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Quantitative susceptibility mapping (QSM) 
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Abstract 

Quantitative susceptibility mapping (QSM) is a powerful, non-invasive, magnetic resonance imaging (MRI) technique 
that relies on measurement of magnetic susceptibility. So far, QSM has been employed mostly to study neurological 
disorders characterized by iron accumulation, such as Parkinson’s and Alzheimer’s diseases. Nonetheless, QSM allows 
mapping key indicators of cardiac disease such as blood oxygenation and myocardial iron content. For this reason, 
the application of QSM offers an unprecedented opportunity to gain a better understanding of the pathophysi‑
ological changes associated with cardiovascular disease and to monitor their evolution and response to treatment. 
Recent studies on cardiovascular QSM have shown the feasibility of a non-invasive assessment of blood oxygenation, 
myocardial iron content and myocardial fibre orientation, as well as carotid plaque composition. Significant technical 
challenges remain, the most evident of which are related to cardiac and respiratory motion, blood flow, chemical shift 
effects and susceptibility artefacts. Significant work is ongoing to overcome these challenges and integrate the QSM 
technique into clinical practice in the cardiovascular field.
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Spatial variations in magnetic susceptibility distort mag-
netic fields. These magnetic field distortions commonly 
lead to undesirable artefacts in magnetic resonance 
imaging (MRI) images, but since magnetic susceptibil-
ity is related to the underlying composition of tissue it 
can also provide a wealth of information. One clinically 
efficient approach to quantifying magnetic susceptibil-
ity is to first calculate maps of the main (B0) magnetic 
field, which has been distorted by the varying magnetic 
susceptibility of the tissue. The magnetic susceptibil-
ity distribution is then calculated from the field map, by 

solving a ‘field-to-source’ problem. Calculation of quan-
titative susceptibility maps (QSM) cannot be achieved 
with magnitude gradient-echo images alone, instead 
phase images acquired at different echo times are needed 
to measure the B0 maps, by first calculating the rate of 
phase accrual at each voxel (which is equivalent to the 
local frequency), then converting this to local B0 using 
the Larmor equation. Although this method is techni-
cally challenging, owing to the difficulty of obtaining high 
fidelity B0 maps and successfully performing the field-to-
source reconstruction, QSM can provide key informa-
tion on the biochemical constituents and microstructure 
of tissue. So far, QSM research has primarily focused on 
applications in neurology, particularly the identification 
of iron containing substances such as hemosiderin asso-
ciated with hemorrhage, iron more generally, and para-
magnetic contrast agents [1–7]. However, more recently, 
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major advances have also been achieved in QSM out-
side the central nervous system, including the abdomen 
[8–10], neck [11] and cardiovascular system. This review 
provides a critical overview of cardiovascular QSM, as 
a complementary technique to state-of-the-art multi-
parametric cardiovascular magnetic resonance (CMR), 
exploring how it can improve disease phenotyping and 
pathophysiological understanding (Fig. 1).

Basic principles
Magnetic susceptibility measures the degree to which 
a material is magnetized when exposed to a homog-
enous external magnetic field (H), and is expressed as 
a dimensionless ratio (χ) between material magnetiza-
tion (M) and the external magnetic field strength (H), 
i.e., χ = M/H [12]. Magnetic materials are classified as 
either diamagnetic (χ < 0), paramagnetic (0 < χ < 0.01), 
or ferromagnetic (χ > 0.01) [13]. Magnetic suscepti-
bilities are often expressed in parts-per-million (ppm), 
relative to the magnetic susceptibility of water (which 
has an absolute magnetic susceptibility of 9 × 10–6), this 
convention will be used for the remainder of the arti-
cle. Biological tissues can be diamagnetic (e.g., calcium 
phosphate), paramagnetic (e.g., deoxyhemoglobin, cop-
per or manganese) or ferromagnetic (iron). In CMR, 
the χ of an organ within the static magnetic field B0 can 
be quantified by mapping the magnetic field pertur-
bation (δB). To map χ, we first construct the forward 
problem that expresses how the inhomogeneous sus-
ceptibility (χ) distorts the magnetic field B0, after which 

