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Abstract 

The morbidity of gestational diabetes mellitus (GDM) is increasing and is associated with adverse perinatal outcomes 
and long-term maternal and infant health. The exact mechanism underlying changes in plasma free fatty acid (FFA) 
profiles in patients with GDM is unknown. However, it is believed that changes in diet and lipid metabolism may play 
a role. Fatty acids contain many specific FFAs, and the type of FFA has different impacts on physiological processes; 
hence, determining changes in FFAs in individual plasma is essential. Alterations in FFA concentration or profile 
may facilitate insulin resistance. Additionally, some FFAs show potential to predict GDM in early pregnancy and are 
strongly associated with the growth and development of the fetus and occurrence of macrosomia. Here, we aimed 
to review changes in FFAs in women with GDM and discuss the relationship of FFAs with GDM incidence and adverse 
outcomes.
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Introduction
The prevalence of obesity has increased globally over 
the past two decades, with obesity rates exceeding 35% 
among women in many countries worldwide [1]. Pre-
pregnancy overweight or obesity is a known risk factor 
for many pregnancy complications to a greater extent 
than gestational weight gain (GWG). The higher the pre-
pregnancy maternal body mass index, the higher the risk 
of pregnancy complications such as pregnancy-induced 
hypertension (PIH) and gestational diabetes mellitus 
(GDM) [2, 3]. The prevalence of GDM has increased by 
over 35% in the last few decades and is still growing [4]. 
GDM pathogenesis is unclear; however, its characteris-
tics are similar to those of type 2 diabetes mellitus, with 

increased insulin resistance (IR) incidence and relative 
insulin deficiency due to decreased β-cell function and 
numbers [5, 6]. Potential risk factors for GDM include 
pre-pregnancy overweight and obesity, age and unhealthy 
dietary habits [7]. Regarding dietary fat intake, higher 
intake of total fat saturated fatty acids (SFAs) and cho-
lesterol in pregnant women was previously thought to be 
associated with an increased risk of GDM [8, 9], whereas 
intake of polyunsaturated fatty acids (PUFAs) and alpha-
linolenic acid (ALA) was associated with a decreased 
risk [10]. The International Association of Diabetes and 
Pregnancy Study Groups (IADPSG) and World Health 
Organization (WHO) recommend a 75 g, 2 h oral glucose 
tolerance test (OGTT) for pregnant women between 24 
and 28  weeks of gestation [11, 12]. The American Dia-
betes Association (ADA) diagnostic criteria are a fasting 
blood glucose level ≥ 5.1 mmol/l at the 60th minute of the 
OGTT or a blood glucose concentration ≥ 10 mmol/l at 
the 120th minute of the OGTT or a fasting blood glu-
cose level ≥ 8.5 mmol/l at the 120th minute of the OGTT 
[13]. GDM is one of the most common pregnancy com-
plications [14]. GDM is associated with poor pregnancy 
outcomes, abnormal glucose tolerance, and obesity in 
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offspring [15–17]. Although preventing GDM is not pos-
sible, early diagnosis is necessary [16].

Free fatty acid (FFA) is a physiologically important 
energy substrate released from adipose tissue through 
lipolysis in response to the body’s energy needs. FFA 
is an efficient energy store in adipocytes in the form of 
triacylglycerides (TAGs) and phospholipids in cell mem-
brane components [18, 19]. Fat metabolism and carbohy-
drates are closely related, and alterations in FFAs may be 
involved in pathophysiologic processes associated with 
IR in GDM [20]. This review aimed to summarize the 
correlation between altered FFA levels and GDM to pro-
vide help in early GDM prevention and find a relation-
ship with poor outcomes.

