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Abstract 

The spatial localisation of immune cells within tumours are key to understand the intercellular communications 
that can dictate clinical outcomes. Here, we demonstrate an analysis pipeline for highly multiplexed CODEX data 
to phenotype and profile spatial features and interactions in NSCLC patients that subsequently received PD1 
axis immunotherapy. We found that regulatory T cells (Tregs) are enriched in non-responding patients and this 
was consistent with their localization within stromal and peripheral tumour-margins. Proximity-based interactions 
between Tregs and both monocytes (p = 0.009) and  CD8+ T cells (p = 0.009) were more frequently found in non-
responding patients, while macrophages were more frequently located in proximity to  HLADR+ tumour cells (p = 0.01) 
within responding patients. Cellular neighbourhoods analysis indicated that both macrophages (p = 0.003) and effec-
tor  CD4+ T cells (p = 0.01) in mixed tumour neighbourhoods, as well as  CD8+ T cells (p = 0.03) in  HLADR+ tumour 
neighbourhoods were associated with favorable clinical response. Evaluation of the inferred regulatory functions 
between immune cells relative to the tumour suggested that macrophages exhibit an immunosuppressive phe-
notype against both  CD4+ and  CD8+ T cells, and that this association scores more highly in ICI refractory patients. 
These spatial patterns are associated with overall survival in addition to ICI response and may thus indicate features 
for the functional understanding of the tumour microenvironment.

Introduction
Non-small cell lung cancers (NSCLC) account for 85% of 
lung cancers, which have the highest morbidity and mor-
tality rates of all cancer globally. Whilst platinum-based 
therapies have been standard of care, the past decade has 

seen the increasing clinical adoption of immune check-
point inhibitors (ICIs) that enhance the adaptive immune 
system’s cytotoxic T cell response to target tumour cells. 
These therapies have led to durable benefits in a small 
subset of NSCLC patients [1–3], however, the reason for 
this phenomenon is poorly understood. This has spurred 
a field of investigation into the immune microenviron-
ment of lung tumours to determine the biomarkers and 
cellular phenotypes that are predictive of response to ICI 
therapy [4–6].

PD-L1 expression and tumour mutation burden (TMB) 
as a measure of neoantigen load form current compan-
ion diagnostic assays for ICI treatment, however these 
assays suffer from relatively poor performance in strati-
fying responsive patients [7, 8]. Indeed, meta-analysis 
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of the field across 10 tumour types in 8135 patients has 
shown that PD-L1 IHC (AUC 0.65) and TMB (AUC 0.69) 
fall behind multiplex immunofluorescence methods 
(AUC 0.79) in their ability to accurately predict patient 
ICI response [9]. Moreover, this suggests largely that the 
efficacy of the ICIs is not tied directly to PD-L1 directed 
immune evasion nor tumour antigenicity but rather other 
phenotypic properties of tumour tissues that are being 
systematically discovered through multiplexed imaging 
techniques [10, 11].

Spatial metrics describing the geographical associa-
tions between cells are providing increasing depth to our 
ability to quantify and compare tissue composition, and 
are poised to deeply aid our understanding of the cellu-
lar and functional architecture of tumour tissue. Models 
from multispectral imaging data that integrated cellular 
density and nearest neighbour distance have implicated 
the role for several effector-lymphocytic populations in 
the survival of patients treated by curative resection [12, 
13]. Immune scores based on quantitative analysis of CD8 
and PD-L1 [14], and CD8 and  CD163+ macrophages [15] 
have shown utility in predicting immunotherapy outcome 
in multiple cancer types. Additionally, tumour infiltrat-
ing lymphocytes (TILs) identified from H&E have been 
clustered by the morphological properties of their spatial 
neighbour TILs, to computationally phenotype each TIL 
into one of 8 niche clusters. Signatures of these clusters 
were associated with outcome in NSCLC subtypes under 
different treatment regimens [16]. Imaging mass cytom-
etry (IMC) of immune subtypes in NSCLC has indi-
cated cell distributions, interactions and neighbourhood 
enrichment in both histology and clinical covariates in a 
chemotherapy cohort [17]. This approach was extended 
to a parallel assay of 27 ICI patients and indicated that 
chemokine CXCL13 promotes memory  CD8+ and  CD4+ 
T cells, which are activated upon PD1 blockade. CXCL13 
also acts to reduce immunosuppressive CCR2 + mono-
cytes in tumours, promoting tumour clearance. [18].