the inverse problem is solved. The magnetic field dis-
tortion δB(r) induced by a susceptibility distribution 
χ(r) can be computed by convolving the susceptibility 
distribution by the unit magnetic dipole kernel d(r), 
resulting in the following equation [14]

where B0 is assumed to be along z-direction, ⊗ is the con-
volution operator, and d(r) is defined as

with |r| and θ being the radial distance and polar angle 
in the spherical polar coordinate system, respectively. 
The induced magnetic field perturbation δB map can be 
calculated from a Larmor resonance frequency shift (δω) 
map (measured using 3D multi-echo GRE phase images) 
with the following relation

where γ is the gyromagnetic ratio.
Due to the spatial extent of d(r), the measured δB 

depends on the magnetic susceptibility both within, 
and outside of the object, making it very challenging to 
solve Eq. 1. δB is therefore separated into two compo-
nents, referring to the B0 perturbations caused by mag-
netic susceptibilities located within (δBloc), and outside 
(δBbkg) of the object with

Since δBloc results from the magnetic susceptibility 
contribution inside the region of interest (ROI), the tis-
sue magnetic susceptibility ( χtis ) inside the ROI can be 
calculated with the equation

which can be expressed under the k space formalism as 
[15].

by using the Fourier convolution theorem 
( FT (a⊗ b) = FT (a) · FT (b) ) [16], where

is the dipole kernel. The 3D χtis map is reconstructed 
by solving this ‘field-to-source’ inverse problem. Unfor-
tunately however, the presence of two conical surfaces 
at polar angles of ± 54.7° to the z-axis where d(k) = 0 , 
prevents direct deconvolution of Eq.  6 to find χtis and 

(1)δB(r) = B0 · d(r)⊗ χ(r),

(2)d(r) =
1

4π
·
3cos2θ − 1

|r|3

(3)δB(r) = δω(r)/γ ,

(4)δB = δBloc + δBbkg .

(5)δBloc(r) = B0 · d(r)⊗ χtis(r),

(6)δBloc(k) = B0 · d(k) · χtis(k),

(7)d(k) =
1

3
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Fig. 1  Current applications of quantitative susceptibility mapping 
(QSM) to the study of cardiovascular disease
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necessitates the use of either the Calculation Of Sus-
ceptibility through a Multiple-Orientation Sampling 
(COSMOS) method [17] (which is impractical due to the 
requirement to acquire data with the patient in multiple 
positions) or regularization [18–26] when solving Eq. 6.

In practice, for cardiac QSM, there are three steps to 
finding this 3D χtis map which are shown in Fig. 2.

(1)	 Step 1: Estimation of the magnetic field perturba-
tion map. A 3D δω map is the first estimated from 
the phase evolution in 3D multi-echo gradient echo 
(GRE) CMR images; this 3D δω map is then used 
to generate a 3D δB map according to Eq. 3. Phase 
unwrapping is then performed, to remove phase 
discontinuities, using a variety of methods includ-
ing, region growing [27, 28], Laplacian [29, 30], and 
Best-path [31, 32] methods.

(2)	 Step 2: Estimation of the local magnetic field per-
turbation map. A 3D δBloc map is computed by 
removal of δBbkg from the δB map based on Eq. 4, 
using methods such as Sophisticated Harmonic 
Artifact Reduction for Phase (SHARP) [33, 34], Pro-
jection onto Dipole Fields (PDF) [35], or the Lapla-
cian Boundary Value (LBV) method [36].

(3)	 Step 3: Estimation of the tissue magnetic suscep-
tibility map. A 3D χtis map is reconstructed from 

the 3D δBloc map by solving the field-to-source 
inverse problem based on Eq.  6. Using ℓ1- and ℓ2-
regularization techniques such as Morphology Ena-
bled Dipole Inversion (MEDI) [25] or Homogene-
ity-Enabled Incremental Dipole Inversion (HEIDI) 
[26].