Pathophysiologic process and risk factors of GDM
There is a progressive increase in insulin resistance dur-
ing normal pregnancy due to an increase in circulating 
placental hormones, including adrenocorticotropic hor-
mone, adrenocorticotropic hormone-releasing hormone, 
human placental lactogen, prolactin, estrogen, and pro-
gesterone [21–26]. Maternal obesity also promotes IR in 
early pregnancy, leading to increased lipolysis in the sec-
ond trimester [27, 28], with the result that elevated FFA 
levels can further exacerbate IR by inhibiting maternal 
glucose uptake and stimulating hepatic gluconeogenesis 
[28, 29]. Increased maternal IR leads to elevated mater-
nal postprandial glucose levels and growth-promoting 
FFAs [23, 27, 30]. In addition, insulin secretion increases 
during normal pregnancy to maintain maternal blood 
glucose levels [22]. In contrast, in pregnant women with 
GDM, insulin secretion fails to compensate for the pro-
gressive increase in insulin resistance during pregnancy, 
leading to the development of maternal hyperglycemia 
[31]. A high-fat and high-sugar diet leads to IR and β-cell 
dysfunction [32], and lipotoxicity caused by hypertriglyc-
eridemia during pregnancy also contributes to pancreatic 
β-cell damage and further reduction in insulin secretion 
[33, 34]. In addition, excessive inflammatory activation 
may be associated with GDM, and preeclampsia pos-
sesses a similar pathophysiological process to GDM [35, 
36], with pro-inflammatory mediators of arachidonic acid 
(AA) and linoleic acid (LA) derivatives playing an impor-
tant role in the development of both [37]. The pathogen-
esis of GDM is similar to that of type 2 diabetes mellitus, 
which is characterized by increased insulin resistance 
and a decrease in β-cell function and number caused by 
relative insulin deficiency [5, 6]. There are many risk fac-
tors that contribute to the development of GDM, such 
as a history of GDM pregnancies [38], increasing mater-
nal age [39], pre-pregnancy overweight or obesity [40], 
weight gain during pregnancy [41], and high dietary fat 
and low-carbohydrate intake [42], among other factors.

FFA sources and metabolic processes
Fatty acids (FAs) are usually found in organisms in three 
main esters: TAGs, phospholipids, and cholesterol esters. 
When FAs are not present in the plasma as esters, they 
are referred to as non-esterified FAs or FFAs. FAs are 
mainly taken up as phospholipids and TAGs. During 
digestion, TAGs are broken down into monoglyceride, 
diacylglycerol, and FFAs. Short- and medium-chain FAs 
(≤ 12 carbons) are directly absorbed by intestinal cells. 
Long-chain FAs (> 12 carbons) are absorbed and re-con-
verted into TAGs and transported via lipoprotein parti-
cles such as high-density, low-density, very low-density 
lipoproteins and chymotrypsin particles [43]. Lipo-
protein lipases present on the cell surface cleave TAGs 
to form FFAs that are taken up by the cells [44]. In the 
blood, FFAs are mainly carried by serum albumin. In adi-
pose tissues, FFAs are re-esterified to form TAGs, which 
are stored in adipose droplets of adipocytes and later 
mobilized through lipolysis, i.e., the hydrolysis of TAGs 
[18]. In mitochondria, most FFAs undergo β-oxidation 
to produce acetyl-coenzyme A, and subsequently, acetyl-
CoA enters the Krebs cycle to produce energy as adeno-
sine triphosphate (ATP) [18, 45]. FFAs are also important 
signaling molecules [46]. In addition to dietary intake, 
FFAs can be synthesized endogenously, which is referred 
to as de novo adipogenesis, with the main source being 
(excess) carbohydrates [18, 44].

