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Abstract

Background: Central nervous system (CNS) inflammation is a mediator of brain injury in HIV infection. To study the
natural course of CNS inflammation in the early phase of infection, we analyzed longitudinal levels of soluble and
cellular markers of inflammation in cerebrospinal fluid (CSF) and blood, beginning with primary HIV-1 infection (PHI).

Methods: Antiretroviral-naïve subjects identified as having PHI (less than one year since HIV transmission) participated
in phlebotomy and lumbar puncture at baseline and at variable intervals thereafter. Mixed-effects models were
used to analyze longitudinal levels of CSF neopterin and percentages of activated cluster of differentiation (CD)
4+ and CD8+ T-cells (co-expressing CD38 and human leukocyte antigen-D-related (HLA-DR)) in blood and CSF.

Results: A total of 81 subjects were enrolled at an average of 100 days after HIV transmission and had an average
follow-up period of 321 days, with the number of visits ranging from one to 13. At baseline, the majority of subjects
had CSF neopterin concentrations above the upper limit of normal. The baseline concentration was associated with
the longitudinal trajectory of CSF neopterin. In subjects with baseline levels of less than 21 nmol/L, a cutoff value
obtained from a mixed-effects model, CSF neopterin increased by 2.9% per 10 weeks (n = 33; P <0.001), whereas
it decreased by 6.7% in subjects with baseline levels of more than 21 nmol/L (n = 11; P = 0.001). In a subset with
available flow cytometry data (n = 42), the percentages of activated CD4+ and CD8+ T-cells in CSF increased by
0.8 (P <0.001) and 0.73 (P = 0.02) per 10 weeks, respectively.

Conclusions: Neopterin levels and the percentages of activated CD4+ and CD8+ T-cells in CSF progressively increase in
most subjects without treatment during early HIV-1 infection, suggesting an accrual of intrathecal inflammation, a major
contributor to neuropathology in HIV infection.
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Background
With the increasing availability of combination antiretro-
viral therapy (cART) the prevalence of HIV-associated de-
mentia (HAD, the most severe form of HIV-associated
neurocognitive disorder (HAND)) decreased from between
10 and 15% to about 2% in the HIV-1-infected population
in the United States [1]. However, milder forms of HAND
remain unchanged at a prevalence of between 40 and 50%
and are associated with decreased quality of life, poor treat-
ment adherence, and higher mortality risk [2-4]. While
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poor viral suppression is a contributor to this high preva-
lence, neurocognitive impairment is also observed in indi-
viduals with adequate cART adherence and suppressed
viral loads [5,6] for reasons that are unclear. Studies have
shown that inflammation, a mediator of central nervous
system (CNS) injury [7], persists at a low level for many
years despite cART [8-10], possibly causing continual
damage to the CNS.
In exploring explanations for persistent CNS injury,

some studies have focused on the impact of early infec-
tion prior to initiation of cART, since it is known that
HIV enters the CNS and induces immune activation
soon after transmission [11,12]. Emerging evidence from
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studies examining cerebrospinal fluid (CSF) and neuro-
imaging biomarkers in primary HIV infection (PHI, de-
fined as within the first year of transmission) suggests
that neuronal injury and dysfunction are already occur-
ring in this stage [13-15]. These studies highlight the
potential importance of the early stage of infection in
HIV neuropathogenesis. Although cross-sectional studies
have provided snapshots of processes occurring in the
CNS during PHI [16], longitudinal processes occurring at
this stage of infection in ART-naïve subjects have not been
described.
In this study, we sought to examine the natural course

of CNS inflammation starting in PHI. We hypothesized
that CNS immune activation stimulated during initial in-
fection would persist, and perhaps intensify, prior to ini-
tiation of ART, establishing a progressive inflammatory
environment in the CNS. In a cohort of ART-naïve PHI
subjects, we analyzed blood and CSF for longitudinal
levels of soluble and cellular markers of inflammation.
Neopterin was examined as a soluble surrogate biomarker
of inflammation, and cluster of differentiation (CD)38 and
human leukocyte antigen-D-related (HLA-DR) expressed
together on CD4+ and CD8+ T-cells were examined as
cellular markers of immune activation.

