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Abstract 

Background  Aberrant intracellular or intercellular signaling pathways are important mechanisms that contribute 
to the development and progression of cancer. However, the intercellular communication associated with the devel-
opment of ccRCC is currently unknown. The purpose of this study was to examine the aberrant tumor cell-to-cell 
communication signals during the development of ccRCC.

Methods  We conducted an analysis on the scRNA-seq data of 6 ccRCC and 6 normal kidney tissues. This analysis 
included sub clustering, CNV analysis, single-cell trajectory analysis, cell–cell communication analysis, and transcrip-
tion factor analysis. Moreover, we performed validation tests on clinical samples using multiplex immunofluorescence.

Results  This study identified eleven aberrantly activated intercellular signaling pathways in tumor clusters 
from ccRCC samples. Among these, two of the majors signaling molecules, MIF and SPP1, were mainly secreted 
by a subpopulation of cancer stem cells. This subpopulation demonstrated high expression levels of the cancer stem 
cell markers POU5F1 and CD44 (POU5F1hiCD44hiE.T), with the transcription factor POU5F1 regulating the expression 
of SPP1. Further research demonstrated that SPP1 binds to integrin receptors on the surface of target cells and pro-
motes ccRCC development and progression by activating potential signaling mechanisms such as ILK and JAK/STAT.

Conclusion  Aberrantly activated tumor intercellular signaling pathways promote the development and pro-
gression of ccRCC. The cancer stem cell subpopulation (POU5F1hiCD44hiE.T) promotes malignant transformation 
and the development of a malignant phenotype by releasing aberrant signaling molecules and interacting with other 
tumor cells.
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Introduction
Renal cell carcinoma (RCC) is the deadliest tumor within 
the urological system, with clear cell renal cell carcinoma 
(ccRCC) being the most prevalent histological subtype 
[1]. Aberrant intercellular communication can result 
in uncontrolled cell proliferation, potentially leading to 
tumorigenesis and progression [2]. Nevertheless, the 
intercellular communication signals that facilitate ccRCC 
tumor cell growth in the setting of carcinogenesis are still 
not well understood.

Most RCC originates from renal tubular epithelial cells 
[3]. Currently, research on the driving factors of RCC pri-
marily relies on genomic alterations, epigenetics, bulk 
RNA, and proteomic features [4]. For instance, in ccRCC, 
frequent biallelic loss of tumor suppressor genes on chro-
mosome 3p, such as VHL, PBRM1, SETD2, and BAP1, 
can be detected [5]. Transcription factors such as HIF1A, 
MYC, and FOS are activated in ccRCC, promoting gly-
colytic metabolism, dedifferentiation, and growth [6, 7]. 
With the continuous advancement of single-cell tran-
scriptome sequencing (scRNA-seq), we have the oppor-
tunity to gain in-depth insights into the complex cellular 
interactions within the tumor microenvironment (TME). 
ScRNA-seq enables us to thoroughly examine the dis-
parities between tumor cells and normal cells, track the 
paths of cell growth and differentiation, and clarify the 
communication networks among cells [8, 9].

Intercellular communication involves transmitting 
messages from one cell to another through a medium 
to elicit a response [10]. Normal intercellular commu-
nication is crucial for preserving proper organizational 
function in multicellular organisms [11]. The trans-
mission of signals between cells in the TME primarily 
occurs through direct cell-to-cell contact or by the action 
of paracrine signaling molecules such as cytokines, 
chemokines, growth factors, and protein hydrolases [12]. 
Cells in the TME communicate via receptors and ligands, 
creating a complex signaling network in cancer that is 
closely linked to a variety of behaviors, including cancer 
cell proliferation and immune escape [13, 14]. Disrupt-
ing or interfering with malignant signal transduction in 
intercellular communication is a crucial target for future 
cancer treatment strategies [15]. Given the current state 
of research and the significant role of intercellular com-
munication signals in tumors, our study focused on inter-
tumor cell signaling pathways in the development of 
ccRCC.

In this study, we analyzed scRNA-seq data from 
six normal kidney samples and six ccRCC samples. 
In the tumor cell clusters of ccRCC, we identified 11 
aberrantly activated intercellular signaling pathways. 
Simultaneously, we discovered a subpopulation of can-
cer stem cells with the capability to secrete abnormal 

intercellular signaling substances. Moreover, we uti-
lized multiplex immunofluorescence (mIF) to examine 
clinical samples, validating these findings.

Methods
Data and clinical sample collection
The scRNA-seq data used in this study were obtained 
from the GEO database (GSE159115: https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) [16]. The dataset includes 7 ccRCC 
tumor samples and 6 normal kidney tissue samples. For 
further analysis, we extracted high-quality scRNA-seq 
data from 6 ccRCC and 6 normal kidney tissue sam-
ples and discarded data from one low-quality ccRCC 
sample.

The collection of samples used in this study was 
approved by the Ethics Committee of the Affili-
ated Tumor Hospital of Xinjiang Medical University 
(K-2023028). We received written consent from partici-
pants that we informed before conducting the study. Tis-
sue sections from four patients who underwent radical 
nephrectomy were procured from our hospital pathology 
department, including tumor and distal normal tissue. 
At least two pathologists verified the ccRCC pathotype 
and normal kidney tissue. The baseline characteristics of 
the clinical samples used in this study are summarized in 
Additional file 1: Table S1.

Single‑cell transcriptome sequencing data analysis
We used the Seurat R package (version 4.3.0) (https://​
satij​alab.​org/​seurat/) [17] and followed the official user’s 
guide for working with data. First, an initial quality con-
trol (QC) step was performed to filter high-quality cells, 
which included cells with 200–2500 RNA features and a 
mitochondrial gene proportion of less than 15%. We then 
normalized the data using the global scaling normaliza-
tion method “LogNormalize” to ensure comparable RNA 
expression values in different cells. After identifying the 
genes with highly variable features in the dataset, we used 
principal component analysis (PCA) for dimensional-
ity reduction. We selected the initial 20 principal com-
ponents to capture major variants while still decreasing 
data dimensionality. The uniform manifold approxima-
tion and projection (UMAP) method is used in Seurat as 
a nonlinear reduction method to turn high-dimensional 
cell data into two-dimensional space. Thus, cells exhibit-
ing similar expression patterns are categorized together, 
while those with dissimilar expression patterns can be 
segregated into different groups. Cell type annotation 
was carried out through a combination of automated and 
manual annotations to ensure accurate identification and 
annotation of each cell cluster.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://satijalab.org/seurat/
https://satijalab.org/seurat/
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Single‑cell copy‑number variation analysis
To distinguish malignant cells in ccRCC samples, we 
assessed the copy number variation (CNV) of each cell 
in different chromosomal regions using the infercnv R 
software package (version 1.16.0) (https://​github.​com/​
broad​insti​tute/​infer​CNV) [18]. We used normal kidney 
epithelial cells as a reference to calculate CNV levels in 
the target cell clusters [19]. Subsequently, we generated a 
final CNV result file after normalizing the data using the 
expression levels of normal cells as a control. The CNV 
analysis was performed by running the “Infercnv::run” 
function with a cutoff value set to 0.1, and denoising and 
intermediate step plotting were enabled. To check for the 
presence of malignant cells, we filtered the InferCNV 
output based on “cell type” annotations that included 
“Magli.” Next, we extracted the CNV profiles of these 
epithelial cells for further analysis. Finally, we used Uphy-
loplot2 to construct phylogenetic trees depicting tumor 
evolution based on CNV data, categorizing the trees for 
each sample with consideration of tumor location and 
mutational status.