FFAs are hydrocarbon chains comprising methyl and 
carboxyl groups at each end. According to the pres-
ence or absence and number of carbon–carbon double 
bonds, FFAs can be categorized as saturated FAs(SFAs, 
no double bonds), monounsaturated FAs (MUFAs, one 
double bond), or polyunsaturated FAs (PUFAs, multiple 
double bonds), and a detailed categorization of the FFA 
profiles is presented in Fig.  1A. Figure  1B indicates the 
common sources of dietary intake. Depending on the 
position of the first double bond at the methyl end of the 
FFA molecule, PUFAs can be subdivided into n-3, n-6, 
and n-9 FAs. By measuring and quantifying FFAs, based 
on the length of the aliphatic tails, short-, medium-, and 
long-chain FAs have < 6, 6–12, and > 12 carbon atoms, 
respectively [47]. Commonly used test methods for FFA 
spectroscopy include gas chromatography- and liquid 
chromatography-mass spectrometries [48, 49]. FFAs 
play an important energetic role and are involved in 
regulating intracellular signaling, cell structure, and lipid 
mediator production [50]. FFAs can also be converted 
to sphingolipids and phospholipids, which are involved 
in cell membrane formation. Among them, ceramide, 
a type of sphingolipid, is synthesized de novo from SFA 
(e.g., palmitate) in a multistep enzymatic cascade reac-
tion and is the main scaffold for most complex sphin-
golipids, which can be broken down into variable FFAs 
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and sphingomyelins. It can affect glucose metabolism by 
blocking the activation of the anabolic enzyme Akt or 
protein kinase B (Akt/PKB), inhibiting insulin signaling, 
and inducing selective insulin resistance, which hinders 
glucose uptake and storage and promotes hepatic gluco-
neogenesis [51–53]. Mustaniemi Sanna et al. found that 
although ceramides, along with clinical risk factors and 
triglycerides, did not appear to significantly improve the 
predictive performance of GDM, unfavorable changes in 
ceramides could indicate the degree of metabolic distur-
bances in GDM [54].

Association between dietary FA intake and GDM
GDM development is related to many factors, includ-
ing the type and amount of FAs consumed in diets. The 
balance between SFA and PUFA intake is important, 
and women with GDM reportedly consume significantly 
less fatty fish representing PUFA but consume a higher 
proportion of saturated fat [55]. Moreover, SFA intake is 
positively associated with the development of GDM [56]. 
Most current studies tend to investigate dietary intake 
using questionnaires, which makes knowing the amount 
of each FFA consumed difficult. Humans consume 
nutrients as part of complex foods that contain varying 
amounts of nutrients, which may impact the FFA intake 
from specific sources.

Dietary sources of FFAs play an important role in reg-
ulating inflammation. Increased intake of MUFA may 
be associated with anti-inflammatory effects. One of 
the most abundant omega-7 MUFA is palmitoleic acid 
(POA; C16:1 n-7), derived from fatty fish, fish oil, maca-
damia nuts, sea buckthorn, and Wagyu beef. Oleic acid 
(OA; C18:1n9) is one of the most abundant MUFA in the 
human diet [57, 58]. POA activates basal lipolysis and 

re-esterification, increases lipoprotein lipase (Lpl) activ-
ity, regulates n3-PUFA metabolism in membrane phos-
pholipids, and also reduces proinflammatory cytokines 
to alleviate chronic inflammation. OA may ameliorate 
inflammation by regu AA metabolism [58]. Studies have 
shown that dietary supplementation with palmitoleate 
is beneficial for improving lipid and glucose metabolism 
and has also been associated with favorable changes in 
genes that regulate inflammation [58, 59].Yang’s previ-
ous research has also shown that repeated administration 
of palmitoleate downregulated the expression of proin-
flammatory genes, acted as an anti-inflammatory, and 
blocked glucose or SFA-induced apoptosis of β-cells and 
improved insulin resistance [60]. Long-chain PUFAs (LC-
PUFAs) include two categories: n-3 and n-6 PUFAs. The 
human body needs to consume some n-3 and n-6 PUFAs 
from the diet. For example, ALA and LA as essential 
fatty acids need to be obtained from diets [61]. Typical 
dietary n-3 sources are oily seeds such as chia or flaxseed, 
fish, green vegetables, and grass-fed animal products, 
whereas n-6 is usually derived from vegetable oils such 
as corn or sunflower seeds, and non-grass-fed animal 
products (Fig. 1B). Generally, n-6 PUFAs are regarded as 
pro-inflammatory molecules, whereas n-3 PUFAs (espe-
cially eicosapentaenoic acid and docosahexaenoic acid 
(DHA) are regarded as anti-inflammatory molecules [62]. 
Maintaining a balance between n-3 and n-6 PUFAs is 
important for regulating inflammation and immunomod-
ulation. Diets high in n-3 intake can cause reduced 
cytokine production and lower cardiovascular disease 
risk factors [63]. However, western diets tend to be low 
in fiber and rich in total fat, rich in n-6 PUFAs as well 
as saturated fats, including hydrogenated vegetable fat 
(HVF, rich in trans fat) and interesterified fat (IF), making 