Biochemical foundations of QSM
QSM measures the spatial distribution of χ produced by 
the diamagnetic, paramagnetic and ferromagnetic con-
stituents of tissue [6]. The body contains trace amounts 
of several paramagnetic transition metal ions such 
as copper, manganese, and cobalt. Iron is ~ 30 times 
more abundant in the body than all the other paramag-
netic ions together, with an iron content of ~ 53  mg/kg 
in healthy subjects. As such, a 70  kg human contains 
~ 3700  mg of iron, of which nearly 2500  mg are linked 
to haemoglobin in blood or myoglobin in skeletal mus-
cles (heme iron), with the remainder linked to ferritin 
or hemosiderin (non-heme iron) [37, 38]. The magnetic 
susceptibility perturbations seen in human tissue depend 
almost entirely on non-heme iron concentration [38]. 
However, in healthy subjects, non-heme iron deposits 
are evenly distributed throughout the body and therefore 
result in negligible susceptibility variations. Only when 

Fig. 2  Steps of quantitative susceptibility mapping (QSM) post-processing. Example left ventricular QSM maps were computed from magnitude 
and phase multi-echo gradient echo images. Step 1: Phase images are phase unwrapped. Step 2: The local and background fields are separated, 
using segmentation masks generated from the magnitude images. Step 3: The QSM map is computed from the local magnetic field map
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local iron deposits equal or exceed ~ 1 mM in concentra-
tion, will a significant χ difference, compared to iron-free 
regions be observed with QSM, for instance of ~ 1 ppm 
in severe transmural myocardial infarction [39].

Although T2* magnitude imaging by multi-echo GRE is 
already a well-validated technique to quantify iron depos-
its, T2* relaxation time (or R2* = 1/T2*) is influenced by 
local background susceptibility and other sources along-
side iron deposits [40]. For instance, in brain imaging T2* 
(or R2*) relaxivity, measured by GRE images, can miss 
pathological iron accumulation due to the competing 
effect of the diamagnetic myelin, the main white matter 
component [41]. The magnetic susceptibility of tissue 
depends upon its constituents, with each constituent’s 
contribution depending on its electronic structure and 
concentration. On a molecular level, magnetic suscepti-
bility is determined by the electronic configuration, with 
unpaired electrons contributing to paramagnetism. How-
ever in bio-molecules, this relationship may be less intui-
tive, for instance, oxyhaemoglobin, which is made up of 
four globular proteins each containing the Fe3+-haeme, is 
diamagnetic despite Fe3+, in aqueous solution, possess-
ing five unpaired electrons, whereas deoxyhaemoglobin 
is paramagnetic [42].

Cardiovascular applications of QSM
The application of QSM for studying the cardiovascular 
system offers an unprecedented opportunity to gain a 
better understanding of the pathophysiological changes 
associated with cardiovascular disease. A number of 
state-of-the-art applications are described in the follow-
ing sections, each of which has the potential to signifi-
cantly improve patient care and outcomes in impactful 
areas of cardiac medicine. Despite this, the field of car-
diac QSM is in its infancy, so a number of challenges 
remain to be solved. The most evident of these challenges 
are related to cardiac and respiratory motion, blood flow, 
chemical shift effects at the boundary between the epi-
cardium and epicardial fat, and susceptibility artefacts at 
the myocardium-lung interface [39, 43].

Blood oxygenation
Oxygen saturation in the arterial blood (SaO2) is a rel-
evant biomarker in many cardiovascular diseases, and is 
commonly used for the identification and quantification 
intra-cardiac shunts in congenital heart disease. This 
metric also provides an index of systemic oxygen delivery 
and consumption in heart failure [44–46] and pulmonary 
hypertension [47, 48]. Recently, Wen et al. demonstrated 
the possibility to gauge venous SaO2 by measuring 
the difference in magnetic susceptibility between the 
venous and arterial blood pools using QSM [43]. For 
this purpose, the authors used a multiple breath-hold 