Single‑cell trajectory analysis
To study cell state transitions, we employed the Mono-
cle R package (version 2.28.0) (http://​cole-​trapn​ell-​lab.​
github.​io/​monoc​le-​relea​se/​docs/) for trajectory analysis 
[20]. This involved selecting, sorting, and filtering genes 
from the scRNA-seq data, estimating size factors, and 
subsequently reducing dimensionality using the DDR-
Tree algorithm. We visualized trajectories using cellu-
lar state plots and cell type maps and outlined distinct 
developmental trajectories for each cell type. To examine 
gene expression changes along these trajectories, we used 
color gradients to visualize specific genes. Additionally, 
heatmap analysis displayed the top five highly expressed 
genes within each group.

Cell–cell communication analysis
We employed the CellChat R package (version 1.6.1) 
(https://​github.​com/​sqjin/​CellC​hat) to investigate inter-
cellular communication and identify signaling molecules 
at the single-cell level [8]. Initially, we processed gene 
expression data to pinpoint highly expressed ligands 
and receptors within individual cell clusters. Next, we 
evaluated intercellular communication at the pathway 
level by computing communication probabilities for all 
ligand-receptor interactions associated with each sign-
aling pathway. These probabilities were then aggregated 
to construct an intercellular communication network. 

Furthermore, to identify significant contributors within 
the cell–cell communication network, we calculated 
network centrality scores for each constituent and pre-
sented the findings visually. Additionally, we assessed and 
depicted signaling effects in both outgoing and incoming 
communication patterns. To comprehensively grasp how 
multiple cell clusters and signaling pathways synchronize 
their functions, we utilized CellChat’s pattern recogni-
tion approach to investigate diverse patterns of incoming 
and outgoing signal interactions among distinct cell clus-
ters. Finally, to appraise aberrant signaling in tumor cells, 
we conducted a comparative analysis of the total count 
and strength of cell–cell interactions between tumor cells 
and epithelial cells.

Single‑cell transcription factor analysis
We used the SCENIC R package (version 1.3.1) (https://​
github.​com/​aerts​lab/​SCENIC) to infer transcription 
factor regulatory networks and 4252 tumor cells from 
ccRCC samples [21]. We followed the official SCENIC 
guidelines and default parameters to standardize the 
analysis process. The SCENIC analysis consisted of three 
main steps. In the first step, the grnboost2 algorithm was 
employed to identify and filter genes co-expressed with 
transcription factors (TFs). The second step involved 
using RcisTarget to find significantly expressed target 
genes, then performing a significant motif enrichment 
analysis for each co-expressed module. In the third step, 
the transcriptional activity of each regulator was assessed 
using the AUCell algorithm. Cytoscape was used to por-
tray the regulatory network connecting transcription fac-
tors and their target genes.

Multiplex immunofluorescence staining
The levels of SPP1, POU5F1, CD44, JAK1, STAT3, and 
ILK proteins were detected through mIF. Sections were 
deparaffinized, underwent antigen retrieval, and were 
blocked with serum to prevent non-specific binding. 
Primary antibodies targeting the genes of interest were 
applied overnight at 4 °C, followed by washing and incu-
bation with fluorescently labeled secondary antibodies 
for 1–2 h at room temperature. Nuclear staining was per-
formed with appropriate dyes if necessary. Sections were 
then mounted and visualized using a fluorescence/confo-
cal microscope.

Statistical analysis
This study used R (version 4.3.1) for all statistical anal-
yses. Two-tailed p-values were used for statistical 

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
http://cole-trapnell-lab.github.io/monocle-release/docs/
http://cole-trapnell-lab.github.io/monocle-release/docs/
https://github.com/sqjin/CellChat
https://github.com/aertslab/SCENIC
https://github.com/aertslab/SCENIC
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significance. Differential gene expression analysis of dif-
ferent cell subpopulations was performed in the Seurat 
using the Wilcoxon rank sum test. The Monocle R pack-
age includes built-in t-tests and Wilcoxon rank sum tests 
for evaluating variations in gene expression. The SCENIC 
R package has a group of statistical methods, such as 
building co-expression networks, using hypergeometric 
and Fisher’s exact tests to find thematic enrichment, and 
using the AUCell algorithm to score transcription factor 
activity. p-values less than 0.05 were considered statisti-
cally significant (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

Results
Establishment of a single‑cell landscape for ccRCC 
and normal kidney tissues
To depict the single-cell atlas of ccRCC and normal 
kidney tissue, we conducted an in-depth analysis of 
scRNA-seq data from the GEO database (GSE159115). 
We extracted scRNA-seq data from 6 ccRCC samples 
and 6 normal kidney tissue samples from this dataset 
for analysis, and baseline characteristics of all samples 
have been described in the original study [16]. Follow-
ing data quality control and filtering procedures, we 
constructed an atlas comprising 15,816 high-quality 
single cells and 23,541 genes and grouped these cells 
into 21 distinct clusters (Fig.  1A). We annotated the 
cell clusters based on the expression of classical cell 
marker genes [22] (Fig. 1B) and ultimately categorized 
the 21 cell clusters into 9 distinct cell types (Fig. 1C). 
There was an overlap in marker gene expression 
between tumor cells and epithelial cells in clusters 0, 
3, 5, 6, and 12, leading to inaccurate distinguishing of 
tumor cells and epithelial cells in ccRCC tissues (Epi-
thelial and Tumor in Fig.  1B). Therefore, we provi-
sionally labeled clusters 0, 3, 5, 6, and 12 in the ccRCC 
samples as “Epithelial/Tumor”. Conversely, clusters 
0, 3, 5, 6, and 12 in kidney tissue were confirmed to 
be epithelial cells (Fig.  1C). Based on the annotation 
results, the “Epithelial/Tumor” composition ratio was 
4252 (33.91%) in ccRCC samples, while the epithelial 
cell composition ratio was 1604 (48.96%) in normal 
kidney tissue samples, totaling 5856 cells (Fig.  1D). 
The top 5 genes that are differentially expressed rep-
resent the transcriptional profiles of nine distinct cell 
types (Fig. 1E).