Fig. 1  A Classification of FFAs; B Common sources of dietary intake. A present the FFAs contained in SFA, PUFA (n-3/n-6), and MUFA, B reflects 
the common dietary categories of the above fatty acids. FFAs(free fatty acids); SFAs(saturated fatty acids); UFAs(unsaturated fatty acids); MUFAs 
(monounsaturated fatty acids); PUFAs (polyunsaturated fatty acids)
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the n-6/n-3 PUFA ratio high [64, 65]. Modern diets tend 
to increase n-6 intake and decrease n-3 intake owing to 
the increase in processed food consumption, widespread 
use of hydrogenated vegetable oils, and impact of indus-
trialized agriculture. This has skewed the n-3 to n-6 ratio 
in favor of n-6, promoting chronic inflammatory diseases 
[66]. Women with GDM have increased and decreased 
n-6 and n-3 PUFA blood levels, respectively [67]. In preg-
nant women with GDM, n-3 PUFA intake is beneficial in 
alleviating IR and inflammation and decreasing the risk 
of adverse pregnancy outcomes [68, 69]. Combined sup-
plementation with vitamin D and n-3 PUFAs for 6 weeks 
improves fasting glucose, very low-density lipoprotein 
cholesterol, serum triglycerides, and insulin levels in 
patients with GDM [70]. A higher dietary n-6:n-3 PUFA 
ratio is associated with higher GDM incidence [71]. 
Dietary fat-rich fish and oral n-3 supplements are more 
effective in increasing n-3 PUFA levels [55]. One study 
found no reduction in the GDM incidence in pregnant 
women who were supplemented with 800  mg of DHA-
enriched fish oil per day [72], and the same results were 
found in a DHA supplementation study [73]. Thus, DHA 
appears to be ineffective in preventing GDM but may 
have a therapeutic role in women with GDM. Pregnant 
women with GDM may benefit from DHA supplementa-
tion, which may be considered in their treatment. MUFA 
consumption has benefits, and the inclusion of OA 

(C18:1, n9)-rich olive oil and pistachios in the Mediter-
ranean diet [74, 75] reduces GDM incidence [76]. Olive 
oil intake reduces inflammatory markers in the placenta 
and cord blood of pregnant women with GDM [77]. In 
conclusion, further studies are needed to elucidate the 
relationship between dietary intake of different FA types 
and GDM. Figure  2 shows the association between die-
tary FFA intake and GDM occurrence and development.

Relationship between FFAs and GDM
FFAs and IR
IR is the main pathogenesis of GDM, which is mainly 
characterized by a decrease in sensitivity to insulin 
[6]. Circulating FFA is one of the most important fac-
tors promoting IR and altering insulin secretion [20, 
78]. In skeletal muscle, the mechanism by which FFAs 
cause IR involves protein kinase C activation via dia-
cylglycerol accumulation, leading to decreased tyrosine 
insulin receptor substrate-1 phosphorylation and phos-
phatidylinositol-3 kinase activation inhibition [79]. Acute 
and chronic elevation of FFA induces IR, and Chronic 
elevation of FFA levels may impede β-cell compensatory 
responses [80]. A study showed that calculating the FFA 
index during pregnancy can be used to measure insulin 
sensitivity [81]. Higher homeostatic model assessment 
of IR (HOMA-IR) and c-peptide levels can reflect GDM 
risk. Palmitic acid, stearic acid, AA, dihomo-γ-linolenic 

