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mean and turbulent velocities
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Abstract

Background: Volumetric quantification of mean and fluctuating velocity components of transient and turbulent
flows promises a comprehensive characterization of valvular and aortic flow characteristics. Data acquisition using
standard navigator-gated 4D Flow cardiovascular magnetic resonance (CMR) is time-consuming and actual scan
times depend on the breathing pattern of the subject, limiting the applicability of the method in a clinical setting.
We sought to develop a 5D Flow CMR framework which combines undersampled data acquisition including multipoint
velocity encoding with low-rank image reconstruction to provide cardiac- and respiratory-motion resolved assessment of
velocity maps and turbulent kinetic energy in fixed scan times.

Methods: Data acquisition and data-driven motion state detection was performed using an undersampled Cartesian tiny
Golden angle approach. Locally low-rank (LLR) reconstruction was implemented to exploit correlations among heart
phases and respiratory motion states. To ensure accurate quantification of mean and turbulent velocities, a multipoint
encoding scheme with two velocity encodings per direction was incorporated. Velocity-vector fields and turbulent kinetic
energy (TKE) were obtained using a Bayesian approach maximizing the posterior probability given the measured data.
The scan time of 5D Flow CMR was set to 4 min.
5D Flow CMR with acceleration factors of 19 .0 ± 0.21 (mean ± std) and velocity encodings (VENC) of 0.5 m/s and 1.5m/s
per axis was compared to navigator-gated 2x SENSE accelerated 4D Flow CMR with VENC = 1.5 m/s in 9 subjects. Peak
velocities and peak flow were compared and magnitude images, velocity and TKE maps were assessed.

Results: While net scan time of 5D Flow CMR was 4 min independent of individual breathing patterns, the scan times of
the standard 4D Flow CMR protocol varied depending on the actual navigator gating efficiency and were 17.8 ± 3.9 min
on average. Velocity vector fields derived from 5D Flow CMR in the end-expiratory state agreed well with data obtained
from the navigated 4D protocol (normalized root-mean-square error 8.9 ± 2.1%). On average, peak velocities assessed with
5D Flow CMR were higher than for the 4D protocol (3.1 ± 4.4%).

Conclusions: Respiratory-motion resolved multipoint 5D Flow CMR allows mapping of mean and turbulent velocities in
the aorta in 4 min.

Keywords: 4D flow MRI, Velocity mapping, Turbulent kinetic energy, Respiratory motion compensation, Cartesian Golden
angle, Low-rank image reconstruction, Cardiovascular magnetic resonance
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Background
The hemodynamic assessment of blood flow through heart
valves and in the great vessels using 4D Flow cardiovascular
magnetic resonance (CMR) has received increasing atten-
tion and a number of important applications have emerged
[1]. While standard parameters including volume flow and
peak velocities have been widely used, a number of add-
itional readouts have been suggested. Among these read-
outs, probing the intravoxel velocity standard deviation [2]
holds considerable promise as it permits estimating turbu-
lent contributions in blood flow [3–5].
A number of clinical studies have indicated the added

value of measuring turbulent velocities alongside mean
velocities using 4D Flow CMR [2, 6, 7], e.g. by the assess-
ment of turbulent kinetic energy (TKE) which indicates
how much energy is stored in turbulent flow and which
has shown elevated values for patients with bicuspid aortic
valves or a dilated aorta relative to healthy subjects [7].
Ongoing studies promise further insights into the clinical
relevance of turbulent flow estimation [8].
A key challenge of encoding mean and turbulent vel-

ocities relates to achieving appropriate measurement
sensitivity to both quantities. For the expected ranges of
mean and turbulent velocities in-vivo, multiple velocity
encodings per spatial direction are preferably obtained
and combined during image reconstruction [4]. This ap-
proach, however, requires additional data and hence data
undersampling is necessary to arrive at clinically accept-
able scan times.
Significant scan time reductions in 4D Flow CMR have

