IFN-y+50 ng/mL TNF-a (I+T) for 22 h.
b M1—M2. Microglia were treated with |+ T for 2 h followed by
either IL-4 (M1—M2a) or 20 ng/mL IL-10 (M1—M2¢) for 22 h.
Data are expressed as mRNA counts in 200 ng total RNA (mean
+ SEM, n =6 individual cultures) and were analyzed by one-way
ANOVA with Tukey's post hoc test. The dashed lines indicate
expression levels in unstimulated (control) microglia. The comparisons
are as follows: asterisk differences from control microglia, number sign
effects of a secondary stimulus on the first stimulus. One symbol
p <0.05, two symbols p <0.01, three symbols p <0.001
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component. Overall, expression of all four ion channels
was affected by the activation state, but only Kir2.1 and
CRAC channels were involved in myelin phagocytosis
and the consequent respiratory burst.

Discussion

This study used gene profiling and functional analyses to
examine relationships between microglial activation states,
myelin phagocytosis and ROS production, and the role of
selected ion channels in these processes. Because the
treatments and outcomes examined were complex, for
clarity in comparing with previous studies, the salient
findings will be discussed under four topics: (1) outcomes
of single stimuli used to polarize microglia to different ac-
tivation states, (2) effects of myelin phagocytosis on their
activation state, (3) attempts to re-polarize microglial acti-
vation, and (4) expression and contributions of the ion
channels in different activation states.

Effects of single stimuli

The first step was to validate the procedures used to
stimulate primary rat microglia. In agreement with well-
known markers [17-20], we found that IFN-y combined
with TNF-a (I+ T) induced a pro-inflammatory M1-like
state, while IL-4 induced an anti-inflammatory (M2a)
state. Thus, the cytokine concentrations we used were
effective in changing the molecular inflammatory profile,
as measured at 24 h.

It is expected that phagocytosis by activated microglia
will depend on the target, whether it is opsonized, and
which phagocytosis-related receptors are engaged. For
instance, in the damaged CNS, if extravasation of com-
plement or antibodies occurs, this can engage CR3 and
Fcy receptors, respectively. Furthermore, under in vitro
conditions, if complement is present (i.e., if serum is not
heat-inactivated), this can greatly promote myelin
phagocytosis [32]. We previously showed that unstimu-
lated rat microglia can phagocytose polymer beads,
yeast, and Escherichia coli bacteria [11, 29, 65] and that
E. coli phagocytosis was robustly increased by LPS and
IFN-y, separately or in combination [29]. Here, un-
treated rat microglia robustly phagocytosed myelin, and
this was modestly increased by [+T (M1) and IL-10
(M2c), but not by IL-4 (M2a). Our results are entirely
consistent with an earlier study of rat microglia, in
which stimulation with mouse recombinant IFN-y, TNE-
a, or IL-10 (note species mismatch) increased myelin
phagocytosis, but IL-4 did not [22]. In contrast, IL-4 or
IL-13 stimulation increased phagocytosis of myelin by
human microglia [23] and of apoptotic cells by rat
microglia [66].

We next asked whether there were changes in expres-
sion of specific phagocytosis-related receptors in differ-
ent activation states. (i) For M1 stimulation, previous
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reports are inconsistent and possibly species dependent.
Some changes seen in rat microglia are expected to in-
crease their phagocytic capacity. Our earlier study found
that LPS increased FcyRIa and FcyRIIla, while phagocyt-
osis of E. coli increased CR3 and SR-A [29]. The stimula-
tory phagocytic receptor, FcyRlIlla, is often used as an
M1 marker [67, 68]. We found that I+ T (M1) increased
FcyRIlla, as well as TIM-3, which promotes phagocytosis
of apoptotic neurons [51]. Other changes might dampen
the phagocytic capacity, but again, there are possible
species differences, e.g., LPS reduced FcyRIIla in murine

