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Abstract

Background: Inducible nitric oxide synthase (iNOS) makes a great contribution to host defense and inflammation.
In many settings, lipopolysaccharide (LPS) induces iINOS expression through activation of the inhibitor of kB-a
(IkB-a)-nuclear factor-kB (NF-kB) cascade, whereas interferon-y (IFN-y) acts through Janus kinase (JAK)-signal transducer
and activator of transcription 1 (STAT1) signals. Heat shock factor 1 (HSF1), a major regulator of heat shock protein
transcription, has been shown to regulate the production of pro-inflammatory cytokines such as tumor necrosis
factor-a (TNF-a) and interleukin-6 (IL-6), but it remains obscure whether and how HSF1 affects iNOS induction.

Methods: Western blot was used to measure the protein expression. The mRNA level was measured by real-time
PCR. Silence of HSF1 was achieved by small interfering RNA. Nitric oxide (NO) content and NF-kB binding activity
were assayed by commercial kits. Chromatin immunoprecipitation (ChIP) was used to measure the binding
activity of NF-kB and STAT1 to iINOS promoters.

Results: HSF1 inhibition or knockdown prevented the LPS- and/or IFN-y-stimulated iNOS protein expression in
cultured microglia. HSF1 inhibition blocked iINOS mRNA transcription. These inhibitory effects of HSF1 inhibition
on iNOS expression were confirmed in brain tissues from endotoxemic mice. Further analysis showed that HSF1
inhibition had no effect on IkB-a degradation and NF-kB or STAT1 phosphorylation in LPS/IFN-y-stimulated cells.
The nuclear transport of active NF-kB or STATT was also not affected by HSF1 inhibition, but HSF1 inhibition
reduced the binding of NF-kB and STAT1 to their DNA elements. In addition, HSF1 inhibition reduced NF-kB and
STATT bindings to iINOS promoter inside the LPS/IFN-y-stimulated cells.

Conclusions: This preventing effect of HSF1 inhibition on iNOS mRNA transcription presents the necessary role
of HSF1 in iNOS induction.

Keywords: Heat shock factor 1, Lipopolysaccharide, Interferon-y, Inducible nitric oxide synthase, Nuclear factor-«B,
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Background

Inducible nitric oxide synthase (iNOS or NOS2) is one
of the members of the family of nitric oxide synthase
(NOS) [1]. Through production of nitric oxide (NO), it
plays critical roles in a lot of pathophysiological pro-
cesses [2]. Under physiological concentrations, iNOS
contributes to host defense and inflammation resolution
through killing bacteria, tumor cells, and viruses [3-5].
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On the other hand, excessive iNOS induces self-damage
in disorders associated with inflammation. For example,
over-accumulated iNOS has been shown to damage
mitochondrial functions and induce cellular apoptosis
[6, 7]. The constant production of iNOS renders the vas-
culature refractory to typical therapies for septic shock
such as epinephrine treatment and volume supplementa-
tion [8]. Therefore, iNOS induction should be tightly
controlled in order to balance the role of iNOS in host
defense.

