
Uus et al. 
Journal of Cardiovascular Magnetic Resonance           (2022) 24:71  
https://doi.org/10.1186/s12968-022-00902-z

RESEARCH

3D black blood cardiovascular magnetic 
resonance atlases of congenital aortic 
arch anomalies and the normal fetal heart: 
application to automated multi‑label 
segmentation
Alena U. Uus1*, Milou P. M. van Poppel1,2, Johannes K. Steinweg1,3, Irina Grigorescu1, Paula Ramirez Gilliland1, 
Thomas A. Roberts1,4, Alexia Egloff Collado3, Mary A. Rutherford3, Joseph V. Hajnal1,3, David F. A. Lloyd1,2, 
Kuberan Pushparajah1,2 and Maria Deprez1 

Abstract 

Background:  Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic 
resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) 
images of the fetal heart providing excellent 3D visualisation of vascular anomalies [1]. However, 3D segmentation of 
these datasets, important for both clinical reporting and the application of advanced analysis techniques is currently a 
time-consuming process requiring manual input with potential for inter-user variability.

Methods:  In this work, we present novel 3D fetal CMR population-averaged atlases of normal and abnormal fetal car-
diovascular anatomy. The atlases are created using motion-corrected 3D reconstructed volumes of 86 third trimester 
fetuses (gestational age range 29-34 weeks) including: 28 healthy controls, 20 cases with postnatally confirmed neo-
natal coarctation of the aorta (CoA) and 38 vascular rings (21 right aortic arch (RAA), 17 double aortic arch (DAA)). We 
used only high image quality datasets with isolated anomalies and without any other deviations in the cardiovascular 
anatomy.In addition, we implemented and evaluated atlas-guided registration and deep learning (UNETR) methods 
for automated 3D multi-label segmentation of fetal cardiac vessels. We used images from CoA, RAA and DAA cohorts 
including: 42 cases for training (14 from each cohort), 3 for validation and 6 for testing. In addition, the potential limi-
tations of the network were investigated on unseen datasets including 3 early gestational age (22 weeks) and 3 low 
SNR cases.

Results:  We created four atlases representing the average anatomy of the normal fetal heart, postnatally confirmed 
neonatal CoA, RAA and DAA. Visual inspection was undertaken to verify expected anatomy per subgroup. The results 
of the multi-label cardiac vessel UNETR segmentation showed 100% per-vessel detection rate for both normal and 
abnormal aortic arch anatomy.
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Background
The black-blood contrast in T2-weighted single shot 
turbo spin echo (SSTSE) sequence widely used in fetal 
cardiovascular  magnetic resonance (CMR) provides 
useful visualisation of fetal cardiovascular anomalies 
[2]. However, 2D-only slice-wise analysis is affected by 
uncontrolled fetal motion during image acquisition, 
affecting visualisation of small and complex 3D cardio-
vascular structures. Application of novel slice-to-volume 
registration (SVR) motion correction tools [3–5] allow 
reconstruction of motion-corrupted 2D datasets. The 
resulting high-resolution isotropic 3D images of the fetal 
thorax demonstrate excellent 3D visualisation of the fetal 
extracardiac vasculature providing adjunct diagnostic 
information to fetal echocardiography [1].

At our institution, main clinical referral indications for 
3D T2-weighted fetal CMR [1] include suspected coarc-
tation of the aorta (CoA) and vascular rings i.e. right 
aortic arch (RAA) with aberrant left subclavian artery 
(ALSA) and double aortic arch (DAA). However, despite 
the reported strong diagnostic performance of 3D fetal 
CMR [1, 6], there is a lack of formalisation of the CMR 
appearance of fetal cardiovascular anatomy. 3D segmen-
tation of the fetal heart from motion-corrected volumes 
[1] is valuable for clinical reporting pipelines and appli-
cation of advanced image analysis (i.e. statistical shape 
analysis). Commonly, 3D segmentation in CMR in gen-
eral is useful for 3D visualisation and clinical reporting as 
well as advanced image analysis methods. However, the 
current 3D segmentation approach for black blood fetal 
CMR [1] relies of semi-automatic parcellation based on 
thresholding. It may not clearly differentiate between 
adjacent vessels and requires time-consuming manual 
refinement, which is vulnerable to inter-observer varia-
bility. The time required for refinement further increases 
in case of multiple labels.