microglia [21]. The TREM2 receptor aids in target in-
ternalization by microglia [69, 70]. We found that I+ T
dramatically decreased TREM2 in rat microglia; how-
ever, LPS increased it in murine microglia [71]. Fractalk-
ine (CX3CL1) is an important chemotactic signal
released by apoptotic cells [72] but in rat microglia, LPS
decreased its receptor, CX3CR1 [73], as did [+ T in the
present study. Based on the changes we observed with
M1 stimulation (and lack of changes in FcyRIIb, CD11b,
P,Ys), we suggest that the most likely contributors to in-
creased myelin phagocytosis were the reduced inhibitory
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ANOVA with Tukey's post hoc test. The dashed lines in b and c indicate expression levels in unstimulated (control) microglia. Comparisons
are as follows: asterisk differences from control microglia, dagger sign CTL versus different activation states in the presence of myelin, number sign effects
of myelin within a particular activation state (@) or effects of a second stimulus on the first stimulus (b and c). One symbol p < 0.05, two symbols p < 0.01,
three symbols p < 0.001

J

SIRPa signal and a known increase in the ability of CR3
to bind targets under pro-inflammatory conditions [74].
Despite the increase in FcyRIIIa, it is not likely involved.
It binds to the Fc component of antibodies but

antibody-mediated opsonization of the myelin debris
should not occur because the culture medium contained
heat-inactivated serum. (iZ) For M2 stimulation, pub-
lished data on phagocytosis-related receptors are very
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p < 0.05, two symbols p < 0.01, three symbols p < 0.001
.

Fig. 9 Roles of K™ and CRAC channels in myelin phagocytosis and ROS production. Microglia were stimulated for 24 h (as in Fig. 8), and then a
channel blocker was added with or without myelin for a further 6 h. The panels show single stimuli, as well as M2a—M1 (left), M2c—M1 (middle),
and both M1—M2a and M1—M2c (right). a KCa3.1 inhibition using 1 uM TRAM-34. b Kv1.3 inhibition using 5 nM Agitoxin-2 (AgTx-2).

c Kir2.1 inhibition using 20 uM ML133. d CRAC inhibition using 10 pM BTP2. Graphical data are expressed as mean £ SEM (n=6 individual
cultures) and were analyzed by a two-way ANOVA with Bonferroni’s post hoc test. The dashed lines indicate levels in unstimulated microglia with myelin.
Comparisons are as follows: asterisk differences from control microglia, dagger sign CTL versus activation states in the presence of a channel inhibitor,
number sign effect of a second stimulus on activated microglia, double dagger sign effect of a channel inhibitor within treatment group. One symbol

limited and, again, there might be species differences.
For rat microglia, we found that IL-4 treatment (M2a)
increased expression of the inhibitory receptor, FcyRIIb,
and substantially decreased CD11b, SR-A, CD68, and
TREM2 (no changes in SIRPa, TIM-3). For murine
microglia, IL-4 did not change FcyRIIb (CD32) expres-
sion [21]. Surprisingly, CD68 expression decreased in
both M1 and M2a microglia and after myelin phagocyt-
osis by unstimulated cells. CD68 is commonly used to
identify activated, phagocytic microglia [7, 42—44]. To-
gether, these results suggest that changes in receptor ex-
pression are not reliable predictors of the degree of
myelin phagocytosis. Instead, protein levels and modula-
tion might be more important. For instance, CR3 can
potentiate or inhibit myelin phagocytosis depending on
its conformation [32]. Although the changes we ob-
served suggest a less phagocytic phenotype in the M2a
state, myelin phagocytosis was comparable to untreated
microglia. Of course, effects on phagocytosis of other
targets after CNS damage (e.g., apoptotic neurons, cell
debris, infiltrating blood cells) might differ by involving
different receptors.

Phagocytosis is associated with elevated NOX-
mediated ROS production to help kill engulfed patho-
gens [4, 54]. It was previously reported that untreated
rat microglia robustly express the NOX2 isoform, with
much lower NOX1 and NOX4 levels, and undetectable
NOX3 [53]. Our results confirm this pattern and extend
it to the M1 and M2a states. (i) Increased ROS produc-
tion is a hallmark of M1 activation (reviewed in [20]),
and we found that it was increased in I+ T-treated
microglia. NOX2 was likely responsible because expres-
sion of both NOX2 and its regulatory subunit, Ncfl,
were increased to very high levels, while NOX1 and
NOX4 remained at very low levels. (ii) IL-4 slightly in-
creased ROS production while IL-10 had no effect, and
this is consistent with our recent report [34]. IL-4 de-
creased expression of NOX2 and did not change Ncfl;
however, both remained at moderate levels and could ac-
count for the ROS production.