Methods
Study participants
ART-naïve HIV-1-infected subjects within one year of trans-
mission were recruited in Gothenburg, Sweden (n = 17) and
San Francisco, United States (n = 64). As described previ-
ously [16], PHI in the participants was confirmed by a com-
bination of seroconversion, nucleic acid testing, or less-
sensitive enzyme-linked immunosorbent assay (ELISA) test-
ing, according to the serologic testing algorithm for recent
HIV seroconversion (STARHS) methods [17]. The duration
since transmission was estimated by considering the
date at onset of seroconversion symptoms as 14 days
post-transmission [18]. For participants without sero-
conversion symptoms (n = 16), we estimated the date
of transmission as halfway between the most recent
negative and positive HIV tests [19]. Protocols were
approved by the University of California San Francisco
Committee on Human Research (H9133-26278) and
the Research Ethics Committee of the University of
Gothenburg (Ö588-01). Informed consent was obtained
from all participants prior to enrollment.

Data collection
Longitudinal paired samples of CSF and blood were obtained
prior to cART. In San Francisco, visits were scheduled at
baseline (earliest enrollment after initial transmission), six
weeks, and every subsequent six months from baseline,
while in Gothenburg, study intervals were variable. Oppor-
tunistic infections and major neurological diseases such as
stroke, multiple sclerosis, and seizure disorders were ruled
out at baseline. Blood samples were analyzed for HIV RNA,
albumin, CD4+ lymphocytes and CD8+ lymphocytes, and
CSF samples were analyzed for HIV RNA, albumin, and
white blood cell (WBC) count, as previously described [16].
Concentrations of CSF and blood neopterin were measured
in previously frozen samples in the laboratory of Dr Fuchs
by commercial immunoassays (BRAHMS Aktiengesellschaft,
Hennigsdorf, Germany). A subset of fresh whole blood and
CSF samples obtained in San Francisco (n = 42) was further
analyzed by multiparameter flow cytometry as previously
described [20,21] using FACSDiva (BD Biosciences,
San Jose, USA) to measure the percentage of CD4+
and CD8+ cells with dual positivity for activation markers
CD38 and HLA-DR. Data was analyzed with FlowJo
(TreeStar, Ashland, Oregon, United States).

Statistical analysis
All statistical analyses were performed using SPSS version
19, IBM Corp., Armonk, USA. All descriptive statistics are
presented as median and interquartile range (IQR) for
continuous variables, and as frequency (%) for categorical
variables. Fischer’s exact test, the Mann-Whitney U test,
and Spearman’s rank correlation coefficient were used
where appropriate.
To analyze the longitudinal trajectory of CSF neop-

terin, we used mixed-effects models, which can accom-
modate differences among subjects in the total number
of visits and intervals between visits. CSF neopterin con-
centrations were log-transformed to approximate a nor-
mal distribution before formal modeling. The models
included fixed effects of baseline CSF neopterin and days
post-transmission, and the random effect of intercept. The
quadratic time effect was excluded from the final model
because of statistical non-significance (P = 0.31). We also
included an interaction term (days post-transmission ×
baseline CSF neopterin) as a fixed effect to examine if the
trajectory of CSF neopterin over days post-transmission
depended on the baseline level. Since baseline CSF neop-
terin was used as a predictor, only CSF neopterin values
from subsequent visits were used as observations of the
dependent variable.
This model yielded a regression coefficient for slope