Related work
While the majority of the reported fetal CMR image pro-
cessing methods have been focused only on the brain 
region, their application is being gradually extended to 
the rest of the fetal body. For instance, the existing vari-
ous implementations of 3D SVR reconstruction methods 

[3, 4, 7] already showed to improve information content 
of CMR for the fetal heart [1] as well as the other body 
organs [8]. In addition to visual inspection, the recon-
structed 3D CMR images are also used for volume ren-
dering as well as biometry [6] and segmentation for 
quantitative analysis [9].

The results of the recent fetal brain MRI segmentation 
challenge [10] demonstrated that the modern automated 
segmentation solutions based on deep learning show 
promising results for both normal and abnormal fetal 
brain anatomy. However, so far, the reported methods 
were limited to the brain region only and used either the 
UNet-based solutions with training on manual labels [11, 
12] or classical label propagation approaches that notably 
required significant amount of manual editing [13, 14].

Development of new segmentation methods for spe-
cific anatomy structures (e.g., the fetal heart) and MRI 
acquisition protocols would require definition of a refer-
ence parcellation protocol, which is conventionally per-
formed in the atlas space. In this case, an atlas is a 3D 
image representing population-averaged anatomy that is 
generated by averaging co-aligned 3D MRI images from 
specific cohorts. The existing examples include spatio-
temporal 3D MRI atlases of the normal fetal brain at dif-
ferent gestational ages [15] or specific brain anomalies 
[16]. However, so far, there have been no reported atlases 
of the fetal body.

Contributions
In this work, we present the first 3D fetal CMR atlases 
of normal fetal cardiovascular anatomy and three sub-
groups of vascular anomalies (CoA, RAA with ALSA and 
DAA) generated from 87 fetal CMR datasets including 
formalised multi-label parcellations of the major cardio-
vascular structures. This contributes to the automation 
of 3D SVR-based reporting pipelines and quantitative 
analysis. We also perform evaluation of the feasibility of 
atlas-guided registration and deep learning methods for 
automated 3D multi-label vessel segmentation. In addi-
tion, the potential limitations of the network were inves-
tigated on unseen datasets including 3 early gestational 
age  (22 weeks) and 3 low signal-to-noise (SNR) cases 
(Appendix).

Conclusions:  This work introduces the first set of 3D black-blood T2-weighted CMR atlases of normal and abnormal 
fetal cardiovascular anatomy including detailed segmentation of the major cardiovascular structures. Additionally, 
we demonstrated the general feasibility of using deep learning for multi-label vessel segmentation of 3D fetal CMR 
images.

Keywords:  Congenital aortic arch anomalies, 3D fetal MRI, Heart atlas, Vessel segmentation
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Methods
Datasets and preprocessing
We included 92 fetal CMR datasets scanned at Evelina 
London Children’s Hospital/ St Thomas’ Hospital, Lon-
don (UK). Data use for this project was subject to written 
informed consent of the participants (REC: 14/LO/1806 
(iFIND-2 project) and REC 07/H0707/105).[17]

As shown in Fig. 1C, suspected CoA ( 35% ), RAA ( 24% ) 
and DAA ( 7% ) represent the largest congenital heart dis-
ease (CHD) groups of the fetal CMR datasets acquired 
at Evelina London Children’s Hospital during 2016-2021 
period. In terms of the image quality, on average, more 
than 90% of all CMR cases had adequate image quality (3D 
reconstructions) acceptable for general diagnostic pur-
poses (visibility of main vascular structures, e.g. Fig. 1B).