Despite these very recent findings, application of 
high-plex based cell typing coupled with spatial metrics 
beyond cellular density have been limited in the field of 
ICI biomarker discovery. To this end, CO-Detection by 
indEXing (CODEX) staining was applied to NSCLC tis-
sues from a retrospective ICI cohort to examine the 
immune cell composition and spatial features that associ-
ate with ICI response. The analysis of multiplex images 
generated by CODEX is complex. It requires coordina-
tion of both supervised and unsupervised analytical steps 
to accurately assign genuine cell phenotypes from sin-
gle cell expression data of cohorts of FFPE samples with 
varying expression levels [19]. This approach differs sig-
nificantly from trained thresholds that may be applied to 
optimized, amplified multispectral data [11, 12]. Indeed, 

no single tool offers a turn-key solution for image QC, 
cell segmentation, data integration and normalization, 
parameter optimization, cell phenotyping and spatial 
analysis to identify features associated with binary and 
time to event clinical outcomes [20]. Current methods to 
assign cell types are based largely on unsupervised clus-
tering using proprietary algorithms [21–23], while more 
recent novel machine learning methods including Astir 
[24], CELESTA [24], and STELLAR [25] remain difficult 
to implement due to their sensitivity to staining intensity, 
stringent a-priori rules or requirement for accurate train-
ing data.

Here we developed a bespoke analytical pipeline that 
employed open source and published packages to derive 
insights from the CODEX technology in a novel ICI 
therapy treated cohort. Following cell phenotyping and 
cell proportion analysis in spatial compartments, we 
employed publicly available metrics including an inter-
action metric in the Scimap package, cellular neighbour-
hood detection and cell type enrichment within these 
communities [23], as well as further spatial metrics that 
putatively identify functional implications from 3-way 
proximity ratios [26].

Materials and methods
Patient information and TMA construction
Pre-treatment tissue microarrays (TMAs) were con-
structed from resected NSCLC tissues in collaboration 
with TriStar Technology Group (USA). Tissues were 
obtained from patients who were subsequently treated 
with immune checkpoint immunotherapy (ICI) in 
advanced or metastatic setting following recurrence after 
surgery. Tissues were collected between 2009 and 2018, 
with censor times ranging between 258 and 3243  days. 
TMA consisted of 42 patient cores, 6 of which were 
excluded due to poor tissue quality, and response infor-
mation was not available for one patient (Table 1). TriStar 
pathologists reviewed whole sections prior to coring rep-
resentative tumour regions that avoided benign tissue, 
and included stroma and tumour around invasive mar-
gins. TMAs consisted of single 1 mm cores per tumour 
sample. All patient clinicopathological, treatment, ICI 
response and survival parameters were provided by 
TriStar’s medical teams. Clinical endpoints included ICI 
response according to RECIST 1.1 criteria and overall 
survival. Thirty-nine percent of patients were classified 
as responsive (R), while sixty-one percent were non-
responsive (NR). Anti-PD-1 therapies Nivolumab and 
Pembrolizumab comprised 93% of treatments, with one 
patient receiving anti-PD-L1 agent Durvalumab. 93% 
and 38% patients remained alive at follow up time, for 
responsive, and non-responsive groups, respectively. The 
cohort contained both squamous and adenocarcinoma 
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NSCLC histology. This study has Queensland University 
of Technology (QUT) Human Research Ethics Commit-
tee approval (UHREC #2000000494) and University of 
Queensland ratification.

CO‑detection by indEXing (CODEX) staining
CODEX (Akoya Biosciences, US) staining was performed 
by Enable Medicine, US, as previously described [27]. 
FFPE TMA sections were mounted on 20 mm x 20 mm 
poly-lysine treated coverslips. Coverslips were rehydrated 
and subjected to heat induced epitope retrieval. Cover-
slips were incubated with 190uL of antibody cocktail 
solution containing 36 antibodies for 3 h at room temper-
ature in a humidity chamber. This was followed by several 
cycles of washing and fixation steps. Antibody barcode, 
dilution, and imaging cycle were performed as shown 
in supplementary (Supplementary Table  1). Antibody 
optimisation and validation for CODEX was performed 
by Enable Medicine. For a more detailed protocol, see 
reference [27]. Coverslips were imaged on an inverted 
fluorescence microscope (Keyence BX-810) using a Plan 
Apo 20 × 0.75 NA objective (Nikon). The Codex imag-
ing cycles were performed using a Codex Instrument 
(Akoya Biosciences). Large regions were broken up into 
tiled subregions, and five z-stack slices with a step size of 
1.5 µm were acquired.