been achieved using combinations of parallel imaging and
compressed sensing [9], k-t methods [10, 11], radial [12]
or spiral [13] acquisitions. Various modifications to the
way data are sampled and reconstructed have been de-
scribed, e.g. [14–19]. In general, however, scans remain
too long to be performed in breathholds. Moreover, data
acquisition without respiratory motion compensation
leads to decreased image quality [14]. Accordingly,
navigator-based respiratory gating is typically employed
[20]. Unfortunately, respiratory gating makes scan times
unpredictable, as gating efficiencies vary among subjects
and often even during a single scan. Clinically, this may
lead to conflicts as scan slots have typically fixed
durations.
Instead of using respiratory gating, respiratory-motion

resolved imaging [21–24] has been proposed to address
respiratory-motion related image artifacts. To this end,
data are acquired continuously throughout the respira-
tory motion cycle and sorted afterwards during the
image reconstruction task into discrete motion states
based on a respiratory motion signal surrogate [23, 25].
Accordingly, data correlation not only along the cardiac
phase dimension but also along the respiratory motion
dimension can be exploited.

Data correlations lead to low-rank properties of the
decoding problem to be solved in image reconstruction.
Various studies have demonstrated that these low-rank
characteristics are most efficiently exploited using local
rather than global low-rankedness using patch-based de-
composition of the multi-dimensional data [26, 27].
The objective of the present work was to implement

and test respiratory-motion resolved Bayesian multipoint
5D Flow CMR for mapping both mean and turbulent
velocities in the aorta with a fixed scan time.

Methods
Data acquisition and respiratory motion binning
The data acquisition and motion binning process is illus-
trated in Fig. 1. Data are sampled using a pseudo-radial
Cartesian sampling pattern which maps radial spokes onto
a Cartesian grid [28, 29]. Using the Golden angle principle
[30, 31], spatial incoherence of temporally adjacent frames
is ensured. To reduce eddy current effects and keep the
acoustic noise level during the measurement to a mini-
mum, the tiny Golden angle concept was employed to
avoid large jumps in k-space [31].
Data-driven respiratory motion detection [32] was per-

formed as illustrated in Fig. 2a) using repetitive sampling
of profiles through the k-space center d(kx, t) = d(kx, ky =
0, kz = 0, t) as part of the pseudo-radial Cartesian sampling
pattern. Upon inverse Fourier transform of d(kx, t), the
projection X(x, t) of the excited volume resolved along the
frequency encode direction x and over time t was ob-
tained, showing signal modulation depending on respira-
tory and cardiac motion. Given TR = 3.3 ms and with one
in 21 readouts through the k-space center, a respiratory
sampling rate of ca. 14 Hz was obtained. The signal of
each coil channel was treated as a separate signal Xi∈
ℂNx�Nt ; i∈f1; 2;…; nCoilsg , with Nx being the number of
samples in readout dimension and Nt the number of read-
outs through the k-space center. Only the magnitude was
considered, as the main variation in signal phase was
found to be related to the different velocity encodings
which were alternated per heart beat (beat-interleaved)
and which led to phase variations which were too large to
be eliminated by lowpass filtering.
Singular value decomposition was performed and the

2nd singular vector of abs(XTX) was selected, as it pro-
vided the predominant motion for each coil channel
(Fig. 2b). To isolate respiratory motion, a lowpass filter
was applied to limit the spectrum to frequencies below
0.6 Hz (Fig. 2c). Next, coil channel clustering [28] was
performed to determine the predominant dynamics
among all channels which were assumed to be the re-
spiratory motion signal (Fig. 2d). Finally, the average
over all these signals was calculated to provide the final
respiratory motion signal surrogate (Fig. 2e).
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Motion-resolved image reconstruction
Using the respiratory motion surrogate signal, the ac-
quired data were distributed across discrete motion bins.
A total of four motion bins was defined and the width of
each motion bin was set to achieve a similar undersam-
pling factor for each respiratory motion state and cardiac
phase by setting the bin boundaries to the 0.25-, 0.5-
and 0.75-quantile of the respiratory motion signal. For
some combinations of respiratory motion state, heart
phase and velocity encoding, this approach led to very
low sampling rates. Therefore, a data sharing approach
[33, 34] was used to fill up frames with acceleration fac-
tors higher than 20 with data from neighboring respira-
tory motion states.
Accordingly, the final data vector reads d∈ℂNxNcNhpNkvNrs ,