electgrocardiogram (ECG)-gated 2D multi-echo GRE to 
obtain T2* source images that were then post-processed 
to generate QSM maps. The latter showed strong differ-
ential susceptibility (Δχ) between RV and LV blood pools 
as a result of the paramagnetic and diamagnetic proper-
ties of the deoxygenated and oxygenated hemoglobin, 
respectively, which allowed them to measure of the blood 
oxygenation difference (ΔSaO2) using an established for-
mula [43]:

where 4χdeoxyheme is the molar susceptibility of a fully 
deoxygenated deoxyhemoglobin (151.054  ppb  ml/µ) 
and H is the heme concentration in blood, which is 
derived from the patient’s measured hematocrit (Hct), 
the mass concentration of hemoglobin in a red cell 
(ρRBC;Hb = 0:34 g/ml), and the molar mass of deoxyhemo-
globlin (MHb = 6444·10–6 g/µmol) [49].

This approach, however, was complicated by long 
acquisition time, low signal-to-noise ratio (SNR) and 
inconsistent positioning of consecutive short-axis slices 
across the ventricles which lead to non-interpretable 
source GRE images in 36% of subjects [43]. These limi-
tations were resolved by adopting a free-breathing ECG-
triggered navigator-gated 3D multi-echo GRE sequence 
which allowed the authors to generate interpretable QSM 
maps in all healthy subjects and 87% of patients with a 
reduction of acquisition time by about 30% as com-
pared to the 2D approach (Fig.  3). In a clinical cohort 
(n = 34), patients with left ventricular (LV) dysfunction 
(LV ejection fraction < 50%) had greater ΔSaO2 than 
those with preserved systolic function. Remarkably, the 
3D approach also showed an excellent correlation) and 
small bias when compared to invasively measured ΔSaO2 
(gold-standard) in 15 patients undergoing cardiac cath-
erization [50]. QSM-oximetry may offer advantages to 
conventional methods, which rely on the T2, T2*, and 
T1 relaxation times of the blood pool. For instance, the 
dependence of T2 relaxation time on blood oxygena-
tion is well established, but requires measuring multiple 
complex Luz–Meiboom model parameters, restricting 
its clinical applicability [51]. Recently, Varghese et  al. 
introduced a promising technique that used multiple 
T2 measurements, with different inter-echo pulse spac-
ing, to estimate all the parameters in the Luz-Meiboom 
model and non-invasively estimate the SaO2 [51, 52]. 
However, this method has shown flow dependency, with 
signal loss in the specific regions of the cardiac chambers, 
which combined with the 2D single-slice approach, leads 
to a dependency on user input during the acquisition 
and post-processing stages, with ensuing high intra- and 
inter-observer variability.

�SaO2 =
�χ

4Hχdeoxyheme
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QSM-oxymetry has the potential to play a key role in 
congenital heart disease, where CMR is increasingly 
used for pre- and post-operative management, as an 
alternative to invasive catheterization. The non-inva-
sive, ionizing-radiation free, nature of QSM-oximetry is 
well suited for repeated CMR exams of young patients, 
complementing phase-contrast velocity-encoding tech-
niques for intra-cardiac shunt diagnosis, management, 
and follow-up. In addition, QSM-oximetry may provide 
key information in patients with heart failure or pulmo-
nary hypertension, as well as in establishing the cause of 
hypoxemia, and may potentially be used to tailor therapy 
and monitor treatment. Mixed venous oxygen satura-
tion (vSaO2) reflects the balance between oxygen deliv-
ery and consumption; in patients with heart failure a low 
vSaO2 is associated with advanced and decompensated 
hemodynamic status due to insufficient cardiac output, 
and/or reduced arterial oxygen saturation (aSaO2). It is 
important to acknowledge that a substantial number of 
heart failure patients can have a reduced vSaO2 despite 
a normal cardiac output [53]. Importantly, unlike cardiac 

output, sSaO2 has been shown to predict clinical out-
comes in patients with acute myocardial infarction and 
patients with primary pulmonary hypertension [54, 55].