Fig. 2  Relationship between dietary intake of FFAs and GDM. Pregnant women with GDM tended to consume more SFA and n-6 PUFAs than n-3 
PUFAs, and the results were similar in blood. DHA supplementation is beneficial for pregnant women with GDM. GDM (gestational diabetes 
mellitus); FFAs(free fatty acids); SFAs(saturated fatty acids); PUFAs (polyunsaturated fatty acids); DHA(docosahexaenoic acid); IR(insulin resistance)
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acid (DGLA), and DHA positively correlated with 
HOMA-IR and c-peptide [82], indicating the effect of 
SFAs, AAs, DGLAs, and DHAs on GDM development. 
There may be a relationship between inflammation and 
the development of IR. The saturated fatty acid palmitate 
promotes the production of pro-inflammatory cytokines 
associated with insulin resistance in adipose tissue and/
or adipocytes [83]. In addition, Maternal obesity may 
exacerbate the development of IR. POA is a fatty acid 
with anti-inflammatory and insulin-sensitizing proper-
ties, and maternal obesity leads to decreased synthesis 
of POA by syncytiotrophoblast cells, which can lead to 
IR and persistent mild inflammation in the mother, pla-
centa, or fetus [84]. Levels of 20-hydroxyeicosatetraenoic 
acids (20-HETEs), a metabolite of AA, are positively cor-
related with BMI [85]. Increased levels of cytochrome 
P450 (CYP) and 20-HETE, which act on AA to exert 
enzymatic activity, are associated with the development 
of IR in obese women with GDM [37]. Therefore, mater-
nal obesity should also be of concern when considering 
the effect of changes in FFAs levels on IR. women with 
GDM who are predominantly characterized by defective 
insulin sensitivity have significantly higher FFA [86], also 
confirming the correlation between FFA and IR.

FFA levels in pregnant women with GDM
In addition to the measurement of dietary FFA intake, 
several studies have analyzed the association between 
blood FFAs and GDM. In healthy pregnancies, serum 
TG and NEFA levels in mid- to late-gestation, increas-
ing with the number of gestational weeks and peaking 
just before delivery [87]. The period of greatest increase 
in FFA and maximum placental FA transport occurs in 
the last trimester of pregnancy [88]. A trend towards 
higher plasma FFA levels in patients with GDM was 
observed [89, 90]. In addition, in a study on the FFA pro-
file of patients with GDM, some differences in FFA lev-
els were found between different gestational periods [55, 
91–94]. In Table 1, we present the characteristics of the 

population of studies and surveys on the FFA spectrum, 
while the corresponding results are presented in Table 2.

FFAs are altered differently during different gestational 
periods. Total plasma SFA, MUFA, PUFA n-6, and PUFA 
n-3 levels increased in pregnant women with GDM in 
early pregnancy [55]. At mid-pregnancy, with the ele-
vated total FFA, elevated SFA is more pronounced [93]. 
In Hou et  al.’s [91] study, various FFAs were elevated, 
including OA, ALA, and DGLA, similar to the observa-
tions in another study [94]. In early pregnancy, Ma et al. 
[92] and Zhang et al. [94] reported that myristic and pal-
mitic acids were elevated in pregnant women with GDM, 
and Ma et  al. found that palmitic acid was positively 
associated with GDM risk. In Zhang et al.’s study, dietary 
supplementation of ALA and DHA was associated with a 
high risk of GDM with elevated fasting glucose alone, and 
the levels of most FFAs, such as DGLA, myristic, palmit-
oleic, linolenic (γ-LA, GLA), and docosahexaenoic acids, 
were progressively lower from early to late pregnancy; 
however, the OA levels were consistently high [94]. In 
addition, LA levels were reversed [92, 94]. Differences in 
these data can be interpreted by looking at populations 
of different races and the controls chosen, whether they 
match the BMI, and whether fasting is required before 
blood collection. And the type of sample tested has lit-
tle effect [95]. Altogether, changes in FFA levels associ-
ated with GDM during different gestational periods are 
complex.