The main study cohort (86 subjects) (Fig. 1A) includes 
28 healthy controls without reported cardiac, brain, body 
or placenta anomalies (’normal’), 20 cases with postna-
tally confirmed neonatal CoA and 38 vascular rings (21 
RAA with aberrant left subclavian artery (ALSA), 17 
DAA). We solely included high quality (high SNR and 
good visibility of all vascular structures) datasets of third-
trimester singleton pregnancies (gestational age 29 to 
34 weeks) without other major cardiovascular anoma-
lies and anatomy variance (e.g., bilateral or left superior 
vena cava (SVC)) or significant extracardiac anatomical 
deviations.The numbers of the healthy controls, con-
firmed CoA and RAA cases were chosen to be approxi-
mately within the range of the number of the available 
good quality cases with isolated DAA (17), which was the 

Fig. 1  Investigated fetal cardiovascular magnetic resonance (CMR) cohorts (A) and an example of one of the original motion-corrupted stacks and 
the corresponding 3D DSVR reconstructed thorax for one of the black-blood T2-weighted SSTSE datasets (B). The entire fetal CMR cohort acquired 
at Evelina London Children’s Hospital during 2016-2021 is shown in (C). CoA, coarctation of aorta; DAA, double aortic arch; DSVR, deformable slice 
to volume registration; HLHS, hypoplastic left heart syndrome; RAA, right aortic arch, SSTSE, single shot turbo spine echo; T2w, T2 weighted; ToF, 
tetralogy of Fallot
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smallest group. This case selection ensured the homo-
geneity of the cohort required for anomaly-specific 
atlas generation and the proof of concept evaluation of 
the feasibility of using multi-vessel segmentation of 3D 
fetal CMR (rather than a robust universal segmentation 
approach).

In addition, we also used randomly selected 3 early ges-
tational age (normal anatomy; 22 weeks) and 3 low SNR 
(CoA, RAA, DAA; 29-32 weeks) datasets for assessment 
of the potential impact of various image quality factors 
on deep learning segmentation results.

Data acquisition was performed on a 1.5T CMR scan-
ner (Ingenia, Philips Healthcare, Best, the Netherlands)  
using torso receiver array and T2w SSTSE: TR=15000ms, 
TE=80ms, voxel size 1.25x1.25x2.5mm, slice thickness 
2.5mm and spacing 1.25mm with 9-11 stacks. No gating 
was used during T2  weighted (T2w)  CMR acquisition. 
The 3D For the 3rd trimester datasets, the acquisition 
time varies between 1.5 - 3 minutes per stack depending 
on the ROI coverage[1]. The 3D static reconstructions 
of the fetal thorax (0.75mm isotropic resolution, stand-
ard radiological space) were generated using our novel 
automated deformable SVR (DSVR) [5] reconstruction 
pipeline [7]. 3D DSVR reconstruction provides spatial 
continuity of the vascular anatomy, which is essential for 
analysis of relative positioning of vessels in 3D. E.g., an 
example of the image quality before and after 3D DSVR 
image reconstruction is given in Fig. 1B.

Generation of 3D heart atlases with vessel segmentation
The 3D atlases for each of the groups (normal, CoA, 
RAA+ALSA, DAA) were created using the classical 
Medical Image Registration Toolkit (MIRTK) atlas gen-
eration tool [18, 19] (Fig.  2). As preprocessing, the 3D 
reconstructed images from all cohort were affinely regis-
tered to the same standard space. The output atlases have 
0.6mm isotropic resolution.

For each of the atlases, a clinician (MvP) with 5 years 
of fetal CMR experience manually segmented 20 labels 
of main cardiovascular structures using ITK-SNAP [20]. 
The atlases are publicly available online at SVRTK data 
repository [21].

Automated segmentation of the fetal cardiac vessels
Automated segmentation protocol: For the automated 
segmentation protocol we selected 14 cardiac vessels, 
shown in Fig. 3A. These vessels are of primary interest in 
fetal CMR-based diagnosis of cardiac vascular anomalies, 
while black blood SSTSE sequences have limited value 
for visualisation of cardiac chambers.

Deep learning model for automated segmentation: We 
selected a vision transformer based deep neural net-
work segmentation technique (UNETR) [22] to perform 
the automated multi-label 3D segmentation of the fetal 
vasculature in 3D DSVR CMR images (Fig. 3B), as it has 
shown to perform well for multi-label segmentation. The 
proposed segmentation pipeline was implemented in 
MONAI [23], and open-source Pytorch framework for 
medical artificial intelligence.