Myocardial iron
In patients with ST-segment elevation myocardial infarc-
tion (STEMI), re-opening of the infarct-related artery 
is a prerequisite to salvaging the ischemic myocardium. 
However, reperfusion per se brings about myocardial 
damage (ischaemia/reperfusion injury) partially negat-
ing the benefits of infarct-related artery re-opening. 
Intramyocardial haemorrhage (IMH) is a hallmark of 
severe ischemia–reperfusion injury, occurring in about 
half of patients with a STEMI. This phenomenon is due 
to the loss of coronary microvasculature integrity with 
ensuing erythrocyte extravasation and iron accumula-
tion in the myocardium from hemoglobin breakdown. 
Compelling evidence indicates that IMH is a strong 
independent predictor of adverse LV remodelling and 
untoward clinical outcomes in STEMI patients, poten-
tially due to the increased production of reactive oxygen 

Fig. 3  Free breathing three-dimensional cardiac quantitative susceptibility mapping (QSM) in cardiac patients. Representative examples of QSM 
maps in two cardiac patients which are used to quantify ventricular blood oxygenation. Top: QSM map of patient heart with reduced left ventricular 
ejection fraction (LVEF) shows a marked difference in blood oxygen between left and right ventricles. Bottom: QSM map of patient heart with 
normal LVEF shows a difference in blood oxygenation between the ventricles within the normal range (Reprinted with permission from Wen et al. 
[50])
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species promoted by elevated iron levels [56, 57]. This 
makes IMH, which can be measured indirectly via iron 
concentration with QSM, an ideal biomarker for testing 
novel cardioprotective strategies to mitigate ischemia–
reperfusion injury. In a swine model of haemorrhagic 
infarction, QSM showed a paramagnetic shift in the 
infarct, reflecting an elevated tissue iron content, which 
was independently validated by histology, plasma opti-
cal emission spectrometry, electron paramagnetic reso-
nance spectroscopy, and RNA analysis of markers for 
iron metabolism. When compared with standard iron-
sensitive sequences, including T2*-weighted, T2*- or 
R2* maps, QSM showed higher diagnostic accuracy for 
pathological iron overload. For instance, in animals with 
permanent coronary occlusion QSM showed a paramag-
netic shift in the infarct region, compared to a remote 
myocardium region, where abnormal iron concentration 
was confirmed by histology, spectrometry, and spectros-
copy in the infarct region. This information was missed 
by standard T2*-weighted and T2*- or R2* (1/T2*) maps, 
which are currently used to detect and quantify IMH. 
This finding is not unexpected since multiple biochemical 
factors can exert opposite effects on T2* relaxation time 
in the acutely infarcted myocardium, including shorten-
ing due to iron, and lengthening due to edema, fat and 
collagen deposition. QSM however, directly probes the 
local magnetic susceptibility [58], which closely relates 
to iron concentration. This experimental proof-of-con-
cept was replicated in a small cohort of STEMI patients, 
who underwent a comprehensive CMR 3 days (on aver-
age) after the re-opening of the infarct-related artery. In 
this cohort, the magnetic susceptibility of the infarct was 
significantly higher than the susceptibility of the remote 
myocardium for all patients [39], an important finding 
given the clinical relevance of IMH.

QSM may also be applicable to the assessment of 
patients with hemochromatosis in order to quantify myo-
cardial iron deposition, which strongly affects LV remod-
elling and clinical outcome [59, 60]. Both T1 and T2* 
maps have been used for myocardial iron quantification, 
although T1-mapping is likely better placed to capture 
the very early stage of cardiac hemosiderosis [61]. QSM 
holds the potential of representing an alternative for iron 
quantification in the heart, but will require validation 
before it can be used in the clinic, particularly given the 
dual-challenges of cardiac and respiratory motion. None-
theless, seminal papers have shown that QSM is accurate, 
and well-suited to quantifying iron concentration in the 
liver, with the inherent advantage of measuring the iron 
concentration based upon a fundamental property of 
the tissue, i.e., local magnetic susceptibility, rather than 
extrapolating this information from empirical relaxa-
tion parameters (e.g., R2 and R2*), which are affected by 