Alterations in the FFA profile of patients with GDM 
can also affect maternal physiology by altering the levels 
of FFA transporters, such as increased levels of plasma 
FA binding protein-4 (FABP4) and other proteins in the 
serum [96]. Zhang et  al. [97] found higher concentra-
tions of FABP4 in GDM women in mid- to late-gestation. 
FABP4 is positively associated with an increased GDM 
risk in early and mid-gestation [98].

Treatment of pregnant women with GDM with FFAs
Currently, the treatment of GDM mainly involves 
lifestyle interventions and drug therapy. Among the 

Table 1  Studies on population characteristics and blood concentrations of individual FFA species in GDM subjects and controls

References Number of subjects Match or not Population Period of pregnancy Sample type Fasting or not

Control GDM

[92] 43 43 Age and pre-
pregnancy BMI

Chinese 8–12w Serum Yes

[55] 726 127 Unmatched Iceland 11–14w Plasma No

[91] 138 131 Unmatched Chinese 24–28w Serum Yes

[93] 18 18 BMI German 27 ± 2w Plasma ns

[94] 485 195 Unmatched Chinese 11–14, 22–28, 32–34w Serum ns
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medications are insulin injections or oral glibenclamide 
and metformin, among others [99]. The traditional 
dietary treatment for GDM is carbohydrate restriction 
[100]. However, this approach usually leads to higher 

fat intake, as protein intake is constant [101]. High-fat 
diets typically increase serum FFAs and promote insu-
lin resistance [102]. Whereas an appropriate increase in 
the proportion of carbohydrates and a decrease in the 
proportion of fat in the diet can still keep blood glucose 

Table 2  Changes in the concentration of FFAs in the blood of GDM patients compared to controls

Use ↑ to indicate an increase in the concentration of FFAs and ↓ to indicate a decrease

Types of FFA Changes in plasma free fatty acid concentrations in GDM

[92] [55] [91] [93] [94]

8-12w 11-14w 24-28w 27 ± 2 w 11-14w 22-28w 32-34w

Total FFA ↑ ↑
Saturated FFA ↑ ↑
C14:0, myristic acid ↑ ↑ ↓
C15:0,pentadecanoic acid

C16:0, palmitic acid ↑ ↑ ↑
C17:0,heptadecanoic acid ↑
C18:0, stearic acid ↑ ↑ ↑
C19:0, nonadecylic acid

C20:0, arachidic acid ↑ ↑
C22:0, behenic acid ↓ ↓ ↓
C24:0, lignoceric acid ↓ ↓ ↓
Monounsaturated FFA ↑
C14:1n-9,myristoleic acid

C16:1n-7,palmitoleic acid ↑ ↑
C16:1n-9,cis-7 hexadecenoic acid ↑ ↑ ↓
C17:1(cis-10), cis-10-heptadecenoic acid; ↑
C18:1n-9, oleic acid (OA) ↑ ↑ ↑ ↑
C18:1trans-n-7, vaccenic acid

C19:1n-9,cis-10 nonadecenoic acid ↑
C20:1n-9, gondoic acid ↑
Polyunsaturated FFA

C16:2cis-9,12-hexadecadienoic acid ↑
PUFA n-3 ↑
C18:3n-3,α-linolenic acid (ALA) ↓? ↑ ↑ ↑
C20:5n-3, eicosapentaenoic acid (EPA) ↑ ↑
C22:3n-3 docosatrienoic acid ↑
C22:5n-3, docosapentaenoic acid ↑ ↑
C22:6n-3, docosahexaenoic acid (DHA) ↑ ↑
PUFA n-6 ↑
C18:2n-6, linoleic acid (LA) ↑
C18:3n-6,γ-linolenic acid (GLA) ↓? ↑ ↑ ↓
C20:2n-6, eicosadienoic acid ↑ ↑ ↓
C20:3n-6, dihomo-γ-linolenic acid (DGLA) ↑ ↑ ↑ ↓
C20:4n-6, arachidonic acid (ARA) ↑
C22:4n-6, adrenic acid ↓
TransFFA

C16:1trans-n-7, trans-palmitoleic acid

C18:2trans-n-6, linolelaidic acid

C14:1(trans-9), trans-9-tetradecenoic acid ↑
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below current treatment targets and reduce postpran-
dial FFAs [103].