Images were deconvolved and pre-processed using 
image CODEX pre-processing pipeline (Enable 

Medicine, US). Briefly, background signal was removed 
from the image by using a computationally aligned blank 
acquisition cycle as a reference channel. Then, image 
deconvolution was performed for each biomarker image 
z-stack, and the best focus was chosen using an extended 
depth of field algorithm. Finally, the individual tiles were 
aligned and stitched together, and all channels were 
stacked. OME-TIFF were output for image analysis.

Image analysis
Images were imported into Qupath [28] and segmented 
with Cellpose [29] plugin on DAPI2 channel using ’cyto2’ 
pretrained model with ‘.cellExpansion’ = 3  µm and ‘.cell-
ConstrainScale’ = 1.5. The performance of cell segmen-
tation was visually inspected. Poor quality TMA cores 
that were fragmented, folded or necrotic with regions of 
high non-specific fluorescence were excluded. An artifi-
cial neural network (ANN) pixel classifier was trained on 
pan-cytokeratin signal to define a tumour/stroma anno-
tation mask which captured pan-cytokeratin positive 
pixels as ‘tumour’ regions. A minimum 100µm2 thresh-
old was applied such that only tumour nests larger than 
this were annotated as ‘tumour’. The tumour annotation 
was expanded by 30  µm to define a peripheral tumour 
’margin’. Cell metrics including universally unique identi-
fier (UUID) codes, spatial coordinates, nuclear size, and 
median cell expression for each channel was output for 
analysis in python. Cell classifications generated by sub-
sequent unsupervised clustering were imported back into 
Qupath and matched by their UUID for visual inspection 
and ground truth QC. Cell visualisations were generated 
in Qupath.

Cell classification
Expression matrices and cell metadata were imported 
into Anndata [30, 31] format for QC/preprocess-
ing, clustering and cell phenotyping. Artifactual nuclei 
were removed by applying a minimum median DAPI 
signal threshold, followed by size exclusion < 10µm2 
and > 220µm2. Nuclei smaller than 10um tended to be 
fragmented, while cells larger than 220um tended to be 
aggregated or dividing nuclei. Raw data contained thirty-
six markers. Markers that possessed low signal to noise 
or high nonspecific background were excluded. Expres-
sion matrices were arcsinh (cofactor 150) transformed, 
scaled within columns (markers), then scaled across 
rows (cells) according to recommended methods for 
CODEX pre-processing [19]. Data was then integrated 
using the Scanpy integration of Harmonypy [32] by TMA 
core and adjusted PCs used to cluster data with Pheno-
graph [33] using k = 30 and leiden r = 2. Leiden resolu-
tions 1–4 were assessed and resolution two was chosen 
empirically to resolve the most meaningful cell types. 

Table 1 Patient characteristics

Responder, n = 14 Non‑
responder, 
n = 21

Sex

 F 5 (36%) 9 (43%)

 M 9 (64%) 12 (57%)

Stage at diagnosis

 I 4 (29%) 8 (38%)

 II 3 (21%) 3 (14%)

 III 5 (36%) 7 (33%)

 IV 2 (14%) 3 (14%)

Histology

 Adenocarcinoma 12 (86%) 12 (57%)

 Squamous Cell Carcinoma 2 (14%) 9 (43%)

IO treatment

 DURVALUMAB 1 (7.1%) 0 (0%)

 NIVOLUMAB 10 (71%) 18 (86%)

 PEMBROLIZUMAB 3 (21%) 3 (14%)

Status

 Alive 13 (93%) 8 (38%)

 Deceased 1 (7.1%) 13 (62%)
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Clustering included twenty-five markers, PanCK, CD117, 
Ki67, CD45, CD20, CD3e, CD4, CD45RO, CD45RA, 
CD8, CD107a, CD44, FoxP3, CD25, CD197, CD11b, 
CD14, CD15, CD68, HLA-DR, CD141, CD31, CD34, 
Podoplanin and nuclear area (µm2) to aid discrimina-
tion of tumour cells from stromal cells. Cell typing was 
performed using canonical cell-type markers, and Phe-
nograph resolved functional subsets in single itera-
tion of clustering. Cell typing resolved B cells  (CD45+, 
 CD45RA+,  CD20+), Blood vessels  (CD31+,  CD34+), 
Lymphatics  (Podoplanin+), CD4 cells  (CD45+,  CD3+, 
 CD4+,  CD45RO+), CD8 cells  (CD45+,  CD3+,  CD8+, 
 CD45RO+), granulocytes  (CD15+,  CD141+,  CD11b+), 
lymphocytes  (CD45+), macrophages  (CD68+,  CD107+, 
 CD14+), mast cells  (CD117+), Monocytes  (CD14+), pro-
liferating lymphocytes  (CD45+,  Ki67+), stroma  (Vim+), 
Treg  (CD45+,  CD4+,  FoxP3+,  CD25+), effector CD4 cells 
 (CD45+,  CD4+,  HLADR+,  CD197+), and  CCR7+ CD8 
cells  (CD45+,  CD45RO+,  CD8+,  CD197+).  PanCK+ cells 
clustered into  HLADR+,  CD44+ or  Ki67+ subsets. Cell 
type clusters were merged for further analysis.