Effects of myelin phagocytosis
There is some evidence that myelin phagocytosis can
affect the M1 activation state. Effects are potentially time

dependent, and negative self-regulation might protect
the cells from “overeating” during extended exposures to
targets [2]. When murine microglia were stimulated with
IFN-y or LPS, a short exposure to myelin (<6 h) exacer-
bated the pro-inflammatory response [10], while longer
exposures (16—-24 h) dampened this response [10, 75].
Using the short exposure time (6 h), which was sufficient
for optimal myelin uptake (see the “Methods” section);
we found little effect on the molecular profile of un-
stimulated rat microglia. In contrast, myelin increased ex-
pression of pro-inflammatory cytokines in M1 (I+T-
treated) rat microglia. This is consistent with the previous
short exposure study [10]. In IL-4-treated cells, myelin re-
duced several M2a-associated molecules. These results
suggest that myelin can skew activated rat microglia to-
ward a pro-inflammatory state.

Because levels of phagocytosis-related receptors were
not well predicted by the microglial activation state
(above); it was important to ask whether they were al-
tered by exposure to myelin debris. In unstimulated
microglia, myelin slightly decreased SIRPa and consider-
ably increased CX3CR1 and P,Yy, which are all expected
to promote phagocytosis, especially of apoptotic cells. (i)
In I+ T-treated (M1) cells, myelin did not alter expres-
sion of receptors known to be involved in myelin phago-
cytosis  (CD11b, SR-A, TREM2, CX3CR1, SIRPa).
Instead, it increased P,Y¢, FcyRIlla, Clr, and TIM-3 and
slightly decreased FcyRIIb, changes that could promote
phagocytosis of other targets. (ii) In IL-4-treated (M2a)
cells, myelin greatly increased CX3CR1 and slightly in-
creased P,Ys. CD68 was slightly decreased, and CD11b
or SR-A were unchanged. Interestingly, CX3CR1 [76]
and P,Yg [7] promote microglial migration toward dam-
aged cells, and we previously found that M2a-activated
rat microglia migrate better [25]. Thus, exposure to
myelin debris might further potentiate the migratory
capacity of M2a-activated microglia.

Myelin phagocytosis increases ROS production by un-
stimulated microglia [10, 22]. We confirmed this and
showed that the myelin-evoked ROS production re-
quired NOX activity under all activation conditions
tested (I+ T, IL-4, IL-10). Myelin did not affect expres-
sion of NOX enzymes, but it increased expression of the
proton channel, Hvl, which could contribute to the
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increased ROS production seen in unstimulated and M1-
activated cells. Moreover, myelin binding to Macl
(CD11b) can activate NOX2 and promote ROS generation
[77]. Interestingly, inhibiting NOX activity reduced myelin
phagocytosis under all activation conditions tested. While
we do not know the mechanism, an earlier study of rat
macrophages suggested that NOX-mediated ROS produc-
tion promotes signaling mechanisms involved in myelin
phagocytosis [78].

Sequential cytokine stimulation

After acute CNS injury, the inflammatory milieu changes
over time [79, 80]. However, whether microglial activa-
tion states are functionally plastic is poorly understood.
It is important to determine if, once polarized, they can
respond to new signals. Based on the few studies that
have addressed time-dependent changes in the overall
inflammatory state in vivo, the outcome might depend
on the type of injury. In the cuprizone-induced de-
myelination model, an overall M1 state gave way to an
M2a phenotype at the time of re-myelination [68]. In
the first week after intracerebral hemorrhage, we ob-
served concurrent elevation of pro- and anti-
inflammatory mediators [81, 82]. However, after cerebral
ischemia or traumatic brain injury, murine microglia ex-
hibited an early M2 state, followed by M1 [67, 83]. An in
vitro study of rat microglia found that adding IL-4
(M2a) before LPS (M1) decreased expression of the M1-
associated molecules, COX-2, iNOS, and TNF-a com-
pared with LPS alone [84]. Similarly, in mixed rat glial
cell cultures, simultaneous addition of LPS and IL-4 (or
IL-10; M2c) reduced IL-6, TNF-a, and NO production,
compared with LPS alone [85]. Both studies assessed
pro-inflammatory mediators only. For murine microglia,
when LPS was followed by IL-4, NOS2 and COX-2
expression decreased, while CD206 (MRC1) and Arginase
1 (M2a markers) increased compared with LPS alone
[21, 86]. The present study greatly extends these previous
reports.