other factors including fibrosis and steatosis [62]. QSM 
reconstruction can account for the different spectral 
peaks of adipose tissue to ensure an accurate estimation 
of the B0 field maps which are minimally influenced by 
liver fibrosis or inflammation. Fat fraction and chemi-
cal shift corrected magnetic susceptibility maps can be 
calcutated with methods such as Chemical QSM, which 
uses the Dixon-based IDEAL method [63]. Moreover, 
QSM removes the blooming artefacts in regions near 
the air-tissue or fat-tissue interface that typically affect 
R2* maps. Collectively, QSM appears to have compara-
tive advantages to the current R2* maps used for liver 
iron quantification [62, 64] although further validation 
is required. Finally, it is also important to bear in mind 
that R2* and QSM maps are not mutually exclusive tech-
niques since either map is reconstructed from source 
images acquired by 3D multi-echo GRE sequence.

Myocardial fibre orientation
The restrained distribution of molecules in a specific 
tissue can be gauged by magnetic susceptibility anisot-
ropy using susceptibility tensor imaging (STI), which 
calculates a susceptibility tensor using multiple images 
with different B0 orientations. Susceptibility anisotropy 
originates from the ordered (restrained) spatial arrange-
ment of molecules with diamagnetic (e.g., calcium) and 
paramagnetic (e.g., iron) properties within a tissue, which 
then generates a bulk (macroscopic) anisotropic suscep-
tibility. This is exemplified by the ordered distribution of 
phospholipids in the myelin sheaths which encapsulate 
axons in the central nervous system, giving rise to meas-
urable macroscopic susceptibility anisotropy [65].

Cardiac myofibrils consist of serially repeated sar-
comere units, a highly organised structure of repeated 
of thick and thin myofilaments oriented parallel to the 
long axis of the myofibril. This myocardial microstruc-
ture is altered in cardiomyopathy, myocardial infarc-
tion, and congenital heart diseases, where the initial 
misalignment of myocardial fibres causes increased 
myocardial stress, which begets further fibre misalign-
ment and promotes adverse cardiac remodelling, even-
tually culminating in heart failure or life-threatening 
ventricular arrhythmias [66–70]. Hence, mapping 
myofibre organization could be an important tool for 
assessing the functional properties of healthy and dis-
eased hearts. Ex-vivo, STI is able to capture myofibre 
orientation by harnessing the magnetic anisotropy of 
polypeptide bonds in the myofilaments which collec-
tively generate bulk (macroscopic) anisotropic suscep-
tibility on a scale measurable by QSM [71]. Myofibers 
perpendicular to the B0 appear diamagnetic while 
those parallel to B0 are paramagnetic relative to the 
reference susceptibility [72]. In the healthy heart the 
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contribution of collagen to magnetic susceptibility ani-
sotropy is low, however its contribution does become 
significant (anti-parallel and ~ 50% magnitude of myo-
filament) in collagenised scars such as those found 
with ischemic cardiomyopathy [73] This makes STI a 
promising alternative technique, if the requirement for 
multiple B0 orientations can be overcome, to the most 
commonly used technique for mapping myofibre orien-
tation, diffusion tensor imaging (DTI) [74]. While high-
resolution cardiac DTI provides exclusively structural 
information (myofiber orientation), STI can combine 
structural and biochemical information including myo-
cardial oxygenation and collagen content (myocardial 
scarring). Moreover, cardiac DTI suffers from spatial 
resolution limits (typically ~ 2.7 × 2.7 × 6  mm [74]), 
long scan times (e.g. 18 heartbeats per slice measure-
ment in Nielles-Vallespin et  al. [75]) and a low signal-
to-noise ratio requiring multiple averages [75, 76]. On 
the other hand, STI is relatively novel, and less well 
validated compared to DTI, and STI reconstruction 
can suffer from low-frequency artefacts in the recon-
structed tensor images. Several methods have been 
proposed to implement STI, including the incorpo-
ration of magnitude-derived relaxation and phase-
derived susceptibility tensors [71], and the use of a 
gadolinium-based contrast agent. Gadolinium-based 
contrast-agent distributes in the extracellular space in 
normal myocardium causing rapid relaxation of water 
in this compartment without any change in the mag-
netic properties of the intracellular water. Thus, the use 
of gadolinium-based contrast-agent has the potential to 

minimise the signal from the extracellular space leaving 
the anisotropic intracellular compartment to dominate 
tissue susceptibility [77].