Training datasets: We used images from CoA, RAA 
and DAA cohorts including: 42 cases for training (14 
from each cohort), 3 for validation and 6 for testing. 
The selection criteria were the isolated specific anomaly, 
absence of anatomical variations and the clear visibility 
and continuity of all vascular structures. The preprocess-
ing included cropping to the extracardiac vessel region 
(e.g., Fig.  3A), affine registration to the atlas space and 
resampling with padding to 128x128x128 grid.

Generation of labels for training: The labels (14 different 
vessel regions, Fig. 3A) were generated using label propa-
gation (LP) from cohort-specific atlases using deformable 
registration implemented in MIRTK software package 
[18]. This was followed by manual refinement of individ-
ual structures in all segmentations using ITK-SNAP [20], 

Fig. 2  Main steps of the fetal heart atlas generation pipeline
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primarily for the aortic arch including head and neck ves-
sels and azygous vein due to limited visibility (smaller 
size of structures) and partial volume effect. The RAA 
and DAA cases required more refinement than CoA case 
due to lower topological consistency. All labels were visu-
ally assessed and confirmed to be qualitatively acceptable.

Training of the segmentation model: The training 
was performed for 50000 iterations with the standard 
MONAI-based augmentation (random bias field, con-
trast adjustment, Gaussian noise and affine rotations 
±45◦).

Evaluation: The performance was tested on 2 CoA, 2 
RAA and 2 DAA cases qualitatively in terms of the vessel 
detection status (visual assessment: correct=100% , par-
tial=50% , failed=0% ), and quantitatively by comparison 
to manually refined propagated labels in terms of recall, 
precision and Dice.

Results
3D heart atlases
Figs. 4, 5 and 6 show the generated 3D T2w atlases along 
with the corresponding multi-label parcellation maps. 
The anatomical accuracy of the atlases and the seg-
mented structures were confirmed by a clinician (MvP) 
with 5 years of fetal CMR experience. Visual assessment 

of the atlases (e.g., Fig.  4A) demonstrates high contrast 
of the vessels as well as structural continuity of the blood 
pool. As expected, image quality of the atlases is higher 
then in individual cases.

The parcellation maps (e.g., Fig.  4B) include 14 major 
cardio vascular structures (including aorta and head and 
neck vessels (red), arterial duct (yellow), inferior and SVC 
and innominate vein (cyan), pulmonary arteries (light 
blue) and pulmonary veins (lilac). Additional maps are 
the four heart chambers, the trachea is shown in grey.

The back blood T2w SSTSE sequence is primarily 
used for visualisation of vessels and has limited value 
for inspection of cardiac chambers in individual sub-
ject studies due to low contrast. However, averaging of 
the signal from multiple aligned 3D images during the 
atlas construction enhances the contrast and produces 
smooth outline of the chambers. The segmentations of 
the chambers were added to the atlases primarily for 
completeness.

The 3D model of the CoA atlas shown in Fig. 5A has 
a pronounced narrowing of the aortic arch in com-
parison to the normal anatomy. This is reflected in the 
narrower diameter along the centreline (Fig.  5B). The 
diameter was measured using VMTK centreline extrac-
tion technique [24]. Of note, the CoA atlas represents 

Fig. 3  Definition of the vessels in the extracardiac region (A) and the proposed UNETR-based segmentation pipeline (B). AD, arterial duct; Ao, aorta; 
AZV - azygous vein; BCA, bracheocephalic artery; DAO, descending aorta; LCCA, left common carotid artery; LPA, left pulmonary artery; LSA, left 
subclavian artery; MPA, main pulmonary artery, PVS, pulmonary veins; RPA, right pulmonary artery
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an average of all CoA input cases which displayed vari-
ation in degree of great artery asymmetry and isthmus 
position as seen previously [6].

The RAA and DAA atlases, Fig. 6 clearly demonstrate 
the expected differences in the relative position of the 
aortic arch(es) and aortic branching to the trachea 
when compared to the normal anatomy of a single left 
aortic arch [25]. The ALSA is highlighted in lilac in the 
RAA atlas.

Automated cardiac vessel segmentation
Evaluation of UNETR segmentation: The results of test-
ing of the trained multi-label 3D UNETR segmentation 
network on 6 CoA, RAA and DAA cases are summarised 
in Fig. 7. The UNETR correctly detected all vessels in all 
test subjects (100% ) with different anomalies. This is con-
firmed by relatively high Dice coefficients for all struc-
tures (around 0.8 for larger vessels and around 0.75 for 
most of the smaller vessels) in agreement with the ade-
quate recall and precision.