We examined effects of sequential addition of M1-
and M2-inducing cytokines on the inflammatory profile,
expression of phagocytosis-related receptors and ROS-
related molecules, and on myelin phagocytosis and con-
sequent ROS production. We employed four sequential
treatment paradigms that address the possibility that the
cytokine profile changes after injury or disease. The
most convincing re-polarization of the inflammatory
state was between I+ T and IL-4 treatments, applied in
both sequences. (i) M1—M2a paradigm: In I + T-primed
microglia, adding IL-4 dampened the pro-inflammatory
profile (NOS2, TNF-q, IL-6, COX-2) and increased M2a
markers (MRC1, c-myc, CCL22). This is entirely consist-
ent with previous studies using LPS and IL-4 (cited
above). The relationship of phagocytosis and ROS
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production to expression of receptors and enzymes and
to phagocytosis- and ROS-related molecules was com-
plicated and, sometimes, unexpected. Although myelin
phagocytosis was increased, several phagocytosis-
promoting receptors decreased (CD11b, FcyRIlla, CD68,
Clr, TIM-3), compared with I+ T alone. Among the in-
hibitory receptors, SIRPa decreased and FcyRIIb was un-
changed. Thus, the decrease in SIRPa might have
promoted phagocytosis. Despite the lack of change in
ROS production, ROS-related molecules decreased
(NOX enzymes, Ncfl, Hvl), suggesting that the
remaining levels were sufficient. (ii)) M2a—M1: In IL-4-
treated cells, adding I+ T skewed them toward an
M1 profile. There was increased expression of most
pro-inflammatory molecules (NOS2, TNF-a, COX-2),
decreases in some M2 markers (MRC1, CD163), and
increased myelin phagocytosis and ROS production.
The outcome might depend on the exact stimulus
paradigm and target type. For instance, we observed
some changes in receptor expression that are ex-
pected to promote phagocytosis: an increase in P,Yq
and decreases in the inhibitory receptors, FcyRIIb
and SIRPa. Most phagocytosis-promoting receptors
decreased, particularly CD11b, TREM2, CD68, TIM-
3, and CX3CR1. (iii) M1—M2c: In I + T-primed cells,
adding IL-10 did not resolve the pro-inflammatory
state and, surprisingly, it increased iNOS/NOS2 ex-
pression. While expression of several phagocytosis-related
receptors increased (CD11b, FcyRIIla, TIM-3), SIRPa in-
creased slightly, while phagocytosis and ROS production
were unchanged. (iv) M2c—MI1: In IL-10-treated cells,
adding [+ T increased myelin phagocytosis and ROS pro-
duction (gene changes were not examined, as explained
above).

Opverall, our results show malleability in re-polarization
of rat microglia between M1 and M2a states. Their quali-
tative ability to respond to a new incoming signal was pre-
served but their quantitative response was often reduced.
The amount of re-polarization could well depend on the
experimental paradigm (cytokine concentrations, time
course). For instance, although we did not observe reso-
lution of M1 activation by IL-10, it is possible that the
time course of treatment or monitoring was not optimal.
In the future, in vivo spatial and temporal changes in the
cytokine environment will need to be examined in each
damage/disease model to further examine the re-
polarization capacity of microglia.