Unlike the constitutively isoform endothelial nitric oxide
synthase (eNOS) and neuronal nitric oxide synthase
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(nNOS), little iNOS is detected in quiescent cells. But in
activated cells, iNOS can be induced by various stim-
uli such as lipopolysaccharide (LPS) and interferon-y
(IEN-y) [9]. In many settings, LPS induces iNOS gene
expression through the classical inhibitor of kB kinase
(IKK)-inhibitor of kB a (IkB-a)-nuclear factor «B
(NF-kB) signals [10]. In this signaling pathway, LPS
first binds with Toll-like receptors leading to IkB-a
degradation through the ubiquitin-proteasome system
[11]. The removal of IkB-a liberates transcriptional
factor NF-kB. The active NF-«B is then free for trans-
location to the nucleus, where it initiates iNOS gene
transcription. Distinct from the mechanism of LPS,
IFN-y triggers iNOS induction through the Janus
kinase (JAK)-signal transducer and activator of tran-
scription 1 (STAT1) signals [9, 12]. IFN-y activates
JAK first. JAK phosphorylates transcriptional factor
STAT1, which then initiates iNOS gene transcription
by binding to the iNOS promoter [13-15]. However,
the binding of active NF-kB or STAT1 to the iNOS
promoter is not enough to fully initiate iNOS gene
transcription. Regulation of iNOS induction may be
accomplished by control of IkB-a-NF-kB and/or
STAT1 signals upstream of iNOS gene transcription.
Heat shock factor 1 (HSF1) is a major transcriptional
factor in the cell with numerous pathophysiological
functions. It binds heat shock element (HSE) in the pro-
moter of heat shock proteins (HSPs) with a trimerization
form and controls rapid induction of HSPs in cells sub-
jected to heat stresses [16, 17]. It also participates in the
regulation of heat shock response, un-associated genes,
and pathophysiological processes. For example, HSF1 reg-
ulates SPI1/PU.1 expression during macrophage differen-
tiation of monocytes [18] and also glutamate transporter 1
(GLT1) expression in astrocytes [19]. Knocking-out of
HSF1 impairs neurogenesis in the dentate gyrus of hippo-
campus and induces aberrant affective behavior such as
increased aggression and depression-like behavior [20].
Both cancer cell’s metabolism and tumorigenesis need the
existence of active HSF1 [21, 22]. In inflammatory set-
tings, HSF1 is essential for cells or animals in protec-
tion against the toxic effects of bacterial endotoxin
through transcriptional repression of pro-inflammatory
cytokine genes including tumor necrosis factor-a
(TNF-a), interleukin-6 (IL-6), and interleukin-1p (IL-1p)
[23-25]. In the present study, inhibition of endogenous
HSF1 was found to prevent iNOS induction in LPS-
and/or IFN-y-stimulated murine microglia or endo-
toxemic brain through attenuation of the bindings of
active NF-kB and STAT-1 to iNOS promoter. Our find-
ings, for the first time, show an essential role of
endogenous HSF1 in iNOS induction in microglia and
establish HSF1 as a potential target for regulation of
iNOS gene transcription in inflammatory settings.
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Materials and methods

Chemicals and reagents

KRIBB11 was purchased from Calbiochem (San Diego, CA,
USA). LPS was the product of Sigma (Saint Louis, MO,
USA). Antibodies against IkB-a, NF-kB p65, p-NF-kB p65
(Ser536), Histone H2A, glyceral-dehyde-3-phosphate de-
hydrogenase (GAPDH), p-STAT1 (Tyr701), and STAT1
were purchased from Cell Signaling Technology (Beverly,
MA, USA). Antibody against iNOS was purchased from
Cell Signaling Technology or Abcam (Cambridge, MA,
USA). Protein A/G PLUS-Agarose was the product of
Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Other related agents were purchased from commercial
suppliers. KRIBB11 was dissolved in dimethylsulfoxide
(DMSO). The final concentration of DMSO was <0.05 %.
All drugs were prepared as stock solutions, and stock so-
lutions were stored at —20 °C.

Cell preparation

BV-2 cells, kindly provided by Dr. Feng Wu at Nantong
University, were grown in DMEM/F12 with 10 % fetal
bovine serum (FBS) (Gibco). Mouse primary cultured
brain cells were prepared as described previously with
some modifications [26]. Briefly, newborn (day 0-1)
C57/BL6 mice were decapitated, cortex was then re-
moved and digested with 0.125 % trypsin for 15 min at
37 °C. Followed by trituration and centrifugation at
118 g for 5 min, cells were re-suspended and plated on
poly-L-lysine (0.1 mg/mL)-coated culture flasks. The
single cell suspension was cultured in DMEM/F12 sup-
plement with 10 % heat-inactivated FBS and 1 %
penicillin-streptomycin (100 U/mL). For isolation of
primary microglia, the medium was changed to fresh
medium after 24 h and replaced every 3 days. After
12 days, mixed cells were shaken gently 2 h at 37 °C,
and then the supernatants were collected and plated on
the new poly-L-lysine-coated culture flasks. All cells
were maintained in a 37 °C incubator containing 95 %
air and 5 % CO,. After treatment, cell supernatants
were collected and frozen at —80 °C for NO detection.