with Nx being the number of samples in the spatial fre-
quency domain, Nc denoting the number of coils, Nhp heart
phases, Nkv velocity encodings and Nrs respiratory motion
states. A locally-low-rank (LLR) [26, 27] approach was used

to exploit correlations among heart phases (hp) and respira-
tory motion states (rs). Image-domain data for each velocity
encoding ikv∈ℂNxNhpNrs were reconstructed separately as:

îkv ¼ arg min
ikv

ΩFSikv−dkvk k22 þ λ
XNb

b¼1
Rb ikvð Þk k�

ð1Þ

with the undersampling operator Ω, Fourier transform
F , coil sensitivities S , k-space data dkv and
regularization weight λ. As illustrated in Fig. 3a), the op-
erator Rb selects the b-th out of Nb blocks of size nx ×
ny × nz in the image from all Nhp heart phases and Nrs

respiratory motion states and transforms them into a
Casorati matrix with dimensions nxnynz ×NhpNrs. By
penalizing the nuclear norm of this local Casorati
matrix, low-rankedness is enforced locally.
For comparison, respiratory-motion resolved data were

also reconstructed by penalizing total variation (TV)

Fig. 1 5D Flow data acquisition. a Data are sampled using a Cartesian pseudo-radial tiny Golden angle sampling pattern [33]. b Respiratory motion state
detection is derived from profile d(kx, ky = 0, kz = 0), which is repeatedly acquired and processed using a combination of principal component analysis,
lowpass filtering, and coil-clustering [36]. Each spoke is composed of 21 k-space profiles, one of them always through the k-space center . With Tr= 3.3. ms,
respiratory motion is sampled at ca. 14 Hz. c Acquired data are sorted into four discrete respiratory motion states such that the acceleration factor for each
motion state is similar
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along the respiratory motion states and heart phases
[22]:

îkv ¼ arg min
ikv

ΩFSikv−dkvk k22 þ λhpTVhpðikv
�

þ λrsTV rsðikvÞ ð2Þ

where λhp and λrs denote the regularization weights
along cardiac phases and respiratory motion states,
respectively.

Multipoint velocity encoding and decoding
Assuming a Gaussian distribution of intra-voxel veloci-
ties, the following signal model of mean velocity v and
fluctuating component with standard deviation σ [2] was
used:

S kvð Þ ¼ S0e
−σ2k2v

2 e−ikvv ð3Þ

where kv is related to the first gradient moment of a bipo-
lar velocity encoding gradient by kv ¼ γ

R T
0 tGðtÞdt , with

T being the time of application of gradient waveform G(t)
and determines the encoding velocity as venc ¼ π

kv
.

The signal model implies a trade-off between a suffi-
ciently high encoding velocity venc to avoid phase wraps
[1], and a sufficiently high encoding efficiency of the
fluctuating velocity components [5] such that venc~σ. It
has been demonstrated that this trade-off may lead to
insufficient sensitivity to fluctuating velocity components
and hence a multipoint encoding scheme using two in-
stead of one kv encoding point per axis was implemented
[4]. Using the probability map Pðv; σ jD; SÞ, pixel-wise es-
timates of mean velocity v and intra-voxel standard devi-
ation σ given the model S and the measured image data
D were obtained [4]. Data acquired with different kv′ s
were combined by choosing the values for v and σ maxi-
mizing the posterior probability of the measured data:

bv; σ̂ ¼ arg max
v;σ

P v; σ jD; Sð Þ : ð4Þ

An illustration of multipoint acquisition and Bayesian
decoding is provided in Fig. 3b).