Identification of tumor cells with two distinct 
transcriptional profiles in ccRCC samples
To accurately distinguish “Epithelial/Tumor” in ccRCC 
tissues, we performed in-depth analysis of 4252 “Epi-
thelial/Tumor” cells in ccRCC tissues and 1604 epithe-
lial cells in normal kidney tissues for a total of 5856 cells 
using four methods. Initially, we employed subpopula-
tion clustering analysis to categorize the 5856 cells into 
15 distinct subclusters (Fig.  2A). We identified 9 cell 
clusters in ccRCC samples and 10 cell clusters in normal 
samples. Notably, clusters 2, 5, 11, and 12 were observed 
in both types of samples, indicating that these cells share 
comparable transcriptional features. The reason for this 
is that one of the main goals of scRNA-seq is to identify 
populations of cells with similar transcriptome charac-
teristics [23]. In contrast, clusters 3, 4, 6, 10, 13, and 14 
were exclusive to normal samples, while clusters 0, 1, 7, 
8, and 9 were exclusive to ccRCC samples (Fig. 2B). Thus, 
we annotated clusters 2, 5, 11, and 12 as well as clusters 3, 
4, 6, 10, 13, and 14 derived from normal samples as epi-
thelial cells.

Subsequently, based on the classical ccRCC marker 
genes [22], we found that clusters 0, 1, 2, 5, 7, 8, 9, 11 
and 12 had significantly elevated levels of carbonic anhy-
drase 9 (CA9) and NADH dehydrogenase (ubiquinone) 
1 alpha subcomplex, 4-like 2 (NDUFA4L2) gene expres-
sion (Fig. 2C–E). Conversely, other clusters (3, 4, 6, 10, 13 
and 14) showed pronounced expression of epithelial cell 
markers while lacking tumor-specific markers, thus also 
demonstrating that these clusters were epithelial cells 
(Fig. 2F). High levels of CNVs are strongly linked to the 
development of cancer and can be used to identify possi-
bly malignant cells based on their CNVs [24]. Using 1,604 
epithelial cells from normal kidney tissue as a reference, 
we found significantly higher levels of CNV in clusters 0, 
1, 2, 5, 7, 8, 9, 11, and 12 from ccRCC samples (Fig. 2G, 
H). Thus, clusters 2, 5, 11, and 12 as well as clusters 0, 1, 
7, 8, and 9 from ccRCC samples were annotated as tumor 
cells.

Finally, we further validated the annotation results 
using scRNA-seq trajectory analysis. We constructed 
differentiation trajectories for 15 cell clusters and iden-
tified five distinct cell states (Fig.  3A, B). The process 
of transforming epithelial cells into malignant cells 
can be observed through the developmental trajectory 

Fig. 1  Single-cell atlas of ccRCC and normal kidney tissues. A. UMAP plots showing cell clustering, colored with ccRCC and normal kidney samples 
and with 21 cell clusters, respectively. B. Violin plots showing the expression of classical marker genes for cell types in different cell clusters. C. 
UMAP plots depicting the nine distinct cell types present in ccRCC and normal kidney samples. D. Number and proportion of different cell types. E. 
Heatmap showing the top 5 genes highly expressed in 9 cell types

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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consisting of cell fate 1 and cell fate 2 (Fig. 3C). The tra-
jectories of differentiation that consist of 6 cell clusters 
(3, 4, 6, 10, 13, 14) mainly represent the trajectories of 
epithelial cell differentiation and cell states 1, 5. The tra-
jectories of differentiation that consist of the remain-
ing 9 cell clusters mainly represent the trajectories of 
tumor cell differentiation and cell states 2, 3, 4 (Fig. 3D). 
Dynamic expression changes were observed for CA9 and 
NDUFA4L2 along consistent trajectories in the differen-
tiation from epithelial cells to malignant cells (Fig. 3E, F). 
In tumor cells, we observed activation of genes associ-
ated with cell proliferation (TMSB10, IGFBP3), migration 
(CCL2), signal transduction (DUSP1), and other behav-
iors (Fig. 3G).

As tumor clusters 2, 5, 11, and 12 of ccRCC retained 
the transcriptional characteristics of epithelial cells, we 
defined them as epithelial tumor cells (E.T) and labeled 
them C2-E.T, C5-E.T, C11-E.T, and C12-E.T (Fig.  3H). 
In terms of the transcriptional characterization of indi-
vidual cells, these E.T cells exhibit an intermediate tran-
scriptional state between epithelial and malignant cells. 
Cancers that originate from epithelial cells retain their 
epithelial cell characteristics during the early stages of 
development [25]. We speculate that these E.T clusters 
may play a crucial role in the early stages of tumor devel-
opment, preserving abnormal information associated 
with tumorigenesis.

Construction of an intercellular communication atlas 
for the 15 cell clusters
We utilized the CellChat R package [8] to construct a 
cell–cell communication atlas of 15 clusters, consisting 
of a total of 5856 cells from both normal samples and 
ccRCC samples. Firstly, we identified the top 14 signal-
ing pathways contributing significantly to outgoing and 
incoming signals among the 15 cell clusters. Among these 
pathways, the top 5 based on their contribution values 
are MIF, ANGPTL, SPP1, MK, and VISFATIN (Fig. 4A). 
The intercellular communication network of tumor cells 
exhibits a significantly higher number of interactions and 
interaction strength compared to epithelial cells (Fig. 4B). 
VEGF-targeted therapy is the first-line treatment for 
advanced RCC [26]. We identified complex interactions 

between clusters through the top 5 signaling pathways as 
well as the VEGF signaling pathway (Fig.  4C). Continu-
ing, we identified the key senders, receivers, intermedi-
aries, and influencers within these six signaling networks 
among the cells by calculating several network centrality 
scores for each cell group (Fig. 4D).