Cell viability assay

Cell viability was measured using MTT Cell Proliferation
and Cytotoxicity Assay Kit (Bi Yuntian Biological
Technology Institution, Shanghai, China). Briefly, 5 mg/mL
of methylthiazolyldiphenyl tetrazolium bromide was
dissolved in prepared MTT-dissolved solutions and
kept at -20 °C. After washing with PBS, the cells in
plates were added 20 uL of MTT solutions and kept at
37 °C for 4 h. The blue crystals were dissolved in
formazan-dissolved solutions, and the absorbance was
read at 570 nm.
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Animals and experimental protocol

The use of C57/BL6 male mice was approved by the
University Animal Ethics Committee of Nantong University
(Permit Number: 2110836). Six- to eight-week-old mice
were randomly divided into four groups. In sham- and
LPS-treated groups, mice were injected intraperitone-
ally (i.p.) with 100 pL of saline + DMSO or 100 pL of
LPS (25 mg/kg) + DMSO, respectively. In the KRIBB11
(vehicle, DMSO) pretreatment group, mice were ad-
ministered with a single dose of KRIBB11 (100 pL,
5 mg/kg, i.p). In the KRIBB11 + LPS group, mice were
pretreated with a single dose of KRIBB11 (100 pL,
5 mg/kg) 1 h before LPS injection. After that, the brain
was immediately excised and frozen in liquid nitrogen, and
its additional portions were stored in RNA stabilization re-
agent RNAlater (Qiagen GmbH, Hilden, Germany) for
RNA extraction.

NO detection

Total nitrite levels were measured with a Griess reagent
kit (Invitrogen). The reaction consisted of 150 uL of
serum or cell supernatants, 20 puL of Griess Reagent, and
130 pL of de-ionized water. After incubation of the mix-
ture for 30 min at room temperature, nitrite levels were
measured at 548 nm using an M2 spectrophotometric
microplate reader (Molecular Devices).

Small interfering RNA (siRNA)

The siRNA oligonucleotides targeting HSF1 and control
nonspecific siRNA were purchased from Santa Cruz
Biotechnology. In 6-well plates, cells were plated the day
before transfection and grown to 30-50 % confluence. The
siRNA oligonucleotides (100 nM) were transfected into
cells by using Lipofectamine 2000 reagents (Invitrogen).
After 48 h of transfection, cells were subjected to further
treatments and analysis.

Real-time PCR

At the end of each treatment, total RNA was isolated
from cells or brain tissues using the RNeasy mini kit
according to the manufacturer’s instructions (Qiagen,
GmbH, Hilden, Germany). First-strand cDNA was gen-
erated by reverse transcription of total RNA using the
RT system (Promega, Madison, WI, USA). Real-time
PCR reactions were conducted with Faststart SYBR
Green Master Mix (Roche Molecular Biochemicals) as
described in our previous studies [26]. Briefly, 2 pL of
diluted ¢cDNA, 0.5 pM primers, 2 mM MgCl,, and 1 x
FastStart SYBR Green Master mix were employed. The
primers for iNOS were 5-CTC ACT GGG ACA GCA
CAG AA-3 (forward), 5-TGG TCA AAC TCT TGG
GGT TC-3' (reverse); for 18S rRNA, primers were
5-GTA ACC CGT TGA ACC CCA TT-3’ (forward),
5-CCA TCC AAT CGG TAG TAG CG-3’ (reverse). PCR
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products were detected by monitoring the fluorescence in-
crease of double-stranded DNA-binding dye SYBR Green
during amplification. The expression levels of target genes
were normalized to the house-keeping gene (18S rRNA).
The fold-changes in the target gene expression between
experimental groups were expressed as a ratio. Relative
gene expression was calculated by the comparative cycle
threshold (Ct) method. Melt-curve analysis and agarose
gel electrophoresis were used to examine the authenticity
of the PCR products.

NF-kB- and STAT1-binding assays

The nuclei were extracted from BV-2 cells by firstly in-
cubating them in hypotonic buffer containing 10 mM
Tris—HCl, pH 7.5, 10 mM NaCl, 1.5 mM MgCl,*6H,0
at 4 °C for 20 min. After homogenization, cell homoge-
nates were spun at 3000 g for 5 min. The supernatants
were collected for Western blot. The pellets were recov-
ered, extensively washed, and re-suspended in the nu-
clear extraction buffer containing 50 mM Tris—HCI,
pH 7.4, 150 mM NaCl, 1 % NP-40, 0.25 % sodium deox-
ycholate, 10 % glycerol, 50 mM NaF, 1 mM NazgVOy,,
5 mM sodium pyrophosphate, protease inhibitors. The
NE-kB- or STAT1-binding activity of nuclear extracts
was measured with the TransFactor NF-«kB colorimetric
kit (Clontech, Mountain View) or the DuoSet mouse
active STAT1 binding kit (RD Systems, Minneapolis), re-
spectively, according to the manufacturer’s instructions.