In-vivo study
All in-vivo work was performed upon written informed
consent of the subjects and according to local ethics reg-
ulations. Data of the ascending aorta of nine healthy
subjects (30 ± 11 years, 6 male) were acquired on a 3 T
CMR system (Ingenia; Philips Healthcare, Best, the
Netherlands) using the proposed 5D Flow CMR and a
standard, navigator-gated 4D Flow CMR approach [1]
with a spatial resolution of 2.5 × 2.5 × 2.5mm3, TE =
3.3 ms, TR = 4.9 ms, flip angle = 8 and 25 cardiac phases.
The different velocity encodings were alternated per
heart beat. The image acquisition matrix was Nreadout =
100 ± 9, Nphase = 101 ± 8 and Nslice = 20 ± 1 (mean ± std).
Using the proposed method, velocities were encoded
with venc = 50 cm/s and 150 cm/s per axis and an add-
itional venc = 0 cm/s measurement. Scan time was fixed
to 4 min. After sorting the data into 4 respiratory mo-
tion states, acceleration factors were 19.0 ± 0.21 (mean ±
std). On average the view-sharing approach led to 61%
of the total number of acquired samples being shared
among motion bins in the study cohort.
Standard 4D Flow CMR was recorded with a single

venc (venc = 150 cm/s) per axis (4D Flow Ref). Two-fold
acceleration using parallel imaging [35] and standard
pencil-beam navigator gating on the diaphragm (5mm
gating window) was employed with the 4D Flow refer-
ence protocol. Accordingly, the effective scan time

Fig. 2 Data driven respiratory motion detection. a Respiratory motion is
extracted from the profiles through the k-space center d(kx, ky=0, kz=0).
The temporal evolution of readouts through the k-space center shows a
modulation with respiratory motion and cardiac motion. b The 2nd
principal component provides the main variation of the signal. c A lowpass
filter limits the spectral components to the expected frequency range of
respiratory motion. d) Coil clustering is used to combine the signals from
different channels and provides a final estimate of respiratory motion
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depended on the breathing pattern of the subjects. All
measurements were performed with retrospective car-
diac gating and a 28-channel receiver coil.
Prior to image reconstruction, the 28-channel data

were compressed to 8 virtual channels [36]. The locally
low-rank (LLR) reconstruction (Equation 1) was solved
using an implementation of the fast iterative shrinkage-
thresholding algorithm (FISTA) [37] provided with the
Berkeley advanced reconstruction toolbox (BART) [38].
A patch size of nx = ny = nz = 8 was used for the locally

low-rank constraint. The TV reconstruction (Equation
2) was performed with an adapted version of the code
provided with [22]. The standard 4D Flow reference data
were reconstructed with MRecon (GyroTools LLC, Zur-
ich, Switzerland). Sensitivity maps were estimated from a
separate scan using the ESPIRiT method [39].
The regularization hyperparameters λ in Equation 1

and λhp and λrs in Equation 2 were optimized for best
agreement of velocity components in systole with data
of the 4D Flow reference measurement:

Fig. 3 Image reconstruction using locally low rank approach followed by Bayesian multipoint unfolding. a) A locally low-rank approach is employed for
each velocity encoding separately. The locally low-rank model divides the image into 3-dimensional patches. Each patch is reordered into local Casorati
matrices for which a low rank is enforced by penalizing the nuclear norm. Compared to a global Casorati matrix, the values of the singular values decrease
more rapidly. b) Following reconstruction of the individual velocity encodings, for each Cartesian direction the different velocity encodings kv are
combined using a Bayesian multipoint approach. A Bayesian probability model [4] provides posterior probabilities for mean velocity v and intra-voxel
standard deviation σ given the measured signal S. v and σ are chosen such that the posterior probability is maximized, providing maps of turbulent kinetic
energy (TKE) and mean velocities
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λ̂ ¼ arg min
λ