Note that for some head and neck vessels Dice coef-
ficients are lower (0.55-0.7) due to their smaller sizes. 
Additionally, even after manual refinement, the refer-
ence ground truth labels are prone to inconsistencies due 
to the uncertainties stemming from the partial volume 
effect and varying per-vessel intensity contrast levels, 
which further contributes to lower Dice scores.

Nonetheless, these results confirm the feasibility of 
using deep learning models for multi-label segmentation 
for small vascular structures in a mixture of abnormal 
datasets with different anatomy.

In addition, Table  1 shows the quantitative comparison 
of the fine-edited label propagation (GT) and UNETR 
outputs with manual segmentations that were performed 
similarly to the original protocol in [1] (based on inten-
sity thresholding followed by manual refinement). Since 
there are no specified fixed cutoff levels for segmenting 
individual vessels or bifurcations or the signal intensity 
corresponding to the lumen boundaries, the Dice val-
ues of comparison with the manual segmentations are 
expected to vary. However, the relatively acceptable Dice 
results confirm the feasibility of using both of the pro-
posed approaches.

Visual comparison: The examples of visual comparison 
of the ground truth manually refined labels propagated 
from the atlases vs. UNETR outputs for different anomaly 
groups are shown in Fig. 8. While label propagation pro-
vided sufficiently good localisation of the vessels, there 
are minor inconsistencies and patchy appearance of the 
labels at the vessel boundaries. This is primarily related 
to the expected limitations of intensity-based registration 
methods. These irregularities were partially resolved in 
the UNETR output, which produced significantly more 

Fig. 4  Generated atlas of the normal heart anatomy with the corresponding multi-label parcellation map
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realistic and smoother boundaries and potentially cor-
rected minor errors.

UNETR and label propagation: Our results also con-
firm the feasibility of using labels propagated from aver-
age atlases for training of deep learning segmentation, 
which significantly reduces required dataset preparation 
time compared to manual-only segmentations. How-
ever, even without extreme anatomical deviations, label 

propagation outputs tend to require a certain amount of 
manual editing. Fig.  9 shows an example of failed label 
propagation segmentation of the azygous vein for one 
of the test datasets. It required manual correction while 
the UNETR produced correct segmentation. In total, for 
all datasets used in training and testing of the network, 
either minor or significant manual editing was required 

Fig. 5  Generated 3D atlases of normal anatomy and averaged fetal arch anatomy as seen in postnatally confirmed CoA. (A) The 3D models show 
narrowing of the aortic arch (red) in the CoA atlas. The arterial duct is visualised in yellow and the rest the anatomy is set to white. (B) Comparison of 
the diameter changes along the aortic arch centreline between the normal (green) and CoA (blue) atlases
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in approximately 30% of all individual structures, 
correspondingly.

An additional experiment for investigation of the 
potential limitations of the network with respect to 
suboptimal image quality is available in Appendix. It 
includes the unseen types of fetal CMR datasets: 3 early 
gestational age (22 weeks) and 3 low SNR cases.

Discussion
In general, the main aim of this work was focused on 
improvement of 3D CMR-based prenatal diagnosis for 
specific types of vascular CHD via formalisation of the 
diagnostic protocol that is currently at the early stage of 
integration into clinical practice [1] as well as optimisa-
tion of the current 3D vessel segmentation approach via 
automation (to reduce the time) and providing a poten-
tial solution to decrease inter-observer variability.

The proposed black-blood atlases demonstrate the 
group-averaged appearances of cardiovascular structures 

as seen on 3D fetal CMR in both normal and 3 sub-
groups of CHD. The correctness of the vascular anatomy 
in all atlases was confirmed by clinicians with fetal CMR 
experience. We also formalised the first protocol of par-
cellation of the major cardiovascular structures which 
provides the basis for development of automated seg-
mentation methods.