(change in CSF neopterin per day post-transmission)
equal to 0.000294 - 1.397E-5 × baseline CSF neopterin,
suggesting that the slope of CSF neopterin trajectory
was dependent on baseline CSF neopterin. Based on this
regression coefficient, baseline CSF neopterin values greater
than 21 nmol/L yielded a negative slope, whereas baseline
CSF neopterin values less than 21 nmol/L yielded a positive
slope. Therefore, a baseline CSF neopterin level of
21 nmol/L was a cutoff value that determined the in-
creasing versus decreasing trajectory of CSF neopterin.
These results were confirmed by another model that used
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baseline CSF neopterin as a dichotomous variable (above
or below 21 nmol/L). Although only the group with base-
line CSF neopterin below 21 nmol/L included subjects
with visits beyond 150 weeks, sensitivity analysis con-
straining the time axis to 150 weeks yielded the same
trajectories as above. Therefore the full analysis, which
included these visits, is presented in this paper.
Similarly, we used mixed-effects models to examine trends

in the proportions of CD4+ and CD8+ cells co-expressing
CD38 and HLA-DR in blood and CSF. In each of the four
models, days post-transmission was a fixed effect, intercept
was a random effect, and the percentage of cells co-
expressing CD38 and HLA-DR was the outcome variable.

Results
Study participant characteristics
The characteristics of participants are shown in Table 1.
Subjects were mostly male, had a median age of 36 years
(IQR: 28 to 45), and were at a median of 100 days post-
transmission at baseline. Although the median blood
CD4+ T-cell count was 552 cells/μL (IQR: 389 to 720),
one individual had an extremely low baseline CD4+ T-cell
count of 111 cells/μL. The total number of visits ranged
from 1 to 13, and the median duration of follow-up was
321 days.

Baseline measures of immune activation
Consistent with a previous report on a subset of this cohort
[16], the median CSF neopterin concentration at baseline
was 10.2 nmol/L (IQR: 6.6 to 21.3), with 81% of subjects
Table 1 Baseline demographic and laboratory features of
subjects and follow-up duration

Baseline feature/lab value Median (interquartile range)

Total number of subjects 81

Male (%) 77 (95.1)

Age (years) 36 (28 to 45)

Duration since transmission at
baseline (days)

100 (54 to 153)

Blood CD4+ T-cells (cells/μL) 552 (389 to 720)

Plasma HIV RNA (log10 copies/mL) 4.56 (3.97 to 5.18)

CSF HIV RNA (log10 copies/mL) 2.77 (1.80 to 3.47)

Plasma neopterin (nmol/L) 15.1 (9.4 to 21.6)

CSF neopterin (nmol/L) 10.2 (6.6 to 21.3)

% Blood CD4 + CD38 + HLA-DR + a 7.5 (6.2 to 11.6)

% Blood CD8 + CD38 + HLA-DR + a 55.3 (47.4 to 68.1)

% CSF CD4 + CD38 + HLA-DR + a 14.2 (8.5 to 22.2)

% CSF CD8 + CD38 + HLA-DR + a 70.9 (60.9 to 80.6)

Total number of visits 2 (1 to 3)

Duration of follow-up (days) 321 (105 to 727)
an = 42 for flow cytometry analysis. CD, cluster of differentiation; CSF,
cerebrospinal fluid; HLA-DR, human leukocyte antigen-D-related.
having levels above 5.8 nmol/L, the upper limit of normal
(ULN) [22]. Plasma neopterin at baseline was also elevated
at 15.1 nmol/L (IQR: 9.4 to 21.6, ULN: 8.7 nmol/L [23]).
Percentages of activated CD4+ and CD8+ cells in both
blood and CSF were also elevated compared to published
values in HIV-uninfected subjects obtained using similar
methods (Table 1) [20]. Plasma neopterin correlated posi-
tively with the percentage of activated CD4+ cells (rs =
0.38, P = 0.02) and CD8+ cells (rs = 0.40, P = 0.02) in blood,
and the percentage of activated CD8+ cells in CSF (rs =
0.41, P = 0.01). CSF neopterin correlated moderately with
the percentage of activated CD4+ cells (rs = 0.36, P = 0.03)
and CD8+ cells (rs = 0.37, P = 0.03) in blood and strongly
correlated with the percentage of activated CD8+ cells in
CSF (rs = 0.63, P <0.001).