vrecon λð Þ−vref
�� ��

1: ð5Þ

Equation 4 was minimized using the bayesopt function
in MATLAB R2017b (The MathWorks, Natick, Massa-
chusetts, USA) [40]. Resulting hyperparameters were
λ = 0.01 for Equation 1 and λhp = 0.04 and λrs = 0.05 for
Equation 2. For both optimizations, the number of itera-
tions was set to 80.

Data analysis
Upon image reconstruction, concomitant gradient terms
were corrected [41] and third-order background phase
correction was applied [42, 43]. Segmentation of the
aorta was performed using ITK-SNAP [44]. The same
masks were used for 4D Flow reference data and data in
expiration obtained with 5D Flow LLR and 5D Flow TV.
Maximum intensity projections (MIP) of velocity magni-
tude and TKE maps in systole were calculated as:

ImMIP x; yð Þ ¼ arg max
z

Im x; y; zð Þð Þ:

In order to avoid noise at the vessel boundaries the
segmentation masks were eroded by one pixel for MIP
projections.
The normalized root-mean-square error (nRMSE) of

the velocity magnitude in the segmented aorta was cal-
culated according to:

nRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ROI v−vref

� �2
ROIj j � max vref 2

� �
vuut

where |ROI| corresponds to the number of voxels in the
segmentation mask.
TKE was calculated voxel-wise as:

TKE ¼ ρ
2

σ2
x þ σ2y þ σ2z

� �

where σ2j denotes the variance of velocity deviations per

direction j and ρ is the fluid density (here we assumed
1060 kg/m3 for blood).
Moreover, multi-planar reslicing along the aorta was

conducted using VMTK (www.vmtk.org) and peak flow
and peak through-plane velocities (i.e. the maximum vel-
ocity component in the corresponding cross-section of
the aorta) were assessed for each plane. Peak through-
plane velocities were determined upon application of a
3x3x3 median filter to reduce contributions from noise.
The effectiveness of respiratory-motion resolved 5D

Flow CMR was assessed by comparing it to recon-
structions using only data from the end-expiratory
bin (EXP) and to reconstructions using no respiratory
binning (NG).

To assess the performance of navigator gating in the
standard 4D Flow CMR protocol, the positions mea-
sured by the navigator on the diaphragm were interpo-
lated and each readout was attributed its corresponding
navigator position. Then, mean and standard deviations
of the acceptance window per heart phase were calcu-
lated. Due to the coarse temporal resolution of the navi-
gator signal (one navigator per heart beat), linear
interpolation was chosen in order to provide a lower
bound on the width of the acceptance window for differ-
ent cardiac phases.

Statistical analysis
Bland-Altman analysis [45] of peak flow and peak
through-plane velocities was performed to assess the
agreement of velocity fields obtained with 5D Flow LLR
and the 4D Flow reference.

Results
Scan durations for 4D Flow CMR were 17.8 ± 3.7 min
compared to 4 min for the 5D Flow protocol.
Figure 4 provides an analysis of the acceptance win-

dow for respiratory gating with one pencil beam naviga-
tor per cardiac cycle as being used in the 4D Flow
reference measurements. If the navigator signal was
within the acceptance window, data of all cardiac phases
were accepted. This results in a wider acceptance win-
dow for later cardiac phases leading to corresponding
uncertainty about the actual motion states and increas-
ing image artifacts for later cardiac phases.
Reconstructions exploiting respiratory motion states