In the context of prenatal diagnosis of CHD with fetal 
CMR, the main aim of segmentation is 3D visualisation 
of the cardiovascular structures to demonstrate the rela-
tive position and dimensions of the relevant vessels, for 
example in cases with abnormal arch anatomy. One of 
the main requirements to any segmentation-based image 
analysis is the consistency of segmentation protocols in 
terms of the inter- and intra-observer variability. Poten-
tially, this can be achieved by applying automated seg-
mentation methods.

An important application of the created atlases is 
label propagation for multi-vessel segmentation and it 

Fig. 6  Comparison between the normal and abnormal RAA and DAA anatomy in the generated 3D atlases: differences in the relative position of 
the trachea (light blue) and aortic arch (red). The arterial duct is visualised in yellow and the aberrant left subclavian artery (ALSA) is visualised in lilac
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produces relatively consistent results for the normal or 
close-to-normal anatomy in CoA cases. However, DAA 
and RAA cases are subject to higher topological varia-
tions leading to limited segmentation quality. Varying 
image quality is another aspect that impedes expected 

segmentation quality in registration-based methods. 
The modern advanced deep learning-based segmenta-
tion methods provide an alternative operational solu-
tion but they also require large and high quality training 
datasets.

Fig. 7  Evaluation of 3D UNETR segmentation for 14 extracardiac vessel ROIs vs. the ground truth (GT) manually refined atlas propagated labels: 
including average Dice (A), precision, recall and detection detection status (B)



Page 10 of 13Uus et al. Journal of Cardiovascular Magnetic Resonance           (2022) 24:71 

In this work, we utilised manually refined labels propa-
gated from the atlases for UNETR training, which signifi-
cantly reduced time for preparation of the datasets and 
provided additional consistency of the labels. The results 
of testing confirmed that a single deep neural network 
can be successfully used for multi-label segmentation 

of datasets with different types of abnormal aortic arch 
anatomy. In terms of the performed quantitative evalua-
tion results, despite the 100% detection status, the lower 
dice for small vessels however smaller vessels would pri-
marily require detection status due to the lower reliabil-
ity, visibility and image quality.

Table 1  Comparison between the manual labels (thresholding + manual refinement), the ground truth (GT) manually fine-edited 
atlas propagated labels and UNETR outputs: average Dice per vessel ROI

Method SVC AO AD DAO MPA RPA LPA

LP+editing 0.77± 0.03 0.68± 0.04 0.73± 0.03 0.77± 0.4 0.78± 0.05 0.64± 0.01 0.57± 0.05

UNETR 0.76± 0.05 0.68± 0.04 0.73± 0.03 0.78± 0.04 0.73± 0.06 0.66± 0.05 0.57± 0.07

Method INV PVS LSA BCA LCCA​ AZV ALSA

LP+editing 0.68± 0.02 0.48± 0.08 0.68± 0.05 0.58± 0.05 0.47± 0.23 0.64± 0.06 0.68± 0.05

UNETR 0.72± 0.06 0.48± 0.13 0.71± 0.07 0.66± 0.09 0.58± 0.19 0.70± 0.02 0.76± 0.05

Fig. 8  Examples of comparison between the manually refined propagated labels (GT) and UNETR outputs for three different aortic arch anomaly 
groups
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The dataset selection criteria for this study were high 
SNR and only isolated anomalies without any signifi-
cant anatomy deviations. This selection strategy was 
employed because this work focuses on the assess-
ment of the general feasibility of using multi-vessel 
segmentation for 3D fetal CMR and formalisation of 
the parcellation protocol rather than a robust universal 
segmentation network.

These results confirm that automated deep learning 
methods can provide sufficiently accurate 3D segmen-
tation of fetal anatomy in 3D CMR despite small size of 
vessels (vs. available resolution) and relatively small num-
ber of training datasets especially given heterogeneity in 
CHD groups. Automation of segmentation could signifi-
cantly increase the efficiency by reducing laborious man-
ual delineation and, in longer term, reduce inter-observer 
variability which is relevant for both visualisation and 
quantitative measurements (including vessel biometry 
and shape analysis). The fact that the network could dif-
ferentiate between the different aortic arch anomaly anat-
omies also indicates the feasibility of using deep leaning 
for prediction of the vascular anomaly type directly from 
3D CMR images.