Western blot

To extract the total proteins, cells or tissues were lysed
on ice for 30 min in lyses buffer containing 50 mM
Tris—HCl, pH 7.4, 1 mM EDTA, 100 mM NaCl, 20 mM
NaF, 3 mM Na3VO,, 1 mM PMSEF, 1 % (v/v) NP-40, and
protease inhibitor cocktail. The lysates were centrifuged
at 12,000 g for 15 min, and the supernatants were recov-
ered. After denaturation, 30-50 pg of proteins were sep-
arated on 10 % SDS/PAGE gels and then transferred to
nitrocellulose membranes by using a transfer cell system
(Bio-Rad, California, USA). After being blocked with 5 %
nonfat dried milk powder/Tris-buffered saline Tween-20
for 1 h, membranes were probed with 1:500 primary
antibodies against iNOS, IkB-«, p-NF-«B (Ser536), NF-«B,
p-STAT-1 (Try701), STAT-1, and Histone H2A or
1:10,000 primary antibodies against GAPDH overnight at
4 °C. Primary antibodies were then removed by washing
the membranes 3 times in TBST and incubated further
2 h at room temperature with IRDye 680-labeled sec-
ondary antibodies (1:3000—1:5000). Immunoblots were
visualized by scanning using Odyssey CLx western blot
detection system. For isolation of proteins in the
cytoplasm and nucleus, Nucleus Protein Extraction kit
was used according to the supplier’s instructions (Bi
Yuntian Biological Technology Institution, Shanghai,
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China). Proteins in the cytoplasm and nucleus were
checked by Western blot and were normalized to
GAPDH and Histone-H2A, respectively. The band
density was quantified using Image J software.

Chromatin immunoprecipitation (ChIP)

The ChIP experiment was performed as described previ-
ously [26]. BV-2 cells were treated with LPS (1 pg/mL)
or IFN-y (20 ng/mL) for 1 h in the absence or presence
of KRIBB11. After being incubated in 1 % of formalde-
hyde solutions on the rocker for 10 min at room
temperature, cells were rinsed twice with PBS and lysed
for 15 min at 4 °C. After sonication, the lysates were
used as DNA input control. The remaining lysates were
diluted tenfold with ChIP dilution buffer followed by in-
cubation with NF-kB p65 or p-STAT-1 antibody over-
night at 4 °C. Immunoprecipitated complexes were
collected using protein A/G Plus-agarose beads. The
precipitates were extensively washed and then incubated
in the elution buffer containing 1 % SDS and 0.1 M
NaHCOj at room temperature for 15 min. Cross-linking
of protein-DNA complex was reversed at 65 °C for 4 h.
DNA was extracted with the Qiagen PCR purifica-
tion kit. ChIP assays addressing NF-«B used the fol-
lowing primers: 5'-CAAGCCAGGGTATGTGGTTT-3'
(F), 5'-GCAGCAGCCATCAGGTATTT-3" (R). ChIP
assays for p-STAT1 binding to its IFN-y-regulated tran-
scription factor STAT1 site on the iNOS promoter used
primers 5-ACACGAGGCTGAGCTGACTT-3" (F) and
5'-CACACATGGCATGGAATTTT-3" (R). The resulting
products were separated by 2 % agarose gel electrophoresis.

Statistical analysis

Data were expressed as means + S.E. One-way analysis of
variance (ANOVA) followed by subsequent post hoc
analysis was used for the statistical analysis by employing
SPSS 11.0 software. Differences were considered signifi-
cant at P<0.05 or P<0.01.