(5D Flow LLR) are compared to using only data in end-
expiration (EXP LLR) and without gating (NG LLR) in
Fig. 5. Magnitude images and TKE maps from 5D Flow
LLR reconstructions show less artifacts compared to
EXP LLR and NG LLR reconstructions.
Magnitude and velocity magnitude images for the end-

expiratory motion state obtained with 5D Flow LLR and
5D Flow TV are compared relative to the 4D Flow refer-
ence in Fig. 6. It can be seen that maximum intensity
projections of velocity magnitudes are similar for all
methods while TKE maps and magnitude images pro-
vided by 5D Flow TV show more residual aliasing when
compared to 5D Flow LLR. The root mean square esti-
mate (RMSE) of the reconstructed images was lower for
5D Flow LLR compared to 5D Flow TV for both magni-
tude and velocity magnitude (8.7 vs. 13.5% for and 7.9 vs
9.8%, respectively). Maps of TKE for all 9 subjects ob-
tained with 5D Flow LLR and the 4D Flow reference are
compared in Fig. 7. In general, TKE maps derived from
the 4D Flow reference show a higher noise level com-
pared to 5D Flow data.
Exemplary slices in the ascending and descending

aorta show through-plane velocity profiles to be in
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Fig. 4 Analysis of navigator-based respiratory gating in standard 4D Flow CMR. a) For an exemplary 4D Flow scan the diaphragm position measured
by the pencil beam navigator over time is shown together with accepted data (red) and rejected data (yellow). When the navigator signal is within
the acceptance window, data of all cardiac phases are accepted until the next navigator position is obtained. As a result, the effective acceptance
window of the data varies as a function of heart phase and becomes wider towards diastole as shown in b)

Fig. 5 Comparison of 5D Flow LLR reconstructions in expiration relative to reconstructions using end-expiratory data only (EXP LLR) and without
gating (NG LLR). 5D Flow LLR shows reduced aliasing artifacts in the magnitude, velocity and TKE maps. For both EXP LLR and NG LLR, residual
motion artifacts are present in the magnitude images and increased noise is observed in the TKE maps
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agreement among the 4D Flow reference and 5D Flow
LLR whereas 5D Flow TV shows artifacts in the de-
scending aorta.
Exemplary magnitude and velocity magnitude images

for different respiratory bins reconstructed with 5D LLR
are shown in Fig. 8 along with an exemplary respiratory
curve. Bins in expiration are narrower as the duration of
expiration was longer compared to inspiration. The dis-
placement of the heart and aorta is clearly seen in both
magnitude and velocity maps. While image quality is

acceptable, there is degradation present from end expir-
ation to end inspiration.
Figure 9 compares velocity fields, peak velocities

and peak flow obtained for all 9 subjects. The nRMSE
between the velocity magnitudes obtained with 5D
Flow LLR and the 4D Flow reference was 8.9 ± 2.1%.
On average, 5D Flow LLR shows good agreement of
peak velocities and peak flow relative to the 4D Flow
reference (peak velocities: 3.1 ± 4.4%, peak flow:
−2.4 ± 6.9%).

Fig. 6 Results in systole comparing 5D Flow LLR with 5D Flow TV and standard 4D Flow. For 5D Flow TV and the 4D Flow reference residual
aliasing is observed in the magnitude images. Moreover, the TKE maps obtained with 5D Flow TV and the 4D Flow reference show more noise
compared to 5D Flow LLR. Exemplary slices in the ascending aorta (AA) and descending aorta (DA) show qualitatively similar results for through-
plane velocities in the ascending aorta whereas in the descending aorta artifacts can be observed in the in-plane velocity components for 5D
Flow TV
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Discussion
In this work, a respiratory-motion resolved Bayesian
multipoint 5D Flow CMR approach has been imple-
mented based on pseudo-radial tiny Golden angle Carte-
sian sampling in conjunction with locally low-rank
image reconstruction to map mean and turbulent veloci-
ties in the aorta in a fixed scan time of 4 min.
By exploiting data from all respiratory motion states,

the duration of 5D Flow CMR becomes independent of
the individual respiratory motion patterns of the sub-
jects. In comparison to standard 4D Flow CMR proto-
cols [1], 5D Flow CMR is about 4.5 times shorter on
average. Whereas pencil-beam based navigator gating in
standard 4D Flow CMR cannot ensure motion-free data
across the entire cardiac cycle, as demonstrated in Fig. 4,
repetitive data-driven respiratory motion detection and
continuous data acquisition of 5D Flow CMR provide
motion estimates throughout the cardiac cycle.