In terms of pharmacological treatment, it has been sug-
gested that increased insulin sensitivity by metformin 
can lead to a decrease in FFA levels [104]. There is no sig-
nificant difference in FFA levels between the two modali-
ties of glycemic control in pregnant women with GDM, 
namely insulin therapy or diet [105].

FFA and GDM fetal growth and development 
and other pregnancy outcomes
Relationship between FFA and GDM fetal growth 
and development
In addition to glucose, fetal growth is also closely related 
to lipids [106]. Fasting and 1-h postprandial triglycerides 
at 16 weeks of gestation are strongly associated with neo-
natal obesity, more so than maternal glucose [107]. TGs 
at delivery were independently associated with large for 
gestational age (LGA) [108]. Placental triglyceride levels 
and FFA levels in umbilical cord plasma are significantly 
higher in GDM pregnant women, which may be related 
to altered placental lipogenesis and fatty acid oxidation 
protein expression and increased placental transport 
[109, 110]. It further led to fetal overgrowth. In addition, 
GDM pregnant women, independently of BMI, altered 
the lipid profile of the placenta, with elevated levels of 
both palmitic and stearic acids [93]. Higher maternal FFA 
levels in GDM reportedly lead to increased fetal birth 
weights [86], and maternal FFA levels were positively 
associated with the prevalence of LGA newborns [108, 
111]. Emilio Herrera et al. showed a positive correlation 
between maternal FFA and neonatal weight and adiposity 
in pregnant women with GDM who had good glycemic 
control. Maternal dyslipidemia in GDM may promote 
the transfer of maternal FAs to the fetus, leading to an 
increase in fetal adipose tissue mass, thereby increasing 
macrosomia risk [112]. In the study by Fan et  al., FFA 
levels and fetal growth restriction (FGR) were higher in 
women with GDM than in controls in late pregnancy, and 
the area under curve value for GDM diagnosis and FGR 
was 0.84. In addition, a positive correlation was observed 
between serum FFA and umbilical artery systolic/dias-
tolic ratio (S/D), pulsatility index (PI), and resistance 
index (RI), reflecting the resistance to blood flow in preg-
nant women; therefore, fetal growth in a poor intrauter-
ine environment may contribute to FGR development. 
Moreover, FFA in the serum positively correlated with 
umbilical artery S/D, PI, and RI values, reflecting blood 
flow resistance in pregnant women [113]. Studies on 
the relationship between the FFA profile levels and fetal 
growth are further needed to utilize FFA concentration 
or profile levels to help the fetus grow within the appro-
priate range.

DHA and AA are essential for fetal CNS development 
and immune system regulation [114]. Reduced maternal-
to-fetal DHA transfer in GDM may be associated with 
impaired placental DHA uptake [115, 116]. Reduced cord 
blood DHA levels in patients with GDM may lead to 
reduced plasma DHA levels in neonates with GDM [117, 
118]. This outcome affects fetal neurodevelopment in the 
first 6 months of life [119]. Cord blood DHA levels posi-
tively correlate with maternal DHA levels when patients 
with GDM have good glycemic control [120]. Léveillé 
et  al. also observed no reduction in DHA levels in the 
umbilical cord blood of pregnant women with GDM 
treated with diet or medication [121]. It can be seen that 
effective control of blood glucose levels in GDM patients 
is beneficial in maintaining fetal DHA levels. To some 
extent, it favors fetal neurodevelopment. DHA sup-
plementation during pregnancy at 600  mg/d does not 
improve fetal DHA status [122].