Cell analysis
Cell frequency was defined by summing the instances 
of each cell class and normalizing to the total cell count 
for each core or tumour/stroma/tumour margin region 
to obtain cell percentages. Interaction analysis was 
performed using the spatial_pscore function in Sci-
map (https:// github. com/ labsy spharm/ scimap) with 
method = radius, radius = 20 µm, and knn = 3 for all per-
mutations of pairwise combinations. Proximity density 
metric in spatial_pscore function was defined by the 
number of pairwise interactions divided by the number 
of cells of that cell-pair per sample, effectively scoring 
each sample by the proportion of a given cell pair occur-
ring in a 20 µm radius.

Neighbourhood analysis
Neighbourhoods were defined using the neighbourhood 
identification pipeline (https:// github. com/ nolan lab/ 
Neigh borho odCoo rdina tion) [23]. For each cell, the cell 
types of the 10 nearest neighbours were assigned as the 
features of that cell. These features were then run through 
an unsupervised KNN algorithm and assigned to 10 clus-
ters. The choice of 10 nearest neighbours and 10 clusters 
was chosen heuristically according to published datasets 
[23, 34]. Thus each cell was assigned to a cellular ‘neigh-
bourhood’ that was a product of the cells most frequently 
found in its proximity. Differential cell type enrichment 
within each neighbourhood was performed using the lin-
ear model in the cell type differential enrichment pipe-
line[23], which scores the fold change and significance of 
cell types within neighbourhoods by a binary variable.

SpatialScore analysis
SpatialScore was assessed as previously published 
(https:// github. com/ nolan lab/ Spati alSco re) [26] using 
method 1 to generate mean spatial ratios per sample 
between permutations of sets of 3 cells.

Statistics
T-tests were performed between response status groups 
for each of these metrics (Additional file 3: Table S2). P 
values shown throughout are not adjusted for multiple 
testing, and were not significant following adjustment. 
Metrics were also assessed for OS associations by Cox 
proportional hazards models as continuous variables, as 
well as median cut point Kaplan Meier estimates (Addi-
tional file 4: Table S3).

Results
Multiplex image analysis workflow
The analysis pipeline was developed and implemented 
as shown in Fig. 1. The ICI NSCLC cohort (Fig. 1A) was 
stained by CODEX. Cell segmentation was performed 
and cells were classified spatially within tumour, stroma 
and the peripheral tumour margin regions (Fig.  1B). 
Images were visually inspected to ensure tissue was of 
sufficient quality for analysis (Fig.  1C), leading to the 
exclusion of six cores that were either fragmented, out 
of focus portions or necrotic (Additional file 1: Fig. S1A). 
Response information was not available for one patient, 
leading to a final cohort of 35 patients. Staining quality 
was visually assessed (Fig.  1D) and markers with non-
specific staining or low signal that corresponded with tis-
sue autofluorescence were excluded, resulting in a final 
panel of 25 markers (Additional file 1: Fig. S1B, C). Cell 
phenotyping was performed by unsupervised clustering 
according to canonical marker expression (Fig. 1E). These 
cell phenotypes were then analysed by subsequent spatial 
techniques (Fig. 1F) for comparison against clinical vari-
ables (Fig. 1G.)