One the major advantages of using neural networks 
vs. classical atlas-based segmentation approaches is that 
atlas-based segmentation requires specific atlases for 
specific anomalies (e.g., RAA atlas cannot be used for 
other anomalies) while we demonstrated that a single 
neural network can be used for three different AA anom-
aly cases. Using larger training datasets with higher ana-
tomical variability (e.g., bilateral SVC) and varying image 
quality (e.g., early gestational age, low SNR) would allow 
implementation of a more general solution.

In summary, in future, this proof of concept work could 
potentially lead to a wider application for 3D recon-
structed fetal CMR for diagnosis of CHD as well as pro-
viding the basis for development of novel methodologies 

(e.g., advanced deep learning automated segmentation 
and diagnosis). This will also provide a possibility to 
review bigger cohorts without inter-observer variability.

Limitations
The reliability of segmentation results highly depends on 
the degree of anatomical variability and presence of other 
anomalies in the training datasets. While the proposed 
solution provides a proof of concept it was based on the 
subset of cases with isolated aortic arch anomalies and 
good image quality. Implementation of a universal solu-
tion that could be used for routine clinical scans would 
require preparation of a significantly larger training data-
set. In addition to the wider range of heart anomalies, 
it should include datasets from different CMR acquisi-
tion protocols, different gestational age ranges and with 
varying image quality. This will also require a large-scale 
evaluation of the visualisation of individual anatomical 
structures and measurements. It would also be beneficial 
to add bright blood sequence atlases for cardiac cham-
bers in order to extend the definition of the normal and 
abnormal appearance of the fetal heart anatomy and pro-
vide the basis for the multi-channel whole heart segmen-
tation pipeline.

Conclusions
This work introduced the first 3D black-blood fetal 
CMR atlases of normal fetal cardiovascular anatomy and 
three types of abnormal arch anatomy (CoA, RAA with 
ALSA and DAA) along with detailed parcellation maps 
of the major cardiovascular structures. This is a first step 
towards automation of the segmentation pipeline of 3D 
motion-corrected CMR [1]. We demonstrated the fea-
sibility of using deep learning for automated multi-label 
vessel segmentation for different types of isolated aortic 
arch arch anomalies.

Fig. 9  An example of label propagation error in one of the testing datasets that required manual refinement: incorrect azygous vein segmentation
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Future work will need to  focus on optimisation of the 
deep learning segmentation pipeline for a wider range 
of fetal CHD abnormalities and anatomical variations as 
well as different acquisition protocols and automated ves-
sel biometry.

Appendix
In order to investigate the potential limitations of the 
label propagation and UNETR approaches in terms of 
the general robustness to image quality and variance in 
appearance of vascular structures (suboptimal datasets), 
we performed segmentation on previously unseen fetal 
CMR data types (not presented in the training dataset). 
This included 3 low SNR (CoA, RAA, DAA; 29-32 weeks) 
and 3 early GA (normal anatomy; 22 weeks) cases. Both 
of these groups pose a challenge to automated segmen-
tation due to the limited visibility of vascular structures. 
E.g., in early GA cases, it is difficult to distinguish finer 
vessels (due to small size vs. image resolution) because of 
the significantly decreased image contrast and visibility. 
Low SNR leads to the presence of gaps in structural con-
tinuity of the individual vessels.

The segmentation results were assessed qualitatively 
in terms of the vessel detection / segmentation qual-
ity status. The results presented in Additional file 1: Fig. 
S10 show that both methods provided relatively similar 
good performance for the large vessels (e.g., aorta and 
vena cava) with 100% grades for the majority of cases 
(detected vessel without under- or over-segmentation). 
However, the deep learning approach produced only par-
tial segmentation for a large proportion of finer vessels 
due to its sensitivity to signal contrast and because this 
type of data was not used during the training. This could 
be potentially resolved by extending the training data-
sets or incorporating deep learning registration into the 
pipeline.

Low image quality also notably affects registration 
accuracy for label propagation resulting in over- (or 
under-) segmentation that requires additional manual 
editing. At the same time, in general, the limited visibility 
of structures reduces the reliability of any segmentation 
method (even manual) in terms of the validity of output 
3D models that cannot be fully verified.
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