In addition, we identified MIF-(CD74 + CXCR4) and 
MIF-(CD74 + CD44) as the most contributing ligand-
receptor pairs (L-R pairs) to MIF signaling pathway. The 
expression of the receptors CXCR4 and CD74 was mark-
edly increased in tumor cells, suggesting activation of the 
MIF signaling pathway in tumors (Fig.  4E). We discov-
ered L-R pairs in both the SPP1 and ANGPTL signaling 
pathways, and determined that the related genes were 
considerably elevated in tumor cells (Fig.  4F, G). Taken 
together, this part of our results constructs a general atlas 
of cell–cell communication between 15 cell clusters.

Discovering physiological intercellular signaling pathways 
between epithelial cells and aberrant intercellular 
signaling pathways between tumor cells
Intercellular communication between normal epithelial 
cells is essential for maintaining physiological functions 
[27]. We identified two major physiological intercellu-
lar signaling pathways, SPP1 and AVP, in six key epithe-
lial cell clusters (Fig.  5A). The communication between 
these cell clusters is primarily mediated by the L-R pairs 
SPP1-(ITGAV + ITGB1) and AVP-AVPR1A (Fig.  5B, C). 
Specific signaling molecules (SPP1, AVP) are secreted by 
clusters of cells, while clusters expressing correspond-
ing receptors (ITGAV + ITGB1, ACPR1A) serve as target 
cells (Fig.  5D). The interaction of these signaling mol-
ecules with receptors on the surface of target cells estab-
lishes the communication pathways between different 
cell clusters.

Next, we identified eleven aberrantly activated inter-
cellular signaling pathways in nine tumor clusters from 
ccRCC samples. The strongest signaling of MIF, SPP1, 
and HGF was observed in C2-E.T, while the strongest 
signaling of ANGPTL and MK was observed in the C12-
E.T cluster (Fig. 6A). The eleven signaling pathways were 
classified into distinct functional groups: GROUP1 repre-
sents inflammation-related signals, GROUP2 represents 

(See figure on next page.)
Fig. 2  Distinguishing cell types of ccRCC samples. A. UMAP plot of subpopulation clustering analysis of 5856 cells. B. UMAP plot showing 
clusters of cells clustered in groups of ccRCC and normal samples. C. Violin plots depicting the expression of ccRCC tumor marker genes CA9 
and NDUFA4L2. D. UMAP plots showing the different enrichment profiles of CA9 and NDUFA4L2 in the 15 subpopulations. E. Violin plot of CA9 
and NDUFA4L2 expression levels significantly increased in tumor cells (tumor vs. epithelial, Mann–Whitney U test, ***p < 0.001). F. Violin plots 
showing the expression of the epithelial cell marker genes KRT8 and KRT18. G. Heatmap showing the results of CNV analysis. The upper heatmap 
represents the CNV profile of reference cells, while the lower heatmap represents the CNV profile of target cells. Red indicates CNV amplification, 
blue indicates CNV deletion and the depth of color represents the magnitude of CNV variation. H. Box plot illustrating the CNV levels across distinct 
cell clusters (Mann–Whitney U test, *** p < 0.001)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Distinguishing between cell types and cell states. A. Displaying the beginnings and endings of pseudo-time trajectories. The colors 
from dark to light represent the order of pseudo-time. B. Trajectory of cell differentiation showing five cell states. C. Differentiation trajectory 
showing the transformation of epithelial cells into tumor cells. D. Differentiation trajectories showing the positions of the 15 clusters. E. 
Differentiation trajectories demonstrating dynamic expression of the tumor marker genes CA9 and NDUFA4L2. F. Dot plots illustrating the dynamic 
expression of the tumor marker genes CA9 and NDUFA4L2 in cell fate 1 and cell fate 2. G. Heatmap depicting the highly expressed T0P10 genes 
in tumor cells and epithelial cells. H. UMAP plot of final annotated cell types
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angiogenesis signals, GROUP3 represents cell prolif-
eration signals, and GROUP4 represents signals associ-
ated with cell differentiation and survival (Fig.  6B). We 
focused on studying the TOP4 signaling pathways (MIF, 
ANGPTL, SPP1, and VISFATIN), which have the greatest 
contribution to intercellular signaling between cell clus-
ters. For the MIF signaling pathway, the primary sender 
of MIF signals is the C2-E.T cluster, while the most cru-
cial receiver of signals is the C7-Tumor cluster. The trans-
mission of MIF signals primarily occurs through L-R 
pairs MIF − (CD74 + CXCR4) and MIF − (CD74 + CD44). 
Except for CD44, which was only expressed in the C2-E.T 
and C7-Tumor cell clusters, all receptor and ligand genes 
were broadly expressed among these nine cell clusters 
(Fig.  6C). We examined the ANGPTL, SPP1, and VIS-
FATIN signaling pathways using the same analytical 
approach (Fig.  6D–F). Notably, the C2-E.T cell clusters 
were also the foremost senders of SPP1 signals, while the 
primary influencers and receivers of these signals were 
the C1-Tumor clusters (heatmap in Fig. 6E).

Communication between cells is essential for carry-
ing out complex biological functions, the coordinated 
between different cell populations and signaling path-
ways makes these functions possible [28]. We identi-
fied three outgoing communication modes for secretory 
cells and four incoming communication modes for target 
cells to coordinate signaling. For example, in C7 and C8 
tumor clusters, outgoing pattern 1 coordinates signals 
like MK, EGF, PTN, GDF, and EDN. In C8 and C9 tumor 
clusters, incoming pattern 1 coordinates signals like MIF, 
ANGPTL, MK, and PTN (Fig. 6G).

Taken together, the intercellular communication sig-
nals of tumor cell cluster interactions are much more 
abundant and complex.

Transcription factor analysis reveals POU5F1 targeting 
regulation of SPP1 in the C2‑E.T cluster
We utilized the SCENIC R package (v1.3.1) to analyze 
4252 cells from 9 tumor clusters in ccRCC samples for 
the identification of TFs [21, 29]. In the C2-E.T clus-
ter, we identified five highly transcriptionally active TFs 
(HNF4G, POU5F1, ARID3A, SOX4, and IRF7) (Fig. 7A). 
TF regulatory network analysis further revealed 15 TFs 

targeting the SPP1-(ITGAV + ITGB1) L-R pair, with 
POU5F1 identified as a key regulator of SPP1 (Fig.  7B). 
Subsequently, we quantified the activity of POU5F1 
using AUCell and observed an enriched AUC peak in 
the C2-E.T cluster (Fig.  7C). The C2-E.T cluster exhib-
ited concurrent high expression of POU5F1 and CD44, 
recognized markers of cancer stem cells (CSCs) [30, 31], 
indicating the presence of CSCs attributes in the C2-E.T 
cluster. Hence, the C2-E.T cluster was designated as the 
POU5F1hiCD44hiE.T subpopulation. Compared to epi-
thelial cells, POU5F1 expression was significantly higher 
in tumor cells (Fig. 7D). Finally, strong fluorescent signals 
of SPP1, POU5F1, and CD44 were observed in ccRCC 
clinical samples, confirming the above phenomenon at 
the protein expression level (Fig. 7E). Together, we iden-
tified a subpopulation of CSCs, and a potential tran-
scriptional regulatory mechanism for the SPP1 signaling 
molecule secreted by this subpopulation.