QSM for atherosclerotic plaque assessment
Vulnerable atherosclerotic plaques are characterized by 
the presence of a lipid-rich necrotic core, intraplaque 
hemorrhage, a thin ruptured fibrous cap, and to a lesser 
degree calcification [78]. Currently, multi-contrast CMR 
is customary for carotid plaque characterization, with a 
focus on intra-plaque hemorrhage which is associated 
with rapid plaque progression and recurrent acute cer-
ebrovascular events in patients with high-grade stenosis 
[79, 80]. Fresh intraplaque hemorrhage can be identi-
fied as a vessel wall region with hyperintense signal on 
T1-weighted images, while chronic intraplaque hemor-
rhage appears markedly hypointense on T1-weighted, 
T2- or T2* weighted, and time-of-flight images. The dif-
ferentiation of chronic intraplaque hemorrhage and 
plaque calcification is challenging, given that both are 
associated with signal loss on multi-contrast CMR. In 
contrast, QSM can distinguish diamagnetic calcification 
from paramagnetic intraplaque hemorrhage [78, 81, 82], 
and strongly correlates with histology in patients under-
going carotid endarterectomy [83]. In this patient group 
calcified plaques had strongly negative susceptibility 
(≤ − 1 ppm), whereas intraplaque hemorrhage had posi-
tive susceptibility, ranging from ~ 0.5  ppm, in a recent 
haemorrhage, to 1.5–2  ppm in a chronic haemorrhage 
(Fig. 4).

Fig. 4  Quantitative susceptibility mapping (QSM) of a carotid plaque. Example of magnetic resonance imaging of a heavily calcified plaque 
almost fully occluding the left internal carotid artery at the level of carotid bifurcation with hypointense appearance on time-of-flight (TOF) and 
black-blood T1weighted (T1w) and T2-weighted (T2w) images as well as strongly negative susceptibility on QSM images computed with MEDInpt 
and the STISuite. The computed tomography angiography (CTA) image acquired 1.5 years before CMR at 0.6-mm resolution from the same patient 
is shown to help with plaque localization (Reprinted with permission from: Nguyen et al. [82])
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Ultra-small superparamagnetic iron oxide (USPIO) 
contrast agents are increasingly used to measure mac-
rophage infiltration. After intravenous injection, this 
compound enters plaque through its leaky endothelium 
and is internalised by macrophages. Comparison of 
pre- and post-USPIO iron-sensitive sequences, such as 
T2*weighted or R2*-maps, enables the quantification of 
the inflammatory component of atherosclerotic plaque. 
Recent studies indicate that QSM implemented with 
IDEAL water-fat separation can concurrently identify 
multiple high-risk plaque features (calcification, intra-
plaque haemorrhage, lipid-rich necrotic core and USPIO 
uptake), moreover, the addition of IDEAL improves QSM 
image quality reducing the streaking artefacts caused by 
chemical frequency shift. Thus, QSM processing could 
fit within a multi-contrast approach for quantification of 
atherosclerosis using a single 3D multi-echo GRE acqui-
sition [84], eliminating the need for a time-consuming, 
and error-prone, multi-contrast CMR exam.