Cell phenotyping and cell proportion analysis
Unsupervised clustering of 210,945 cells from 35 TMA 
cores resulted in 55 clusters that were phenotyped 
(Fig.  2A) according to their predominant canonical 
marker expression (Additional file 1: Fig. S2a, b). Clusters 
were annotated and merged into 19 cell types (Fig.  2B, 
C, Additional file  1: Fig. S3), including B cells, Blood 
vessels, Lymphatics,  CD4+ T cells,  CD8+ T cells, granu-
locytes, lymphocytes that localized to  CD31+ blood ves-
sels, macrophages, mast cells, Monocytes, proliferating 
lymphocytes, stroma, Tregs. Phenotypic subsets included 
effector  CD4+ T cells, and  CCR7+  CD8+ T cells which 

https://github.com/labsyspharm/scimap
https://github.com/nolanlab/NeighborhoodCoordination
https://github.com/nolanlab/NeighborhoodCoordination
https://github.com/nolanlab/SpatialScore
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colocalized with aggregates of  CD4+ T cells. Tumour 
cells clustered into discrete subsets expressing either 
HLADR, CD44 or proliferation marker Ki67.

The cellular content of each core was first assessed to 
determine cell types which may associate with outcome 
to ICI therapy. Over 90% of the cellular composition of 
the cohort was phenotyped (Fig.  2D), allowing for dis-
section of the cell-type proportion of each core (Fig. 2E, 
G) for potential association with patient response to PD1 
blockade (Fig. 2F, H). While cellular composition of each 
core did not readily discern therapy response, levels of 
key immune cells including  CD8+ T cells,  CD4+ T cells, 
B cells and macrophages were the major factors of PCA 
component loadings (Fig.  2I). Treg cells were signifi-
cantly elevated in non-responding tumours (Log2 FC 1.1, 
p = 0.01) (Fig. 2J, K, Additional file 2: Table S1).

The ability of immune cells to infiltrate into the malig-
nant structure is requisite for anti-tumour activity. Each 
tissue was therefore further compartmentalized by apply-
ing a pan-cytokeratin mask to define tumour and stroma 
(Fig. 3A, F) regions. The tumour mask was expanded by 
30  µm to define a tumour margin (Fig.  3K), represent-
ing the cellular content potentially acting directly at the 
tumour periphery. Compartmentalised cell proportion 

in stroma (Fig. 3 B, C), tumour (Fig. 3G, H) and tumour 
margin (Fig.  3L, M) indicated that similar heterogene-
ity in cell composition existed between patient response 
groups. Major stromal diversity was driven by levels of 
vascularization,  CD4+ T cells and B cells (Fig. 3D), while 
variance in tumour content was attributed to the pres-
ence of HLADR or CD44 positive tumour cells (Fig. 3I). 
Notably, Tregs and monocytes were elevated in stroma 
(Fig. 3E) and margin regions (Fig. 3O) of non-responding 
patients, while proliferating and CD44 positive tumour 
cells appeared more abundant in tumour regions of non-
responsive patients. A trend for increased macrophages 
and effector  CD4+ T cell populations within tumour 
regions of patient responders also existed.

Spatial cell–cell interactions
Tissue composition yields only partial insights into the 
cellular phenotypes responsible for anti-tumour immune 
responses. Spatial analyses were therefore applied to 
derive functional cell–cell relationships in tissue cores. 
The density of pairwise cell interactions were assessed 
using Scimap [35], where the frequency of interacting 
cells within a 20 µm radius per sample were normalized 
to the number of cells of that given pair contained in 

Fig. 1 Analysis workflow for CODEX imaging data. A CODEX cyclical staining was performed on an initial cohort of 42 ICI treated patients. 
Significant differences in overall survival were evident between patient response groups B Images were imported into Qupath and segmented 
with Cellpose. A pixel classifier was trained on cytokeratin to create a tumour mask. This mask was expanded to capture cells at the tumour 
periphery. C Images were visually inspected for QC, and six cores that were fragmented, necrotic or contained imaging artifacts were excluded. 
Response information was not available for one patient. D Marker QC was performed and markers with non specific signal, or artifactual staining 
were excluded. E Cell phenotyping was performed in python by unsupervised clustering and cell annotation by canonical marker expression. 
F Spatial metrics were generated, including cell densities, pairwise cell–cell interaction, neighbourhood detection and cell type enrichment 
within these neighbourhoods, as well as published SpatialScore metric. G These spatial metrics were analysed for differences between ICI response 
groups and patient survival times
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the sample (Fig.  4 A). This provides a per sample score 
for the frequency of each pairwise interaction, allowing 
ranking and comparison. Notably, this approach detected 
the enrichment of Treg proximity with both mono-
cytes (Fig. 4B, C) (p = 0.01) and  CD8+ T cells (Fig. 4F, G) 
(p = 0.01) in non-responder group, while macrophages 
appeared more frequently associated with  HLADR+ 
tumour cells (Fig.  4D, E) (p = 0.012) in the patient 
responder group. Independently, in a logistic regression, 
these features had classification accuracies ranging from 
AUC 0.753 to AUC 0.773 (Fig. 4H), while collectively, a 
multivariate logistic regression with combined features 
yielded a model with AUC 0.787 classification accuracy 
(Fig.  4H), improved over independent features alone. 
Such models are however, likely overfitted due to the 
sample size of the cohort.