Post-transmission trajectory of cerebrospinal fluid
neopterin
We next applied linear mixed-effects models to examine
longitudinal changes in intrathecal immune activation
prior to ART. A total of 44 subjects with a baseline CSF
neopterin value and at least one follow-up value contrib-
uted to the analysis. Two significant trends were ob-
served and depended on the baseline CSF neopterin
concentration (interaction effect, P <0.001) being above
or below 21 nmol/L, a cutoff value obtained from a
mixed-effects model (see Methods). In participants with
baseline CSF neopterin concentrations below 21 nmol/L,
henceforth referred to as the ‘low group’ (n = 33), CSF
neopterin levels increased over time, and a lower base-
line value was associated with a steeper increase. This
group included eight subjects with baseline CSF neopterin
concentrations within the normal range. In contrast, CSF
neopterin decreased in the minority of participants with
baseline CSF neopterin concentrations above 21 nmol/L,
henceforth referred to as the ‘high group’ (n = 11). Within
this group, a higher baseline value was associated with a
faster decline.
To confirm the observation of 21 nmol/L as a cutoff

value, we ran a similar mixed-effects model with base-
line CSF neopterin as a categorical variable. This model
yielded the average change in CSF neopterin level over
time separately for the low and high groups, and showed
that they were significantly different as evidenced by the
group-by-time interaction (P <0.001). As shown in
Figure 1, CSF neopterin concentration increased in the
low group by approximately 2.9% per 10 weeks (P <0.001),
and decreased in the smaller high group by approximately
6.7% per 10 weeks (P = 0.001).

Correlations with high and low baseline cerebrospinal
fluid neopterin levels
When the groups with baseline CSF neopterin concen-
trations below and above 21 nmol/L were compared on



Figure 1 Trajectories of cerebrospinal fluid (CSF) neopterin in
early HIV-1 infection. Thin lines represent the trajectories of
individual subjects and bold lines represent the average slopes of
high (red) and low (blue) groups (see text).
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baseline parameters (Table 2), significant differences were
not found in age or days post-transmission. However, the
high group was found to have a lower CD4+ cell count
in blood (P <0.001), higher neopterin levels in plasma
(P = 0.006) and CSF (P <0.001), and HIV RNA levels in
both plasma (P = 0.02) and CSF (P = 0.006) that were
greater by more than an order of magnitude. In both
groups, the level of HIV RNA in CSF was lower than
that found in plasma.
Despite a higher CSF-to-plasma neopterin ratio in the

high group (Figure 2A, P <0.001), the two groups did not
differ in the CSF-to-plasma HIV RNA ratio (Figure 2B,
P = 0.37) or the CSF-to-plasma albumin ratio (Figure 2C,
P = 0.06). The neopterin-to-HIV RNA ratio was higher
in the high group in CSF (P <0.001) but not in plasma
(P = 0.10).
Table 2 Baseline parameter comparisons of low and high gro

Low group (baseline C
neopterin <21, n = 33)

Age (years) 37 (30 to 46)

Days post-transmission 136 (84 to 189)

Blood CD4+ T-cells (cells/μL) 601 (444 to 750)

Blood CD8+ T-cells (cells/μL) 993 (692 to 1,269)

Plasma HIV RNA (log10 copies/mL) 4.2 (3.8 to 4.8)

CSF HIV RNA (log10 copies/mL) 2.5 (1.7 to 3.2)

CSF:plasma HIV RNA ratio (log10) −1.8 (−2.2 to −1.2)

CSF WBC count 6 (2.5 to 9.5)

Plasma neopterin (nmol/L) 13.9 (10.2 to 18.2)

CSF neopterin (nmol/L) 8.5 (5.8 to 11.8)

CSF:plasma neopterin ratio 0.66 (0.42 to 0.8)

CSF:plasma albumin ratio 5.4 (4.3 to 6.4)

Unless otherwise stated values are represented as median (interquartile range). CD,
Clinically, two out of 33 subjects in the low group
(5.9%) and one out of 11 subjects in the high group
(9.1%) had specific neurological seroconversion symp-
toms (excluding headache). The two neurosymptomatic
patients in the low group had Guillain-Barré-like syn-
drome and meningitis, and the one patient in the high
group had meningitis.