Future challenges in cardiovascular QSM
Despite the recent breakthroughs in QSM, accurate 
quantification of magnetic susceptibility is still challeng-
ing. Existing methods need to be evaluated systematically 
under a variety of experimental conditions, and further 
work is needed to achieve high degrees of consistency. 
Blood flow and motion cause phase variations that can 
lead to erroneous magnetic field estimates. Chemical 
shift, proton exchange and partial volume effect can also 
influence frequency shift, introducing further errors. 
Currently, 3D multi-echo GRE acquisition, with a dia-
phragmatic navigator, is preferred to the breath-hold 
multi-slice 2D approach as this prevents slice misalign-
ment and non-continuous k-space sampling. However, 
standard diaphragmatic navigators rely on a tracking 
factor (commonly set to 0.6) to correct for diaphrag-
matic and heart motions. Typical navigator gating effi-
ciency (~ 25–60%) and the tracking factor is known to 
be subject-dependent and highly variable. Prospective 
respiratory gating techniques may provide higher gating 
efficiency (up to 100%) and improve motion correction 
using complex subject-specific models of the diaphrag-
matic/heart motion relationship [85–87] or image-based 
navigators which directly track heart motion [88, 89]. 
However, the respiration induces local magnetic suscep-
tibility variations which may introduce errors in the QSM 
reconstruction if data are prospectively acquired at dif-
ferent respiratory phases.

Epicardial fat represents another challenge in cardio-
vascular QSM. However, Dixon-based fat-water separa-
tion methods, such as IDEAL, have been successfully 
adopted in abdomen or neck QSM [62, 84] and may 
offer advantages for cardiac QSM as well. However, these 

techniques rely upon prior knowledge of chemical spec-
trum which may influenced by a variety of factors such 
as lipid compartmentalization and fatty acids content. 
Recent techniques have been proposed to supersede this 
limitation, by correcting QSM for chemical shift map 
during reconstruction [63]. Another challenge to cardio-
vascular QSM is the high susceptibility at the interface 
of cardiac structures and lungs. However, several meth-
ods have been successfully applied for background phase 
removal in neck and abdominal QSM [62, 84] which 
could be integrated in the cardiovascular QSM pipeline, 
compensating for deficient B0 shimming [43]. Nonethe-
less, the numerical inconsistency of QSM in varying B0 
shimming conditions still exists due to short T2* decay, 
and this issue is particularly relevant in higher mag-
netic fields (3T/7T), requiring higher-order shimming. 
Most current cardiovascular QSM literature is based on 
single-centre studies and there is currently insufficient 
data characterizing the technique’s accuracy, repeatabil-
ity, and reproducibility (both within a given site/scanner 
and between sites/scanners). Different experimental set-
ups may influence QSM, including the choice of the QSM 
reconstruction algorithm, imaging parameter selection, 
field strength, and shimming approaches/shim set per-
formance. Therefore, the development of a commercially 
available QSM phantom together with the site-specific 
estimation of reference QSM values in healthy subjects/
patients may be necessary for calibration and standardi-
zation purposes, as is currently the case in other areas 
such as myocardial T1 mapping [90]. Current recon-
struction algorithms are often performed offline and 
retrospectively, due to computational cost. The design 
of fast reconstruction algorithms or the use of advanced 
computing hardware such as graphical processing units, 
increasingly available on commercial scanners, may rep-
resent a promising direction to reduce computational 
cost. Finally, machine learning techniques, based on 
convolutional neural networks are under active develop-
ment for each stage of the QSM pipeline [91]. Examples 
include, PhaseNet 2.0 [92] for phase unwrapping, SHAR-
Qnet [93], for the separation of local and background 
fields, and QSMnet+ [94] for calculating magnetic sus-
ceptibility. These techniques may offer advantages over 
traditional algorithmic reconstruction techniques beyond 
reconstruction acceleration, including improved accu-
racy, robustness, and automation (e.g. automatic image 
segmentation), all of which have the potential to improve 
clinical utility and uptake.

Conclusions
QSM is a promising method to expand the arsenal of 
measurable, reproducible and accurate CMR biomarkers 
in the heart, and therefore enable better understanding of 
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the intricate pathophysiology processes underlying car-
diovascular diseases. However, overcoming outstanding 
technical challenges and validation in large clinical stud-
ies are critical steps for a successful integration of cardio-
vascular QSM into clinical practice.
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