Results

HSF1 inhibition attenuates iNOS induction in
LPS/IFN-y-stimulated microglia

To determine the role of HSF1 in iNOS induction,
BV-2 cells were first treated with LPS and IFN-y. As an-
ticipated, LPS (1 pg/mL) and IFN-y (20 ng/mL) treatment
induced a significant iNOS protein expression (Fig. 1a, b).
Parallel to the increase in iNOS protein levels, increased
NO production was measured in cell culture medium
from LPS/IEN-y-stimulated cells (Fig. 1c). Pretreatment
of LPS/IFN-y-stimulated cells with a specific inhibitor
of HSF1 KRIBB11 markedly suppressed iNOS ex-
pression (Fig. 1a, b). Peak inhibition was observed at a
concentration of 3 uM. A time-dependent response
curve showed that pretreatment of cells with KRIBB11
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(30 min, 3 uM) almost completely blocked the increase
in iNOS protein expression at the time points of 8, 16,
and 24 h (Fig. 1b). Correspondingly, the level of NO
released in the medium also decreased in the KRIBB11-
treated cells (Fig. 1c). Cell viability of BV-2 microglia
was not affected by KRIBB11 (3 pM) and/or LPS/IFN-y
administration (Fig. 1d). To ensure that the action of
HSF1 inhibition on iNOS protein expression was due
to HSF1 inhibition rather than any off-target effect, we
used siRNA to knockdown endogenous HSF1 content.
As shown in Fig. le, the HSF1-targeting siRNA, but not
the scrambled control siRNA, downregulated endogen-
ous HSF1 content. In line with the results obtained
with KRIBB11, HSF1 knockdown significantly attenu-
ated the iNOS protein increase (Fig. le) and NO pro-
duction (Fig. 1f) in the LPS-stimulated cells. These
results indicate that HSF1 is essential for iNOS protein
expression in the BV-2 cells stimulated by LPS/IFN-y.

LPS and IFN-y each can stimulate iNOS gene expres-
sion through distinct signaling pathways [9, 10, 12].
Thus, the effect of HSF1 inhibition on iNOS protein
expression induced by LPS and IFN-y were each exam-
ined. As shown in Fig. 2, KRIBB11 treatment (3 uM)
robustly reduced the LPS-induced increase in iNOS
protein expression in both BV-2 cells (Fig. 2a, b) and
primary microglia (Fig. 2¢, d). The absence of iNOS
protein could be due to the deficiency of either gene
transcription or protein translation. To distinguish
these possibilities, iNOS mRNA formation was mea-
sured in the absence or presence of KRIBB11 using
real-time PCR. As shown in Fig. 2e, pretreatment of
primary microglia with KRIBB11 (3 pM, 30 min) sig-
nificantly reduced iNOS mRNA formation. These data
demonstrate that HSF1 inhibition prevents the LPS-
induced iNOS gene transcription in murine microglia.

In BV-2 cells and primary microglia stimulated by
IEN-y, iNOS protein expression was also abolished by
KRIBB11 treatment (3 uM) (Fig. 3a—d). Real-time PCR
data showed that iNOS mRNA formation was markedly
reduced by KRIBBI11 in primary microglia (Fig. 3e).
Hence, HSF1 inhibition also prevents IFN-y-stimulated
iNOS gene transcription in murine microglia.

HSF1 inhibition suppresses iNOS expression in brain
tissues from endotoxemic mice

The above studies revealed the inhibitory role of HSF1
inhibition in iNOS induction in cultured microglia
under pro-inflammatory stimuli. To establish the rele-
vance of these biological findings in vivo, the effect of
HSF1 inhibition on iNOS expression in brains was in-
vestigated using endotoxemic mice. No iNOS was de-
tectable in the brain tissue in the sham group. Injection
of LPS into mice induced a marked increase in iNOS
protein and mRNA expression in brains (Fig. 4a—c).
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Consistent with the results observed in cultured micro-
glia, pre-treating mice with KRIBB11 (5 mg/kg, 1 h)
markedly prevented the iNOS protein and mRNA ex-
pression in brain tissues from endotoxemic mice
(Fig. 4a—c).