Post-transmission trajectory of activated CD4+ and
CD8+ T-cells in blood and cerebrospinal fluid
Mixed-model analyses of subjects with available flow cy-
tometry data (n = 42) showed an increasing trend in the
percentage of activated CD4+ cells in blood at a rate of
0.23 per 10 weeks (P = 0.05, Figure 3A). A significant
trend for activated CD8+ cells in blood was not found
(P = 0.54, Figure 3B). In CSF, the percentage of acti-
vated CD4+ cells increased at a rate of 0.63 per
10 weeks (P = 0.04). We noted an outlier value that
had a sharp increase from 8 to 54% from day 26 to 51
post-transmission; re-analysis excluding this outlier
yielded a rate of 0.8 per 10 weeks (P <0.001, Figure 3C).
The percentage of activated CD8+ cells in CSF increased
at a rate of 0.73 per 10 weeks (P = 0.02, Figure 3D).

Discussion
In this study, we analyzed the longitudinal levels of CSF
neopterin and percentages of activated CD4+ and CD8+
T-cells in blood and CSF, reporting for the first time the
natural history of change in these measures of immune
activation prior to cART beginning in PHI. HLA-DR
and CD38 were used as markers of T-cell activation, and
CSF neopterin was used as a soluble marker of CNS in-
flammation, as it is produced by activated macrophages
and astrocytes mainly in response to interferon-gamma.
It has been shown that 97.5% of neopterin in CSF is
ups

SF High group (baseline CSF
neopterin >21, n = 11)

P value

36 (28 to 47) 0.87

70 (34 to 191) 0.23

308 (275 to 389) <0.001

1,037 (725 to 1,707) 0.58

5.3 (4.4 to 5.9) 0.02

3.7 (2.8 to 4.9) 0.006

−1.4 (−2.3 to −0.5) 0.37

10 (1 to 11) 0.61

21.5 (18.3 to 37.5) 0.006

39.1 (29.2 to 56.6) <0.001

1.8 (1.3 to 2.6) <0.001

7.4 (4.6 to 10.9) 0.06

cluster of differentiation; CSF, cerebrospinal fluid; WBC, white blood cell count.



Figure 2 Cerebrospinal fluid-to-plasma ratios of baseline parameters in low and high groups. CSF, cerebrospinal fluid. A) CSF-to-plasma
ratio of neopterin. B) CSF-to-plasma ratio of HIV RNA. C) CSF-to-plasma ratio of albumin.
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intrathecally produced [24], and it is therefore not sim-
ply a spillover from blood, but reflects intrathecal in-
flammation. Although with any CSF marker there is a
concern that it may not accurately reflect processes in
the brain, CSF neopterin has been frequently used for
the reasons mentioned above as a surrogate biomarker
of CNS inflammation and studied as a potential ancillary
diagnostic marker for HAD [22,25]. Additionally, CSF
neopterin has previously been shown in this PHI cohort
Figure 3 Trajectories of percentages of activated T-cells in blood and
individual subjects and bold lines represent average slopes obtained from
blood. B) Percentage of CD8+ CD38+ HLA-DR+ cells in blood. No significa
in CSF. D) Percentage of CD8+ CD38+ HLA-DR+ cells in CSF. CD, cluster of
antigen-D-related.
to correlate with neurofilament light chain [13], a marker
of neuronal injury.
Our analysis showed two trajectories of CSF neopterin