The inter‑tumor cell SPP1 signaling pathway promotes 
malignant phenotypes
Following secretion by cells, SPP1 signaling molecules 
bind to the integrin receptor (αβ1, encoded by ITGAV 
and ITGB1) on the surface of target cells, facilitating the 
transmission of extracellular signals into the intracellu-
lar environment [32]. The transduction of signals leads 
to target cell polarity, gene expression, cell survival, and 
proliferation [33]. To investigate the role of SPP1 signal-
ing on tumor cells, we analyzed 4252 tumor cells from 
ccRCC samples and 1604 epithelial cells from normal 
samples. The signal transduction mediated by integ-
rins typically requires the activation of adhesion kinases 
such as focal adhesion kinase (FAK), SRC family kinases, 
and integrin-linked kinase (ILK) [34, 35]. We observed 
a markedly elevated expression of ILK in tumor clus-
ters when compared to epithelial cells (Fig. 8A–C). ILK, 
as a pro-proliferative protein kinase, serves as a central 
hub for integrin-mediated intracellular signaling, acti-
vating downstream pathways such as PI3K/AKT, Wnt/
β-catenin, MAPK, and others [35, 36]. We observed 
significant overexpression of JAK1 and STAT3 in tumor 
cells, which are pivotal members of the JAK/STAT path-
way (Fig. 8D–F).

(See figure on next page.)
Fig. 4  Intercellular communication network atlas of 15 cell clusters. A. Heatmap showing the top 14 signals in the 15 cell clusters with the largest 
contribution of outgoing or incoming signals. B. Bar charts illustrating the quantity and intensity of intercellular communication. C. Chord diagrams 
of six signaling pathways showing complex interactions between cell populations. D. Heatmaps depicting network centrality scores for the six 
signaling. E–G. Bar graphs depicting ligand-receptor pairs mediating the communication of the MIF, SPP1, and ANGPTL signaling; dot plots 
of the dynamic expression changes of receptor-ligand pairs associated with the MIF, SPP1, and ANGPTL signaling in the pseudo temporal trajectory; 
violin plots depicting the differential expression of MIF, SPP1, and ANGPTL signaling L-R pair genes between tumor cells and epithelial cells (Mann–
Whitney U test, ***p < 0.001). E.T + E indicating that the cluster consists of E.T cells and epithelial cells
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Fig. 4  (See legend on previous page.)
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Subsequently, we investigated marker genes asso-
ciated with the biological behaviors of cancer cells 

and identified 12 marker genes enriched in clusters of 
tumor cells (Fig.  8G). These marker genes represent 

Fig. 5  Cell–cell communication between six epithelial cell cluster. A. Heatmap showing two physiological signaling pathways in six clusters. B. 
Bar graphs showing L-R pairs that mediate communication in the SPP1and AVP signaling pathway. C. Chord diagrams of SPP1 and AVP signaling 
pathway-mediated interactions between six epithelial cell clusters. D. Violin plots illustrating the gene expression of receptor-ligand pairs 
of the SPP1 and AVP signaling pathway
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Fig. 6  Cell–cell communication between the 9 tumor cell clusters in ccRCC tissues. A. The heatmap showing the top 11 signals in the 9 tumor 
cell clusters with the largest contribution of outgoing or incoming signals. B. Dot plot showing 11 signals divided into 4 groups of signal modules 
based on functional similarity. C. Heatmap depicting network centrality scores for the MIF signaling; bar graph showing L-R pairs that mediate 
communication in the MIF signaling pathway; violin plots illustrating the expression of receptor-ligand pairs of the MIF signaling pathway. 
D–F. Figures displaying network centrality scores (heatmaps), ligand-receptor pairs mediating communication (bar graphs), and expression 
of receptor-ligand pairs (violin plots) for ANGPTL, SPP1, and VISFATIN signaling pathways. G. River diagrams showing the communication patterns 
that coordinate secretory cell clusters and outgoing signaling pathways, as well as those that coordinate target cell clusters and incoming signaling 
pathways
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multiple malignant phenotypes of cancer, including 
tumorigenesis (EGFR, MYC), cell invasion (ITGB1 
and VIM), and angiogenesis (VEGFA), among others. 
Moreover, these 12 marker genes were significantly 
highly expressed in tumor cells (Fig.  8H, I). Multiplex 
immunofluorescence staining further demonstrated 
elevated expression of ILK, JAK1, and STAT3 in ccRCC 
samples (Fig.  8J). These results indicate that the SPP1 
signaling pathway may promote the development of a 
malignant phenotype by activating intracellular signals 
such as ILK, JAK/STAT in target cells.

Discussion
In this study, we depicted the complex interactions medi-
ated by intercellular signaling pathways between tumor 
clusters in ccRCC samples. Furthermore, we identified 
a subpopulation of CSCs and elucidated their critical 
role in driving malignant transformation. These results 
advance our knowledge of the development of ccRCC 
and offer theoretical justification for novel therapeutic 
approaches that focus on CSC subpopulations and inter-
cellular pro-cancer signaling pathways.

Cancers originating from epithelial cells maintain 
some epithelial cell characteristics [25]. The transfor-
mation process of epithelial cells into malignant cells 
exhibits a continuous, dynamic, and multistage pro-
gression. Epithelial-mesenchymal transition (EMT) is 
a critical feature of cancer development and metasta-
sis, and cancer cells in the partial EMT (p-EMT) stage 
can express both epithelial and mesenchymal mark-
ers [23]. The discovery of E.T. clusters lay the foun-
dation for investigating crucial intercellular signaling 
events during the malignant transformation and early 
stages of onset in ccRCC. However, single-cell trajec-
tory analysis did not definitively reveal the continu-
ous developmental trajectory of the E.T. clusters. This 
may be attributed to the transient state of E.T. clusters 
being closer to the transient state of malignant cells, 
resulting in a merging of the trajectories between E.T. 
clusters and malignant cells.