Cellular neighbourhoods
Functional properties of tissues are defined by both the 
activity of individual cells and the communities they form 
[23]. Unsupervised spatial clustering of cell types (rep-
resentative Fig.  5A) by their 10 nearest neighbours was 
performed to yield cellular neighbourhoods (representa-
tive Fig.  4E) [23]. Such clustering yielded phenotypic 

communities (Fig. 5B), including immune cell rich, B cell, 
Tumour, CD44/Ki67 tumour, HLADR tumour, mixed 
tumour, effector cells, granulocytes, lymphatics, and 
stromal neighbourhoods, and were comprised of dis-
tinct proportions of each cell type (Fig. 5C). Assessment 
of tissues for the relative composition of each neighbor-
hood indicated that immune rich neighbourhoods com-
posed of monocytes,  CD4+ T cells,  CD8+ T cells, mast 
cells and Tregs were enriched in non-responsive patients 
(p = 0.018) (Fig. 5D).

Changes in the phenotypic composition of these neigh-
bourhoods (Fig.  5F) may indicate functional dysregula-
tion at the macroscopic level, including the propensity 
for immune activation upon ICI treatment. Data from 
this cohort suggested that the increase of macrophage 
(p = 0.003) and effector  CD4+ T cells (p = 0.01) within 
mixed tumour  (Ki67+/CD44+) neighbourhoods, as well 
as increased  CD8+ T cells (p = 0.03) within  HLADR+ 
tumour neighbourhoods were positively associated with 
ICI response (Fig. 5G).

Spatial score–macrophages are immunosuppressive
Indications that immune function may be inferred 
from the spatial topography of immune cells relative to 

Fig. 2 Cell phenotyping and total cell proportion analysis. A 55 clusters were resolved by Phenograph at leiden resolution 2 following integration 
by Harmonypy. B Annotated clusters were merged into 19 cell types. C Cell types were defined by canonical marker expression. D Over 90% 
of 210,945 cells in total cohort were phenotyped. E, G TMA cores consisted of heterogenous proportions of each cell type. F, H Analysis of cell types 
by outcome did not show clear differences between patient groups. I Principal component analysis indicated that sample variance was driven 
by proportions of  CD4+,  CD8+, macrophage and B immune cells. J,K) Differential enrichment indicated higher levels of Treg cells in non-responding 
patients. Significant results p < 0.05 in volcano shown in red. Not adjusted for multiple testing
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tumour cells is a recent finding within the field of spa-
tial biomarker discovery. The previously published Spa-
tialScore [26] method was applied here to examine the 
distance between tumour and immune cells (Distance 2, 
Fig.  6A), relative to the proximity of that immune cell’s 
nearest neighbour (Distance 1, Fig.  6A), allowing the 
quantification of putative immune suppression or effec-
tor function. Interestingly, a higher ratio was observed 
in non-responding patients for the association of mac-
rophages with both  CD4+ T cells (Fig. 6B) and  CD8+ T 
cells (Fig.  6C) cells relative to tumour proximity, con-
sistent with an M2 immunosuppressive phenotype. This 
phenotype was further reflected in patient overall sur-
vival, where higher immunosuppressive ratios with  CD4+ 
T cells (Fig. 6D), and  CD8+ T cells (Fig. 6E) exhibited a 
trend with poorer overall survival.

Survival
Features generated throughout the analysis were evalu-
ated for associations with overall survival by cox propor-
tional hazards (Additional file 3: Table S2) and at median 
thresholds by Kaplan–Meier estimates. Of note, higher 
effector  CD4+ T cells within tumour regions were ben-
eficial for patient survival (Fig.  7A), while proliferating 

tumour cells were associated with poorer survival 
(Fig. 7B). Higher frequency of Treg interactions with both 
monocytes (Fig.  7C) and  CD4+ T cells (Fig.  7D) were 
also associated with poorer patient survival. In addition, 
mixed tumour neighbourhoods that were enriched in 
 CD4+ effector T cells (Fig. 7E) or macrophages (Fig. 7F) 
exhibited better outcome.