Expression and contributions of ion channels

Ion channels regulate numerous processes in cells that
are relevant to phagocytosis, including cell volume, Ca**
signaling, and cytoskeletal re-organization [87]. Micro-
glia express a surprisingly large array of ion channels,
some of which are involved in proliferation, migration,
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and Ca®* signaling (reviewed in [42, 88]). Very little is
known about roles of channels in phagocytosis by
microglia; particularly in different activation states.
We previously found that ClI” channels regulate
phagocytosis of E. coli by rat microglia [65]. Phago-
cytosis is a Ca’*-dependent process that involves
SOCE [89, 90]. The CRAC channel is apparently the
major SOCE pathway in rat microglia [33, 35, 91, 92].
Interestingly, CRAC can be activated by P,Ys and
other G protein-coupled metabotropic receptors, and
we found that phagocytosis of myelin debris increased
P,Y¢ expression under all activation states examined.
We then focused on CRAC and three K* channels
(KCa3.1, Kir2.1, Kv1.3) that are thought or known to
regulate Ca®* entry. In rat microglia, KCa3.1 and
Kir2.1 regulate CRAC-mediated Ca* influx [24, 33, 35],
and Kv1.3 is involved in ROS production [14, 37]. CRAC
channels are comprised of a pore-forming Orail subunit
and a Ca2+—sensing STIM1 subunit [64]. While other sub-
units are considered less important, SOCE in murine
microglia might also involve STIM2 [90], and Orai3 activ-
ity can also be regulated by STIM proteins [64]. Rodent
microglia express mRNA for Orail, Orai3, STIMI, and
STIM2 [89-91]. In murine microglia, Orail, STIM1, and
STIM2 contribute to SOCE and phagocytosis [89, 90].
There are few reports regarding changes in Ca* signaling
and expression of relevant Ca”*-signaling molecules in
specific activation states; and the results are somewhat in-
consistent. For murine microglia, LPS (M1) increased
STIM1 without affecting Orail or Orai3 in one study [89],
but reduced STIM1 and Orai3 without affecting Orail or
STIM2 in another [90]. Orail expression was not changed
in either study but SOCE was reduced. The Ca®* entry
pathway was not determined. An earlier study of murine
microglia reported that LPS rapidly elevated basal Ca**
and reduced the UTP-induced rise [93]. For human
microglia, M1 stimulation (GM-CSF + LPS + IFN-y) did
not affect the Ca®* response to ADP; whereas, M2 activa-
tion (M-CSF + IL-4 + IL-13) increased it and this was at-
tributed to increased P,Y;, receptor expression [94]. For
rat microglia, we recently found that the CRAC-mediated
Ca?* rise was ~50 % lower after IL-4 treatment (M2a) but
not affected by IL-10 (M2c) [35].

In unstimulated rat microglia, myelin affected expres-
sion of Kv1.3 only (increased) but channel expression
was strongly affected by the microglial activation state.
(i) 1+ T-treated (M1) cells had increased expression of
Kv1.3, KCa3.1, Kir2.1, STIM1, STIM2, and Orai3. Myelin
phagocytosis increased Kv1.3, KCa3.1, Orail, and Orai3.
The high STIM expression and increase in Orail, the
pore-forming subunit of CRAC, should facilitate Ca**
signaling. (ii) IL-4-treated (M2a) cells had increased
Kv1.3 and KCa3.1 compared with control cells. Myelin
had no further effects. No Orai or STIM molecules
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increased but STIM2 decreased slightly. Thus, the previ-
ously observed decrease in CRAC signaling [35] is not
readily explained by Orai or STIM expression. (iii) Se-
quential cytokine addition had complex effects on chan-
nel expression. Ml—M2a: Compared with I+T
stimulation alone, subsequent IL-4 addition reduced
KCa3.1, Kv1.3, Kir2.1, Orai3, STIM1, and STIM2.
M2a—M1: Compared with IL-4 alone, subsequent I+ T
addition decreased expression of KCa3.1, Kv1.3, Orai3,
STIM1, and STIM2, but not Kir2.1. M1—M2c: Com-
pared with I + T alone, subsequent addition of IL-10 only
changed KCa3.1, which was increased. Overall, with re-
spect to ion channels, rat microglia showed considerable
re-polarization between M1 and M2a states, while IL-10
was ineffective.