It has been demonstrated that the LLR model allows
to improve reconstruction accuracy relative to using data
from end expiration only, as shown in Fig. 5. Of note,
low-rank models have been used to exploit correlations
in dynamic CMR [46–48] and have already been pro-
posed for reconstructing respiratory-motion resolved
data. However, existing approaches confine the recon-
struction to a subspace defined by basis functions along
the respiratory motion dimension either by combining
cardiac and respiratory motion in a Casorati matrix [21]
or by means of low-rank tensor factorization [49, 50].
These approaches either require the acquisition of a sep-
arate scan to estimate a subspace or a subspace has to
be estimated from undersampled k-space data, e.g. via
low-rank tensor factorization [49]. The first option in-
creases scan time and can lead to problems when there
is a mismatch between both scans (e.g. bulk motion)
while the second option adds complexity to the recon-
struction as another hyperparameter needs to be opti-
mized for subspace estimation prior to reconstruction of
the actual image. In comparison, the LLR model pro-
posed in the present work can be applied straight-
forwardly by penalizing the nuclear norm of the data
rearranged in a Casorati matrix.
When comparing the 5D Flow LLR reconstruction

with the 5D Flow TV approach, both methods showed
good agreement of velocity data relative to the 4D Flow
reference. However, TKE maps and magnitude images
exhibit less noise when using the 5D Flow LLR ap-
proach. The inferior performance of the TV approach is
associated with the piecewise constant solutions favored
by TV which in turn leads to smoothing of peak values.
To reduce underestimation of peak velocities, hyper-
parameters may be determined for best agreement with
reference velocities. However, this led to non-optimal
results for magnitude images which therefore still
showed a high degree of aliasing noise.
In-vivo, good agreement of peak velocities and peak

flow values of 5D Flow LLR with data derived from
standard 4D Flow CMR was found. A small bias towards
higher velocities was observed for 5D Flow LLR com-
pared to the 4D Flow reference. This can be related to
previous findings that respiratory motion leads to blur-
ring of the image [20, 51] which corresponds to spatial
low-pass filtering and is therefore likely to reduce peak
velocities.
A multipoint encoding scheme [4] was incorporated

into the 5D Flow approach. Thereby the velocity vector
field was encoded with different sensitivities to mean
and fluctuating velocities to provide an accurate assess-
ment of mean and turbulent velocities over a large dy-
namic range. The 7-point 5D flow LLR implementation
yielded TKE maps as they can be expected for healthy,
young volunteers, with moderate values of up to 300 J/

Fig. 7 Comparison of TKE maps in systole for the 4D Flow reference
versus 5D Flow LLR. In the 4D Flow reference data increased noise
compared to 5D Flow LLR is seen. Moreover, TKE maps from 4D
Flow show high values in the descending aorta whereas TKE values
are lower in the descending aorta for most cases with 5D Flow LLR
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m2 and turbulence mainly occurring in the region of the
flow jet in the proximal aorta. In comparison, TKE maps
derived from the 4D Flow reference with 4-point encod-
ing appeared noisy, due to only using a single encoding
velocity of 150 cm/s. Moreover, the 4D Flow reference
showed TKE values in the descending aorta which were
as high as in the ascending aorta. This is considered un-
realistic as transient/turbulent flow typically occurs in
the region downstream of the aortic valve and not in the
descending aorta in healthy, young volunteers.
The acquisition time for 7-point encoded 5D Flow was