HSF1 inhibition does not suppress IkB-a-NF-kB signals in
LPS-stimulated BV-2 cells

To explore the mechanism underlying the effect of
HSF1 inhibition on iNOS gene transcription, we mea-
sured the effect of KRIBB11 on IkB-a—NF-kB signals.
As shown in Fig. 5a, b, LPS induced a dramatic increase
in IkB-a degradation, and KRIBB11 pretreatment
(3 uM, 30 min) did not alter this degradation. It has
been reported that the full activation of NF-«B requires

its phosphorylation at residue Ser536. Therefore, we
determined if HSF1 inhibition affects NF-kB phosphor-
ylation. In accordance with the influence of KRIBB11
on IkB-a degradation, KRIBB11 treatment did not
affect NF-xB phosphorylation in LPS-stimulated cells
(Fig. 5a, c). Next, we analyzed the change in NF-kB
level in the cytoplasm and nucleus of cells stimulated
LPS. As shown in Fig. 5d—f, NF-kB was present pre-
dominantly in the cytoplasm in un-stimulated cells.
LPS treatment resulted in NF-«kB nuclear translocation,
and this translocation was not counteracted by
KRIBB11. The blots were probed with anti-GAPDH
(cytoplasmic-specific) and anti-Histone2A (nuclear spe-
cific) antibodies to confirm the purity of cytosolic and
nuclear fractions (Fig. 5d—f).
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control or IFN-y alone-treated group). e Quantitative analysis of the mRNA level of iNOS in primary microglia upon IFN-y treatment in the absence
or presence of KRIBB11 (n =3, *P < 0.05 vs. IFN-y alone-treated group, **P < 0.01 vs. control group). All data were shown as mean + SE. NS,
no significance
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significant effect on cytosolic STAT1 expression (Fig. 6a, b).
These data demonstrate that HSF1 inhibition does not
block the IFN-y-stimulated iNOS expression through
deactivation of STAT1. To initiate gene transcription,
STAT1 also needs to enter into the nucleus. To

determine whether HSF1 inhibition affects STAT1
nuclear transport, alterations of the STAT1 level in
cytosols and nuclei were measured in cells stimulated
in the absence and presence of KRIBB11. As shown in
Fig. 6¢c—e, STAT1 resided in the cytosol of resting cells.
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on IkB-a degradation (b) and NF-kB phosphorylation (c) in LPS-treated cells
(n=3,*P<0.05, **P<0.01 vs. control or KRIBB11 alone-treated group). d Representative images showing the effect of KRIBB11 on NF-kB
nuclear translocation. Cells were stimulated with LPS for 30 min, and the levels of NF-kB in the cytoplasm and nucleus were detected. In

KRIBB11-treated groups, cells were incubated with KRIBB11 for 30 min prior to LPS stimulation. e, f Quantitative analysis of NF-kB expression
in the cytoplasm (e) and nucleus (f) in LPS-stimulated cells after KRIBB11 administration (n =3, *P < 0.05 vs. control or KRIBB11 alone-treated
group, **P < 0.01 vs. KRIBB11 alone-treated group). All data were shown as mean + S.E. NS, no significance
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control or IFN-y alone-treated group, **P < 0.01 vs. IFN-y alone-treated group). All data were shown as mean + S.E

IFN-y stimulation resulted in STAT1 nuclear transloca-
tion, and this process was not altered by KRIBB11
treatment (Fig. 6c—e). Thus, HSF1 inhibition had no ef-
fect on nuclear transport of STAT1 in IFN-y-stimulated
cells.

HSF1 inhibition attenuates the DNA-binding activity of

NF-kB and STAT1 in LPS- or IFN-y-stimulated BV-2 cells

Since HSF1 inhibition did not appear to affect IkB-a—
NF-kB and STAT1 signals, we investigated the possibil-
ity that HSF1 inhibition suppresses iNOS transcription
by directly interfering with NF-kB and STAT1 binding
to their DNA elements in promoters. To explore this
possibility, BV-2 cells were stimulated with LPS or IFN-