The use of selective channel blockers showed that
CRAC was important for phagocytosis under all activa-
tion conditions examined, while myelin phagocytosis
and ROS production by activated microglia were both
dependent on Kir2.1 (but not Kv1.3 or KCa3.1). What
could account for a lack of contribution of Kv1.3 and
KCa3.1 when, in principle, all routes of K" flux can con-
trol the membrane potential of cells? The simplest possi-
bility is that, despite substantial transcript expression,
Kv1.3 and KCa3.1 were not active during myelin phago-
cytosis. We propose a scenario in which Kv1.3 and
KCa3.1 are inhibited, while Kir2.1 and CRAC are facili-
tated. All three K* channels are post-translationally reg-
ulated by signaling molecules downstream of the
phagocytosis receptors, CR3 and SR-A. CR3 signaling
activates Src family tyrosine kinases, phosphoinositide-3-
kinase (PI3K) and phospholipase C (PLC) [74, 95]. Kv1.3
is strongly inhibited by activated Src in rat microglia
[36]. Lipid phosphatases localize to phagosome cups (see
reviews [55, 74]), and the lipid phosphatase,
myotubularin-related protein 6 (MTMR6) regulates
macropinocytosis [96], which uses similar machinery to
phagocytosis  [97]. KCa3.1 is strongly inhibited by
MTMRG6 [98]. How might Kir2.1 and CRAC channel ac-
tivity be promoted? Both CR3 and SR-A signaling in-
volve PLC [99] and PI3K [100]. PI3K generates PIP2,
which stabilizes the open configuration of Kir2.1 chan-
nels [101]. PLC activity generates diacylglycerol (DAG)
and inositol triphosphate (IP3), which depletes ER cal-
cium stores and activates CRAC channels [55]. In
addition, DAG activates protein kinase C, which can
stimulate NOX enzymes and increase ROS production
[54].

Conclusions

Experimental strategies for treating acute CNS injury
increasingly address inflammation, often targeting pro-
or anti-inflammatory states in a generalized manner.
Some preclinical studies target innate immune cells
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(microglia, macrophages, neutrophils) more selectively,
but it is crucial to investigate potential targets in differ-
ent cell activation states. Further specificity in target se-
lection will be necessary because some products and
functions can be either detrimental or beneficial, as is
the case for phagocytosis. In CNS disease and injury
states where white matter is damaged, efficient re-
myelination requires that microglia remove myelin deb-
ris from affected axons. Therefore, treatment strategies
should preserve microglial phagocytosis while reducing
harmful inflammatory responses.

Here, we investigated numerous molecular and func-
tional changes in rat microglia skewed to different M1
and M2 activation states. Our results illustrate several
complex outcomes that should be considered in pursu-
ing strategies to target microglia. For instance, the M1
state increased phagocytosis of myelin debris, which
could aid in tissue repair, but NOX-mediated ROS pro-
duction was also increased, which might damage by-
stander cells. Myelin phagocytosis exacerbated M1
activation, decreased M2 activation, and evoked more
NOX-mediated ROS production, suggesting a positive-
feedback network that might increase damage. Using se-
quential cytokine addition to model changing activation
cues after acute CNS injury, we asked whether microglia
can be re-polarized from one activation state to another.
Qualitative molecular re-polarization was seen between
M1 and M2a states with the paradigms used, which sup-
ports attempts to re-program the inflammatory response
in vivo. Moreover, because both M1—M2 and M2—M1
paradigms increased myelin phagocytosis, it might be
possible to maintain efficient debris clearance while
therapeutically altering inflammatory mediators to a less
toxic mix.

Ion channels are increasingly proposed as molecular tar-
gets for controlling CNS inflammation. This study con-
tributes information about channel expression and
functional contributions that should be taken into ac-
count. While Kv1.3 and KCa3.1 expression were affected
by the microglial activation state, neither channel contrib-
uted to myelin phagocytosis. Thus, Kv1.3 and KCa3.1
blockers might be useful for reducing inflammation with-
out preventing beneficial debris clearance. On the other
hand, Kir2.1 and CRAC channels facilitated myelin phago-
cytosis in all activated states, suggesting that stimulating
their activity might aid in debris clearance. However, our
results also suggest that facilitating these channels will
also increase ROS production whenever an M1 stimulus is
present, and this could damage bystander cells.

This study greatly extends our knowledge by examin-
ing effects of single versus sequential addition of M1-
and M2-inducing cytokines. Results on myelin phagocyt-
osis and consequent ROS production are most relevant
to diseases involving white matter damage, such as
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spinal cord injury, stroke, hemorrhage, brain trauma,
MS, and ALS. However, results concerning the inflam-
matory profile, expression of phagocytosis-related recep-
tors, ROS-related molecules, and ion channels will be
broadly applicable to CNS injury and disease.
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