Intercellular communication is of paramount impor-
tance in coordinating the behavior of individual cells dur-
ing the development of an organism [37]. In epithelial 
cells, we identified the physiological pathways of SPP1 

and AVP, where SPP1 inhibits aspects of calcium oxalate 
crystallization, and the AVP pathway is essential for regu-
lating fluid homeostasis and maintaining blood pressure 
[38, 39]. The uncontrolled proliferation resulting from 
aberrant regulation of cellular signaling represents a crit-
ical mechanism underlying the onset of cancer [40]. On 
the contrary, we identified 11 significantly active signal-
ing pathways in tumor cell clusters, including the SPP1 
signaling pathway. Signaling molecules such as MIF and 
SPP1 are predominantly delivered by the C2-E.T cluster 
and represent main the pro-cancer signals between cells 
in the early stages of tumorigenesis. Previous research 
has demonstrated that SPP1 serves an important func-
tion in cellular signaling, facilitation of angiogenesis, and 
evasion of immune responses across various cancer types 
[41, 42]. Macrophage migration inhibitory factor (MIF) 
is a versatile cytokine that stimulates pro-inflammatory, 
chemotactic, and growth responses within cells [43]. 
MIF promotes cancer cell proliferation and metastasis 
by activating various signaling pathways, including ERK, 
MAPK, and Akt [44].

By recognizing specific DNA sequences, TFs control 
chromatin and transcription, which in turn controls pro-
cesses related to cell fate determination, developmen-
tal patterns, and control of specific pathways [45]. The 
specific expression of TFs typically corresponds to their 
respective specialized functions [46]. We observed that 
the transcription factor POU5F1 exhibited high tran-
scriptional activity in the C2-E.T cluster and targeted the 
SPP1 gene. The POU5F1 gene encodes Octamer-Binding 
Transcription Factor 4 (Oct4), a classical marker of CSCs 
that assists in maintaining their self-renewal capacity 
[30]. However, overexpression or aberrant regulation 
of POU5F1 is associated with tumorigenesis and pro-
gression, potentially instigating uncontrolled cell divi-
sion and contributing to the maintenance of CSCs [47]. 
The activity of POU5F1 is regulated by various factors, 
including epigenetic modifications, IGF-IR/IRS-1/PI3K/
AKT/GSK3b cascade signaling, and interactions with 
other transcription factors [48]. This discovery indicates 
that POU5F1 regulates the transcription of the SPP1 
gene, promoting the secretion of SPP1. Furthermore, 
CD44 serves as a cell surface marker for CSCs and con-
tributes significantly to the maintenance of stemness 

Fig. 7  Transcription factor analysis of 4252 cells from 9 tumor cell clusters. A. Heatmap showing transcription factor activity enriched in different 
cell clusters. B. Regulatory network of transcription factors with targeted regulatory effects on genes by SPP1-(ITGAV +  + ITGB1) L-R pairs. C. 
AUCell quantification of POU5F1 transcription factor activity. D. Box plot illustrating significantly higher expression of POU5F1 in tumor cells 
than in epithelial cells (Mann–Whitney U test, ***p < 0.001). E. Multiplex immunofluorescence staining in ccRCC samples and in normal kidney 
tissues for verification of SPP1, POU5F1 and CD44 gene expression. Renal tubular epithelial cells arranged in a ring-like pattern in normal kidney 
tissue

(See figure on next page.)
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and regulation of cancer stem cells [31]. Accordingly, 
the study identified a subpopulation of cancer stem cells 
(POU5F1hiCD44hi E.T.) that send early critical pro-cancer 
signals. Further investigation revealed that SPP1 signal-
ing from this subgroup promotes malignant phenotypes 
through potential signal transduction mechanisms such 
as activation of ILK and JAK/STAT.

CSCs possess remarkable differentiation potential, 
the ability to proliferate indefinitely, and the capacity to 
regenerate themselves [49]. CSCs contribute significantly 
to tumorigenesis, metastasis, recurrence, heterogene-
ity, drug resistance, and immune evasion, and are a sig-
nificant cause of failed tumor treatments [50]. Targeting 
cancer stem cells may decrease cancer recurrence and 
metastasis, enhance the comprehensiveness and long-
term effectiveness of treatment, and enhance patient 
prognosis. Several therapeutic strategies exist for target-
ing CSCs, such as inhibiting signaling pathways associ-
ated with CSCs, DNA damage repair, ALDH targeting 
[51]. For instance, numerous intracellular signaling path-
ways, including Notch, JAK/STAT, PI3K/AKT/mTOR, 
have significant involvement in sustaining the activity of 
CSCs [52]. Humans have developed many drugs against 
these pathways and targets. However, therapies targeting 
CSCs are still in their infancy and are limited by difficul-
ties such as lack of specific markers and high side effects. 
In addition to developing novel medications for newly 
identified essential targets, drug repurposing of older 
drugs is an important strategy for optimizing therapeu-
tic regimens [53]. For instance, in the cases of psoriasis 
[54], certain viral cancers [55] and the initial outbreak 
of COVID-19 [56, 57], all of which faced the dilemma of 
having no drugs available for treatment or poor results 
from existing treatment options, drug repurposing 
became an effective alternative.

Blocking or interfering with intercellular communi-
cation shows tremendous potential as an anti-cancer 
strategy [15]. For instance, VEGF-targeted therapy is 
employed for the treatment of a range of cancer types, 
such as colorectal cancer, kidney cancer, and non-small 
cell lung cancer [58]. MIF and SPP1 play critical roles in 
various diseases, including cancer, and present promising 

therapeutic targets [59, 60]. Despite this potential, anti-
cancer drugs that target MIF (Imalumab: NCT01765790) 
and SPP1(BET inhibitors)[42] are still in the exploratory 
or early clinical trial phase. Prior to moving these thera-
peutic strategies to the clinical stage, multiple challenges 
must first be addressed. These obstacles include theoreti-
cal guidance for basic research, clinical trial design, and 
drug safety.

This study still has several limitations. First, the rela-
tively small sample size may limit the generalizability of 
the study results. Secondly, functional experiments are 
required to confirm the precise roles and mechanisms 
of aberrant intercellular signals in tumorigenesis. Addi-
tionally, single-cell RNA sequencing data lacks cellular 
spatial information, making it challenging to provide 
comprehensive and representative spatial details. As 
part of future research, functional experiments should 
be planned to confirm the exact roles and mechanisms 
of abnormal intercellular signals in the development of 
ccRCC. At the same time, it is very important to learn 
more about CSCs in ccRCC, including finding specific 
markers and ways to stop them from working. Multi-
omics analyses, including spatial transcriptomics and 
the joint analysis of large cohort samples, hold the 
potential to provide more comprehensive information.