y to activate NF-xB or STAT1 first. Then, the bindings
of active NF-xB and STAT1 with labeled DNA oligos
corresponding to their promoters were monitored in
the absence and presence of KRIBB11. As shown in
Fig. 7a, LPS stimulated a dramatic increase in NF-«B-
binding activity in nuclei, and this was blocked by
KRIBB11 treatment (3 uM). A similar blocking effect of
KRIBB11 was also observed on STAT1-binding activity
in the nucleus of IFN-y-stimulated cells (Fig. 7b). These
data suggest that HSF1 inhibition attenuates the bind-
ing of active NF-xB and STAT1 with the DNA elements
in iNOS promoters. To prove that HSF1 inhibition in-
deed attenuates the bindings of active NF-xB and
STAT1 to the iNOS promoter, we performed ChIP
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Fig. 7 HSF1 inhibition attenuates the binding of active NF-kB and STAT-1 to their DNA elements in iNOS promoters. a Quantitative analysis of
the effect of KRIBB11 on NF-kB binding to its DNA element. BV-2 cells were stimulated with LPS, and the binding activity of NF-kB p65 was
measured in the absence or presence of KRIBB11 (n=5, **P < 0.01 vs. LPS alone-treated group). b Quantitative analysis of the effect of KRIBB11
on p-STAT-1 binding to its DNA element in iNOS promoters. Cells were stimulated with IFN-y, and the binding activity of p-STAT-1 was measured in the
absence or presence of KRIBB11 (n =5, **P < 0.01 vs. LPS alone-treated group). ¢ Representative ChIP data showing that KRIBB11 markedly reduced NF-xB
binding to the INOS promoter in LPS-stimulated cells. The chromatin was immunoprecipitated using the anti-p65 antibody. d Quantitative analysis of the
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assays on iNOS promoters in stimulated BV-2 cells in
the absence or presence of KRIBB11. Results showed
that LPS and IFN-y induced an increased binding of
NF-kB or p-STAT1 to the iNOS promoter, and these
increases were blocked by KRIBB11 (3 puM) treatment
(Fig. 7c—f). Taken together, these results indicated that
HSF1 inhibition suppresses the bindings of active NF-
kB and STAT1 to iNOS promoters.

Discussion

The main finding of this study is the identification of
the essential role of endogenous HSF1 in iNOS induc-
tion in LPS- and/or IFN-y-stimulated murine microglia.
HSF1 belongs to a group of heat shock factor families,
which in mammalian cells is composed of three heat
shock factors (HSF1, HSF2, and HSF4) [27]. HSF1 has

been defined for decades by its ability to coordinate
chaperone protein expression and enhance cell survival
in the face of heat stress through control of protein
transcription in a range of physiological and patho-
logical processes. For example, HSF1 has been shown
to mediate the mammalian embryonic development
and gametogenesis [28] and cooperates with ErbB2 pro-
tein to promote mammary tumorigenesis and metas-
tasis [29]. Genetic studies showed that HSF1 deficiency
exacerbates inflammatory responses in cells and animal
models [23-25, 28, 30]. Recently, a small-molecule
chemical KRIBB11 was found to specifically target
HSF1 [31]. The comprehensive analysis indicated that
KRIBB11 blocks the induction of HSF1 downstream
target proteins such as heat shock protein 27 (Hsp27)
and heat shock protein 70 (Hsp70) in cells exposed to
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heat stress [31]. At the mechanistic level, KRIBB11
inhibited HSF1 function via impairing the recruitment
of positive transcription elongation factor b (TEFb) to
the Hsp70 promoter [31]. By using KRIBB11, we re-
vealed an essential role of endogenous HSF1 in iNOS
induction. HSF1 inhibition with KRIBB11 reduces
iNOS induction in murine microglia stimulated with
LPS and/or IEN-y. The action of KRIBB11 was verified
by HSF1 knockdown. Further experiments demon-
strated that HSF1 inhibition blocks iNOS induction in
brains from LPS-stimulated animals. These data
strongly indicate that HSF1 is required for iNOS to be
maximally induced in cultured cells and endotoxemic
mice in response to LPS and/or IFN-y treatment.

Since excessive iNOS is critical for the development of
inflammatory disorders, suppression of iNOS induction
by HSF1 inhibition should be beneficial in attenuating
the lethal inflammatory responses, but this conclusion
appears to be contradicted with the fact that HSF1 defi-
ciency promotes inflammatory responses and disease
symptoms [23-25, 28, 30]. One explanation for this
contradiction is that HSF1 restricts the overproduction
of pro-inflammatory cytokines, such as TNF-a, IL-6,
and IL-1pB, in macrophages through binding directly
with the TNF-a promoter, inducing activating tran-
scription factor 3 (ATE3), or physically interacting with
an activator for IL-1P nuclear factor-IL-6 (NF-IL-6), re-
spectively [23-25]. Although the preventing effect of
HSF1 on TNF-a, IL-6, and IL-1p production is dependent
on HSF1 trimerization [25-27], our recent published data
showed that LPS, as a typical inflammatory stimulus, does
not induce HSF1 supershift [32] in BV-2 cells, suggesting
that the endogenous HSF1 may be involved in iNOS in-
duction in a trimerization-independent and monomer-
dependent manner. However, it should be cautious
when trying to get such a conclusion because previous
studies have shown that the HSF1 monomer cannot
bind to the IL-6 promoter in vivo and a little amount of
HSF1 trimer in un-stimulated cells helps the IL-6 gene
promoter in an open state [24]. Whether HSF1 trimer
also helps iNOS gene promoter in an open state re-
mains unclear. More studies should be done to clarify
this issue. Taken together, our findings, for the first
time, provide novel insight into the pathophysiological
role of endogenous HSF1 in iNOS induction.