fixed to 4 min. For 10-point encoding, as it has been
used when assessing stenotic valves [7], this would cor-
respond to an acquisition time of ca. 6 min for 5D Flow,
compared to 17.2 ± 4.7 min for accelerated 10-point 4D
Flow acquisitions [7].
Image quality of data in inspiration as shown in Fig. 8

was lower compared to data reconstructed in the end-
expiratory motion state with 5D Flow LLR. This can be
explained with inspiration taking a smaller fraction of
the duration of the respiratory cycle than expiration.
Moreover, the respiratory motion curve does not reach
the maximum value in inspiration for every respiratory
cycle, whereas it reaches an end-expiratory plateau in
most cases. As respiratory motion states were defined to
obtain similar acceleration factors in each motion state,

this led to a wider range of motion in inspiratory states
than in expiratory states.
The present work assessed mean and fluctuating vel-

ocity vector fields in healthy subjects only. When apply-
ing the proposed 5D Flow method in patients with
aortic stenosis, an extension to 10-point encoding [7]
needs to be implemented for sufficient dynamic range.
Adding 3 more points would lead to an increase in scan
time by ca. 42% and can thus still easily be integrated
into clinical workflows.
While the present study was focused on turbulence

encoding, the proposed technique can be readily applied
for the acquisition of standard 4D flow CMR data in the
aorta and in the heart. For different applications the scan
time will change as a function of the size of the acquisi-
tion matrix, but respiratory motion is still expected to be
accurately modelled as a low-rank problem. Therefore,
fixing scan time independently of respiratory motion
should still be feasible. Moreover, the suggested multi-
point encoding approach provides improved accuracy
for lower velocities, similar to other multi-VENC
approaches [52, 53]. In addition, the protocol can be
used to measure flow in different respiratory motion
states to assess respiration dependent flow-patterns, e.g.
the Fontan circulation [54, 55]. To obtain better results
in inspiration, one might define bins with equal range of

Fig. 8 a) Exemplary magnitude and velocity magnitude images for different respiratory bins reconstructed with 5D LLR. Image quality reduces
from end expiration to end inspiration and artifacts can be observed in the descending aorta in the magnitude and velocity images reconstructed in
end inspiration. b): The respiratory curve shows that the expiratory bins have a narrower range of motion than inspiratory bins
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motion, thus leading to varying acceleration factors for
different bins. In order to still obtain sufficient sampling
rates in each motion state, one would therefore need to
increase scan time beyond the current 4 min limit.
A limitation of the present study is the lack of a

ground truth data. The 4D Flow reference data were ac-
quired in a separate scan and consistency of flow condi-
tions cannot be expected over the entire scan session. In
addition, the 4D Flow reference data showed consider-
able respiratory-motion related artifacts in later cardiac
phases since the pencil-beam navigator was played out
right after R-wave detection and only once per cardiac
cycle (acceptance rates varied between 42 and 72%). Ac-
cordingly, the quantitative comparisons with the 4D
Flow data were limited to systole in order to avoid
respiratory-motion corrupted cardiac phases as much as
possible.
Finally, a drawback of both 5D Flow LLR and 5D

Flow TV are considerably longer reconstruction
times when compared to standard 4D Flow CMR
(ca. 35 min for 5D LLR and ca. 60 min for 5D TV
vs. ca. 3 min for conventional 4D Flow CMR on a
workstation with two 14 Core Intel Xeon E5–2680
CPUs and 256 GB RAM). In the future, this relative
disadvantage may be addressed by employing

variational neural network based reconstructions and
their deployment on dedicated hardware [56, 57].

Conclusion
Respiratory motion resolved multipoint 5D Flow CMR
allows for breathing-pattern independent mapping of
mean and turbulent velocities in 4 min. The reduction
in scan time allows for integration of the sequence into
standard clinical workflows. Further in-vivo studies are
now warranted to assess the performance of the method
in relevant patient populations.
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