Limitations of study
The limitations of our study include a single-cohort TMA 
study with heterogenous tumour content that provide 
only a snapshot of the tumour tissue. Furthermore, lim-
ited clinicopathology information was available to dis-
cuss the potential impact of treatment history upon both 
immune composition and ICI outcome. The empirical 
testing of robust antibodies that successfully endure the 
disulphide reduction required for barcode conjugation, 
combined with a lack of fluorescent signal amplification 
mean that antibody validation is an ongoing aspect of 
CODEX based technology. Here, we employed a panel 
developed by a commercial CODEX supplier, Enable 
Medicine, based on the original publication [23], which 
had already undergone validation on positive and nega-
tive control tissues. External adoption and extension of 

Fig. 3 Cell proportion analysis within tissue compartments. A, F Representative TMA cores with tumour (red) and stroma (green) compartments. B, 
C Composition of the stromal compartment appeared similar in IO response groups. D Variance in patient stroma was largely driven by proportions 
of  CD4+, B cells, blood vessels and macrophages. E Treg cells and monocytes were slightly elevated in non-responding patients. G, H Composition 
of the tumour compartment appeared similar in IO response groups. I Variance in tumour regions was driven by tumour cell CD44 and HLADR 
positivity, as well as levels of granulocyte infiltration. J Proliferating tumour cells were more abundant in non-responding patients. K) Tumour 
regions were expanded by 30um into the stroma to define a tumour margin (White). L, M Composition of the tumour margin appeared consistent 
between patient response groups. N Levels of  CD4+, macrophages and monocyte cells were major components of variance in tumour interface. O 
Monocytes were enriched in tumour margin regions of non-responding patients. Significant results p < 0.05 in volcano shown in red. Not adjusted 
for multiple testing
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such panels would again require validation of conjugation 
and epitope labelling, and may introduce batch effects 
between experimenters. As such, biases associated with 
current antibody availability and staining performance 
provide insights only into the particular cell types aimed 
to be assessed by the investigator, and our data here only 

indicates part of the immunome. Furthermore, aligning 
these results with studies that include more customized 
cell type definitions, namely by TSA multiplex fluores-
cence, is potentially confounding. While cell proportion 
is a common metric of cell density within tissue, our 
interaction and neighborhood metrics are only a subset 

Fig. 4 Cellular interaction analysis. A Volcano plot showing most significant cell–cell interactions enriched in patient response groups. Interactions 
were defined in Scimap by proximity of cell pairs within 20um normalised to the number of those cell types within each sample. These proximity 
densities were compared by T test between response groups, and unadjusted p values shown. B Violin plot of Treg: monocyte interaction 
frequency. p = 0.009. C Representative field of view of enriched Treg: monocyte interactions. D Violin plot of macrophage:  HLADR+ tumour cell 
interaction frequency. p = 0.01 E Representative field of view of enriched macrophage:  HLADR+ tumour cell interactions. F Violin plot of Treg:  CD8+ 
cell interaction frequency. p = 0.009 G Representative field of view of enriched Treg:  CD8+ interactions. H ROC curve indicating AUC of generalised 
linear model for binary classification of patient response by most significant interactions as well as when combined into multivariate model. 
Significant results p < 0.05 in volcano shown in red. Not adjusted for multiple testing
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of methods developed in spatial biology, and thus addi-
tional metrics may provide different results. The neigh-
borhoods identified in this study are dependent upon the 
composition of this tumour cohort, and may be differ-
ently defined in other datasets. Thus, the data presented 
here provides a descriptive insight into a limited cohort, 
and is presented as an observational study of spatial met-
rics that require validation in additional immunotherapy 
cohorts.

Discussion
Multiplexed single cell spatial technologies allow deep 
characterization of the cellular organization that occurs 
in tissues and are poised to reveal functional biology 
in the tissues that are taken routinely during biopsy or 
resection. Notwithstanding the limitations discussed 
above, we demonstrate here an approach to apply meth-
ods to generate spatial statistics for an important clinical 
question.

The data shown points to a prominent role for Tregs 
in ICI refractory disease. The immunosuppressive role 
of Tregs is well understood, however their relative abun-
dance in non-responsive tumours coincides with the sig-
nificant enrichment of their spatial proximity with both 

cytotoxic  CD8+ T cells and monocytes. While immu-
noregulatory interactions between Tregs and  CD8+ T 
cells are consistent with our understanding of T cell 
immunology, their potential role in influencing mono-
cyte behavior may be a novel finding.