Association between FFA and other pregnancy outcomes
N-3 and n-6 PUFAs are essential for the structural and 
functional growth and development of the placenta [123]. 
In addition to exhibiting anti-inflammatory properties, 
n-3 FAs have antioxidant potential and play a crucial 
part in stimulating placenta formation, angiogenesis, and 
remodeling in early pregnancy [124, 125]. Inadequate 
maternal LC-PUFA supply and impaired maternal–fetal 
transfer are associated with adverse pregnancy outcomes, 
such as preeclampsia, intrauterine growth retardation, 
and GDM [126, 127]. Neonatal hyperbilirubinemia inci-
dence and neonatal hospitalization in pregnant women 
with GDM can be reduced by supplementation with n-3 
PUFAs [69].

In conclusion, there have been more studies on the 
impact of altered FFA concentrations on pregnancy 
outcomes in patients with GDM, but few studies have 
evaluated the relevance of alterations in different FFA 
subclasses in patients with GDM to other adverse mater-
nal or neonatal outcome events, and future research 
could be directed in this direction.

Discussion
FFAs are derived from various sources, have a high cor-
relation with IR, and are likely to be associated with 
GDM development. Regarding diet, having a balanced 
FFA intake is important; however, analyzing a specific 
FFA is difficult owing to its complexity and various die-
tary components. Excessive SFA intake can have harm-
ful effects, leading to an increase in inflammation, IR 
[128], and cardiovascular disease [129]. Before GDM 
diagnosis, SFA intake was higher than that of PUFAs. 
When the balance of n-6 PUFAs versus n-3 PUFAs 
favored the former, a positive correlation was observed 
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with GDM incidence, and preventing GDM by sup-
plementing with n-3 PUFAs has not yet been conclu-
sively demonstrated. Available evidence suggests that 
n-3 PUFA supplementationis not beneficial in reducing 
the incidence of maternal pregnancy outcomes such as 
gestational diabetes and hypertension, but is benefi-
cial for neonatal health, such as reducing the incidence 
of preterm labor and low birth weight, and increasing 
birth weight and birth length [130]. Notably, n-3 FA 
supplementation in pregnant women with GDM is ben-
eficial to reducing IR and inflammation and decreas-
ing adverse pregnancy outcomes. In addition to dietary 
intake, plasma FFAs reflect FFA levels from various 
sources, and FFA levels in pregnant women with GDM 
vary considerably across gestational periods, with the 
majority being elevated from early to mid-pregnancy 
and progressively decreasing in late pregnancy. Differ-
ences were observed in the results of different studies 
over the same period, which may be related to factors 
such as the study populations and whether the relevant 
indicators were matched. FFAs, palmitic acid, ALA, 
and DHA are highly correlated with GDM develop-
ment. In addition, lipocalin is a potent anti-inflamma-
tory/anti-diabetic adipokine [131]. Saturated fatty acids 
and omega-3 fatty acids are associated with circulating 
concentrations of lipocalin in healthy humans [132]. 
Lipocalin is associated with the development of GDM 
during pregnancy [133]. More studies could be done 
in the future to evaluate the effects of altered lipocalin 
and FFAs in patients with GDM.

Lipids are associated with fetal growth and develop-
ment; FFA levels are closely related to fetal weight, and 
mechanisms of fetal underweight or overweight require 
further exploration. Fetal FFA acquisition is regulated by 
maternal FFA levels and placental mechanisms. DHA is 
closely related to fetal neurological development, and the 
reduced DHA transfer to the fetus in patients with GDM 
may be related to impaired placental uptake, whereas 
good control of blood glucose promotes the transfer of 
placental FFAs to an extent, providing sufficient DHA to 
the fetus. Other adverse pregnancy events are less well-
studied. High FFA levels in the postpartum period in 
women with a previous history of GDM likely contribute 
to type 2 diabetes mellitus [134, 135]. This may be related 
to reduced sensitivity to insulin via lipolytic inhibition 
[136]. Positive recognition of changes in FFAs facilitates 
a smooth pregnancy course; however, more research and 
standardization between clinical trials and patient sam-
pling are needed. Finally, appropriate FA intake should 
be considered before and during pregnancy to optimize 
maternal and infant outcomes and bring new preventive 
and therapeutic strategies for GDM.
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