Conclusion
In summary, this study identified 11 aberrantly acti-
vated inter-tumor cell signaling pathways in the devel-
opment of ccRCC. Moreover, a CSCs subpopulation 
(POU5F1hiCD44hiE.T) was identified. This subpopu-
lation interacts with other tumor cells through the 
secretion of the aberrant signaling molecule, which 
promotes malignant transformation and a malignant 
phenotype. The research provides valuable insights into 
the mechanisms of ccRCC development from the per-
spective of intercellular communication. However, fur-
ther research is needed to validate these findings and 
explore more precise CSCs markers, strategies to block 
the function of signaling substances secreted by CSCs, 
or even to eliminate CSCs.

(See figure on next page.)
Fig. 8  Effect of the SPP1 signaling pathway on the malignant behavior of tumor cells. A, B. UMAP plot and violin plot showing the expression 
of ILK in 15 clusters. C. Violin plot illustrating the expression difference of ILK between tumor cells and epithelial cells (Mann–Whitney U test, 
***p < 0.001). D. Pseudo-time trajectory showing changes in dynamic expression of JAK1 and STAT3. E. Violin plots of JAK1 and STAT3 enrichment 
in 15 cell clusters. F. Violin plots showing significant overexpression of the JAK1 and STAT3 genes in tumor cells (Mann–Whitney U test, ***p < 0.001). 
G. Heatmap illustrating gene expression of markers associated with malignant phenotypes in clusters. H. Heatmap showing gene expression 
of markers associated with malignant phenotypes in tumor cells and epithelial cells. I. Violin plots comparing gene expression markers linked 
to malignant phenotypes in tumor cells and epithelial cells (Mann–Whitney U test, ***p < 0.001). J. Multiplex immunofluorescence staining in ccRCC 
samples and in normal kidney tissues for verification of ILK, JAK1, and STAT3 gene expression



Page 16 of 18Zhang et al. Journal of Translational Medicine           (2024) 22:37 

Fig. 8  (See legend on previous page.)



Page 17 of 18Zhang et al. Journal of Translational Medicine           (2024) 22:37 	

Abbreviations
RCC​	� Renal cell carcinoma
ccRCC​	� Clear cell renal cell carcinoma
ScRNA-seq	� Single-cell RNA sequencing
CNV	� Copy number variations
TFs	� Transcription factors
E.T	� Epithelial tumor cells
CSCs	� Cancer stem cells
CA9	� Carbonic anhydrase 9
NDUFA4L2	� NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 

2
EMT	� Epithelial-mesenchymal transition

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​023-​04818-9.

Additional file 1: Table S1. Baseline characteristics of clinical samples

Acknowledgements
None.

Author contributions
JZ designed the research and wrote the paper; KL and PC guided the research 
and ideas; FL and WG helped with R-language technical support; XB, FS, SY 
and TP helped guide statistical analysis; All authors read and approved the 
final manuscript.

Funding
The National Natural Science Foundation of China funded this study (No. 
82260791).

Availability of data and materials
All data generated or analyzed during this study were included in this article’s 
methods section. Other data that support the findings of this study are avail-
able from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
The collection of samples used in this study was approved by the Ethics 
Committee of the Affiliated Tumor Hospital of Xinjiang Medical University 
(K-2023028).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing of interests.

Author details
1 Department of Urology, Xinjiang Medical University Affiliated Tumor Hospital, 
Urumqi, China. 2 Cancer Institute, Xinjiang Medical University Affiliated Tumor 
Hospital, Urumqi, China. 3 Department of Urology, The Central Hospital 
of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Avenue, 
Enshi 445000, Hubei, China. 

Received: 28 September 2023   Accepted: 19 December 2023

References
	1.	 Huang Q, Sun Y, Ma X, Gao Y, Li X, Niu Y, Zhang X, Chang C. Androgen 

receptor increases hematogenous metastasis yet decreases lymphatic 
metastasis of renal cell carcinoma. Nat Commun. 2017;8(1):918.

	2.	 Ling L, Tan SK, Goh TH, Cheung E, Nurcombe V, van Wijnen AJ, Cool SM. 
Targeting the heparin-binding domain of fibroblast growth factor recep-
tor 1 as a potential cancer therapy. Mol Cancer. 2015;14:136.

	3.	 McRonald FE, Morris MR, Gentle D, Winchester L, Baban D, Ragoussis J, 
Clarke NW, Brown MD, Kishida T, Yao M, et al. CpG methylation profiling 
in VHL related and VHL unrelated renal cell carcinoma. Mol Cancer. 
2009;8:31.

	4.	 Cancer Genome Atlas Research N. Comprehensive molecular characteri-
zation of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.

	5.	 Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, da Veiga Lep-
revost F, Reva B, Lih TM, Chang HY, et al. Integrated proteogenomic char-
acterization of clear cell renal cell carcinoma. Cell. 2019;179(4):964–83.

	6.	 Fu L, Wang G, Shevchuk MM, Nanus DM, Gudas LJ. Generation of a 
mouse model of von hippel-lindau kidney disease leading to renal 
cancers by expression of a constitutively active mutant of HIF1α. Can Res. 
2011;71(21):6848–56.

	7.	 Xu L, Hu H, Zheng LS, Wang MY, Mei Y, Peng LX, Qiang YY, Li CZ, Meng DF, 
Wang MD, et al. ETV4 is a theranostic target in clear cell renal cell carci-
noma that promotes metastasis by activating the pro-metastatic gene 
FOSL1 in a PI3K-AKT dependent manner. Cancer Lett. 2020;482:74–89.

	8.	 Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, 
Plikus MV, Nie Q. Inference and analysis of cell-cell communication using 
cell chat. Nat Commun. 2021;12(1):1088.

	9.	 Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, 
Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate 
decisions are revealed by pseudotemporal ordering of single cells. Nat 
Biotechnol. 2014;32(4):381–6.

	10.	 Chen Y, Sun Y, Xu Y, Lin WW, Luo Z, Han Z, Liu S, Qi B, Sun C, Go K, et al. 
Single-cell integration analysis of heterotopic ossification and fibrocar-
tilage developmental lineage: endoplasmic reticulum stress effector 
Xbp1 transcriptionally regulates the notch signaling pathway to mediate 
fibrocartilage differentiation. Oxid Med Cell Longev. 2021;2021:7663366.