Monocytes are progenitor cells that migrate into dam-
aged tissues and differentiate into dendritic or mac-
rophage cell lineages. Tregs have been implicated to 
influence this maturation process by suppressing the 
expression of co-stimulatory and MHC-class II mol-
ecules and upregulating M2 macrophage marker CD206 
[36, 37], thus directing monocyte maturation to an 
immunosuppressive polarised macrophage phenotype. 
This is consistent with further evidence in our data that 
the spatial association between macrophages and both 
 CD4+ T cells and  CD8+ T cells relative to their tumour 
proximity is also enriched in non-responsive patients. 
Taken together, these spatial relationships point to an 
axis of Treg induced macrophage M2 polarisation which 
may form a niche for ICI refractory disease.

Additionally, a discrete population of macrophages 
existed in our data that were aligned with anti-tumour 
activity within ICI responsive tumours. Macrophages 
possess dual roles as both phagocytic innate immune 

Fig. 5 Cellular neighbourhoods and their cell type enrichment. A Representative images of cell types in tissue cores. B Cell types were clustered 
into unsupervised cellular neighbourhoods according to their nearest neighbours. Heatmap shows abundance of cell types in each neighbourhood 
C Proportion of cell types in each cellular neighbourhood. D Frequency of each neighbourhood in tissue cores was asessed and compared by T test 
between patient response groups. E Representive images of cellular neighbourhood composition in matched cores to A. F Differential enrichment 
of cell types in each neighbourhood by response groups were performed. Heatmap shows scaled change of cell types in each neighbourhood 
by patient response groups. G Volcano plot showing fold change of significant changes in cell type enrichment in each neighbourhood. Significant 
results p < 0.05 in volcano shown in red. Not adjusted for multiple testing
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cells as well as antigen presenting cells for adaptive 
responses. Their interaction with antigen presenting 
 HLADR+ tumour cells in responsive tumours is consist-
ent with this role. Similarly, their enrichment in mixed 
tumour neighbourhoods in ICI responsive tumours sug-
gests a tumour-killing role. While macrophage polariza-
tion was not directly observed through the expression of 
CD163, our spatial data implies dual roles for these key 
innate immune cells.

Activated effector  CD4+ T cells expressing HLADR 
appear to also play a significant role in this cohort, with 

their enrichment beneficial in tumour regions as well as 
within in mixed tumour neighbourhoods. While ICIs 
specifically induce cytotoxic  CD8+ T cell responses, the 
role for  CD4+ T cell cooperation beyond traditional 
’helper’ activity and even  CD4+ T direct cytotoxic activity 
is emerging [38]. Additionally, peripheral effector  CD4+ 
T cells have been associated with PD1 efficacy [39]. 
Coexpression of CD197, the homing chemokine recep-
tor CCR7, which directs T cells towards secondary lymph 
nodes, suggests that these effector  CD4+ T cells are being 
encouraged to migrate out of the peripheral tumour 

Fig. 6 Spatial Score. A Schematic describing the published SpatialScore metric of implied immunosuppressive or effector activity by the ratio 
of immune cell proximity relative to tumour distance. B A higher ratio was observed for macrophages in proximity with  CD4+ cells relative 
to tumour cells in non-responsive patients. p = 0.002 C A higher ratio was observed for macrophages in proximity with  CD8+ cells relative to tumour 
cells in non-responsive patients. p = 0.002 D The higher ratio for macrophages:CD4+ cells corresponded with poorer patient survival. E The higher 
ratio for macrophages:CD8+ cells corresponded with poorer patient survival. Not adjusted for multiple testing
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tissue [40]. Taken together, this unique cell population 
provides an insight into novel roles for  CD4+ T cells in 
anti-tumour activity.

Conclusion
The richness of multiplex imaging data is positioned to 
vastly increase our understanding of tissue architecture 
as well as provide valuable information relevant to clini-
cal decisions. While these findings require validation 
within additional cohorts and modalities, our data has 
allowed the novel observation of a number of pheno-
typic properties of immune cells that associate with out-
come to ICI therapy, and are well aligned with current 
principles of immunology. Our study thus serves as an 
important example of the power of the ability to deline-
ate both tumour and immune cell phenotypes, infer their 
functional properties and measure how their changes 

can associate with patient outcomes. Such techniques 
are placed to provide an unparalleled approach to under-
stand how to better manage therapeutic strategies and 
aid diagnostic pathology.
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frequency of Tregs interacting with monocytes were associated with poorer survival. p = 0.001. D Higher frequency of Tregs interacting with  CD4+ T 
cells were associated with poorer survival. p = 0.059. E Higher levels of effector  CD4+ T cells within mixed tumour neighbourhoods were associated 
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