The mechanistic studies showed that the loss of iNOS
protein in HSF1-inhibited cells in due to the lack of
iNOS gene transcription. Blockage of gene transcription
in inflammatory cells is often due to one or multiple in-
terruptions in the signaling transduction from the stim-
uli to the corresponding transcriptional cytokines [10].
However, we found no obvious changes in IkB-a—NF-«B
signals in LPS-stimulated cells, or STAT1 phosphoryl-
ation and nuclear translocation in IFN-y-stimulated
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cells. These findings suggest that HSF1 may interfere
with signal events downstream of IkB-a degradation and
NE-kB or STAT1 nuclear translocation. A significant
blockage of the binding of active NF-kB or STAT1 to
their DNA elements inside the LPS- or IFN-y-stimulated
cells was observed. Further studies with ChIP assay
showed that HSF1 inhibition markedly prevented active
NF-«B and STAT1 from bindings to the iNOS promoter.
These studies indicate that HSF1 inhibition may directly
interrupt the binding of NF-kB and STAT1 to the pro-
moters in the onset of iNOS gene transcription. This
may provide a plausible explanation to why iNOS gene
transcription was halted, despite that activation of IkB-
a—-NF-xB and STAT1 signals was not perturbed after
HSF1 inhibition, and suggest that the full activation of
NF-kB and STAT1 signals triggered by LPS or IFN-y
stimulation in the iNOS promoter needs the presence of
endogenous HSF1. In an earlier study, Goldring et al. re-
ported that the rate of iNOS gene transcription was sig-
nificantly increased in cells exposed to heat shock and
LPS, and this increase is associated with HSF1 because
the interaction between HSF1 and corresponding iNOS
promoter was correspondingly increased under condi-
tions of LPS and LPS plus heat shock treatment [33].
The presence of an anti-HSF-1 antiserum diminished
the amount of specific complex formed between HSF1
and iNOS promoter [33]. These evidences strengthen
the importance of endogenous HSF1 in iNOS induction.
We also noticed that a dominant negative HSF1, which
lacks a transactivation domain, competes with NF-«xB for
binding to this master regulatory control site and so
block the NF-kB-mediated induction of MICA by TNE-
a [34], suggesting that HSF1 assists the NF-«kB to acti-
vate gene transcription.

How exactly HSF1 inhibition affects the bindings of
NF-«kB and STAT1 to their DNA elements in the iNOS
promoter remains to be determined. It has been shown
that the full initiation of iNOS gene expression not only
needs the binding of active NF-xB and/or STAT1, but
also needs the involvement of post-translational modifi-
cations such as histone acetylation and DNA methyla-
tion [35, 36]. The acetylation level is controlled by
acetyltransferase (p300) and deacetylase [37, 38], and
positively correlated with iNOS gene transcription [35].
DNA methylation, a modification implicated in neuro-
genesis, synaptic plasticity, learning and memory, aging,
and the immune response [39, 40], has been shown to
inhibit iNOS gene transcription and negatively con-
trolled by histone acetylation. Given the fact that HSF1
can help the recruitment of p300 acetyltransferase to
protein-DNA complex [41], we raise a possibility that
HSF1 inhibition prevents iNOS gene transcription likely
through increase of DNA methylation. This hypothesis
bears further investigations.
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Conclusions

Our present findings for the first time revealed an obliga-
tory role of endogenous HSF1 in iNOS induction in mur-
ine microglia. Depending on the inducers, HSF1 helps
iNOS gene transcription through promotion of NF-kB
and STAT1 bindings to iNOS promoter. Functionally,
these findings may establish HSF1 as a potential target for
intervening in iNOS induction in the central nervous
system (CNS) disorders associated with inflammation.
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