beginning in PHI that were dependent on the baseline
concentration of CSF neopterin. In the majority of partici-
pants, a slow increase was observed, similar to trends in
chronic infection [26,27]. Previously unobserved was a
downward trend in the quarter of the subjects who had
baseline CSF neopterin concentrations above 21 nmol/L,
CSF in early HIV-1 infection. Thin lines represent the trajectories of
mixed-effects models. A) Percentage of CD4+ CD38+ HLA-DR+ cells in
nt trend was observed. C) Percentage of CD4+ CD38+ HLA-DR+ cells
differentiation; CSF, cerebrospinal fluid; HLA-DR, human leukocyte
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a value obtained through modeling. The median baseline
CSF neopterin level in these subjects was more than six-
fold greater than the upper limit of normal. Although CSF
neopterin decreased over time, the rate was not nearly fast
enough for a reduction in CSF neopterin to normal levels
within the observed time interval.
To better characterize the groups, we compared them

on multiple baseline parameters. In both groups, CSF-
to-plasma HIV RNA ratio was lower than the 1 log re-
duction typically found during chronic infection, as has
been previously reported in early HIV infection [11,16].
However, viral load and neopterin concentration in both
plasma and CSF were higher in the high group, suggest-
ing a greater degree of systemic and intrathecal inflam-
mation in the initial stage of infection.
Interestingly, despite a lower viral load in CSF com-

pared to plasma in both groups, the concentration of
neopterin was higher in CSF than in plasma in the high
group, while the converse was true for the low group.
Accordingly, a higher CSF-to-plasma neopterin ratio was
observed in the high group even though the groups had
similar CSF-to-plasma HIV RNA ratios. Further investi-
gation revealed a higher neopterin-to-HIV RNA ratio
only in the CSF of the high group, suggesting an ampli-
fied intrathecal immune response to the CSF viral load
in this group.
Additionally in this study, we analyzed changes in the

percentages of activated CD4+ and CD8+ T-cells in blood
and CSF, beginning in PHI. A significant trend was not
observed for blood CD8+ CD38+ HLA-DR+ cells, a sub-
set that has been associated with the rate of CD4+ cell de-
cline and prognosis in chronic infection [28-30]. However,
in CSF, there was an increase in the proportion of acti-
vated CD8+ cells. Although associations with HAND in
humans are yet unknown, activated CD8+ cells have been
shown to produce cytolytic and pro-inflammatory mole-
cules in the brains of macaques with CNS dysfunction
from simian immunodeficiency virus (SIV) infection [31].
This observation corroborates the CSF neopterin findings
of increasing CNS immune activation beginning in PHI
prior to the typical initiation of antiretroviral treatment.
The similar upward trajectories for neopterin and acti-
vated CD8+ cells in CSF are unsurprising as they were
strongly correlated at baseline, consistent with previous
reports [20]. These results highlight the utility of CSF
neopterin as a marker of CNS inflammation for future
studies.
Regarding the percentage of activated CD4+ T-cells in

blood, an upward trend was observed in agreement with
a previous report of an increase in the density of CD38 on
CD4+ cells in blood during early infection [28]. A novel
finding in this study was that the percentage of activated
CD4+ T-cells also progressively increases in CSF begin-
ning in early infection, which may have implications for
the establishment of HIV replication within the CNS com-
partment, as activated CD4+ cells support viral replication
more efficiently compared to resting T-cells [32,33].

Conclusions
Our longitudinal analyses of both soluble and cellular
measures of immune activation indicate that without
treatment, CNS inflammation increases during primary
HIV-1 infection in most individuals. In a minority of
subjects with significantly higher levels of CSF neopterin
at baseline, neopterin levels decrease, but only at a slow
rate such that elevated levels persist throughout the
follow-up period. These results are disconcerting because
CNS inflammation and immune activation are considered
to be major contributors to neurodegeneration in HIV
infection [7,34].
cART dramatically reduces the level of immune activa-

tion in blood and CSF [20,35-37], although elevated levels
of neopterin and activated T-cells can persist in CSF [38].
Yilmaz et al. reported that the set-point of CSF neopterin
in subjects on virologically suppressive cART is associated
with the pre-ART level of CNS inflammation [39].
Therefore, our observation of a steady increase in CNS
inflammation in the majority of subjects highlights the
importance of identifying individuals early after infec-
tion, and supports prompt initiation of therapy to re-
duce CNS inflammation in PHI and achieve the lowest
possible set-point on cART.
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