	11.	 Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M. Isolation of extracel-
lular vesicles: determining the correct approach (Review). Int J Mol Med. 
2015;36(1):11–7.

	12.	 Javeed N, Gustafson MP, Dutta SK, Lin Y, Bamlet WR, Oberg AL, 
Petersen GM, Chari ST, Dietz AB, Mukhopadhyay D. Immunosuppres-
sive CD14(+)HLA-DR(lo/neg) monocytes are elevated in pancreatic 
cancer and “primed” by tumor-derived exosomes. Oncoimmunology. 
2017;6(1):e1252013.

	13.	 de Visser KE, Joyce JA. The evolving tumor microenvironment: From can-
cer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374–403.

	14.	 Song G, Shi Y, Zhang M, Goswami S, Afridi S, Meng L, Ma J, Chen Y, Lin Y, 
Zhang J, et al. Global immune characterization of HBV/HCV-related hepa-
tocellular carcinoma identifies macrophage and T-cell subsets associated 
with disease progression. Cell Discov. 2020;6(1):90.

	15.	 Fuentes P, Sese M, Guijarro PJ, Emperador M, Sanchez-Redondo S, 
Peinado H, Hummer S, Ramon YCS. ITGB3-mediated uptake of small 
extracellular vesicles facilitates intercellular communication in breast 
cancer cells. Nat Commun. 2020;11(1):4261.

	16.	 Zhang Y, Narayanan SP, Mannan R, Raskind G, Wang X, Vats P, Su F, Hos-
seini N, Cao X, Kumar-Sinha C, et al. Single-cell analyses of renal cell 
cancers reveal insights into tumor microenvironment, cell of origin, and 
therapy response. Proc Natl Acad Sci USA. 2021. https://​doi.​org/​10.​1073/​
pnas.​21032​40118.

	17.	 Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee 
MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal 
single-cell data. Cell. 2021;184(13):3573–87.

	18.	 Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, 
Leeson R, Kanodia A, Mei S, Lin JR, et al. A cancer cell program pro-
motes T cell exclusion and resistance to checkpoint blockade. Cell. 
2018;175(4):984–97.

	19.	 Liu YM, Ge JY, Chen YF, Liu T, Chen L, Liu CC, Ma D, Chen YY, Cai YW, Xu 
YY, et al. Combined single-cell and spatial transcriptomics reveal the 
metabolic evolvement of breast cancer during early dissemination. Adv 
Sci. 2023;10(6):e2205395.

	20.	 Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C. Reversed 
graph embedding resolves complex single-cell trajectories. Nat Methods. 
2017;14(10):979–82.

https://doi.org/10.1186/s12967-023-04818-9
https://doi.org/10.1186/s12967-023-04818-9
https://doi.org/10.1073/pnas.2103240118
https://doi.org/10.1073/pnas.2103240118


Page 18 of 18Zhang et al. Journal of Translational Medicine           (2024) 22:37 

	21.	 Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, 
Hulselmans G, Rambow F, Marine J-C, Geurts P, Aerts J, et al. SCENIC: 
single-cell regulatory network inference and clustering. Nat Methods. 
2017;14(11):1083–6.

	22.	 Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, Grimaldi G, Braun 
DA, Cuoco MS, Mayorga A, et al. Tumor and immune reprogramming 
during immunotherapy in advanced renal cell carcinoma. Cancer Cell. 
2021;39(5):649–61.

	23.	 Sun Z, Chen L, Xin H, Jiang Y, Huang Q, Cillo AR, Tabib T, Kolls JK, Bruno TC, 
Lafyatis R, et al. A bayesian mixture model for clustering droplet-based 
single-cell transcriptomic data from population studies. Nat Commun. 
2019;10(1):1649.

	24.	 Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, 
Luo CL, Mroz EA, Emerick KS, et al. Single-cell transcriptomic analysis of 
primary and metastatic tumor ecosystems in head and neck cancer. Cell. 
2017;171(7):1611–24.

	25.	 Chui MH. Insights into cancer metastasis from a clinicopathologic per-
spective: epithelial-mesenchymal transition is not a necessary step. Int J 
Cancer. 2013;132(7):1487–95.

	26.	 Choueiri TK, Pal SK, McDermott DF, Morrissey S, Ferguson KC, Holland J, 
Kaelin WG, Dutcher JP. A phase I study of cabozantinib (XL184) in patients 
with renal cell cancer. Ann Oncol. 2014;25(8):1603–8.

	27.	 Su V, Lau AF. Ubiquitination, intracellular trafficking, and degradation of 
connexins. Arch Biochem Biophys. 2012;524(1):16–22.

	28.	 Zhu Y, Yao S, Chen L. Cell surface signaling molecules in the control of 
immune responses: a tide model. Immunity. 2011;34(4):466–78.

	29.	 Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar 
S, Seurinck R, Saelens W, Cannoodt R, Rouchon Q, et al. A scalable SCENIC 
workflow for single-cell gene regulatory network analysis. Nat Protoc. 
2020;15(7):2247–76.

	30.	 Sharif T, Martell E, Dai C, Kennedy BE, Murphy P, Clements DR, Kim Y, Lee 
PW, Gujar SA. Autophagic homeostasis is required for the pluripotency of 
cancer stem cells. Autophagy. 2017;13(2):264–84.

	31.	 Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and thera-
peutic target. Exp Hematol Oncol. 2020;9(1):36.

	32.	 De Franceschi N, Arjonen A, Elkhatib N, Denessiouk K, Wrobel AG, Wilson 
TA, Pouwels J, Montagnac G, Owen DJ, Ivaska J. Selective integrin endo-
cytosis is driven by interactions between the integrin alpha-chain and 
AP2. Nat Struct Mol Biol. 2016;23(2):172–9.

	33.	 Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJD. Emerging 
therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discov. 
2022;21(1):60–78.

	34.	 Okada T, Lee AY, Qin LX, Agaram N, Mimae T, Shen Y, O’Connor R, Lopez-
Lago MA, Craig A, Miller ML, et al. Integrin-alpha10 dependency identifies 
RAC and RICTOR as therapeutic targets in high-grade myxofibrosarcoma. 
Cancer Discov. 2016;6(10):1148–65.

	35.	 Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui 
Y. Targeting integrin pathways: mechanisms and advances in therapy. 
Signal Transduct Target Ther. 2023;8(1):1.

	36.	 Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase: a cancer 
therapeutic target unique among its ILK. Nat Rev Cancer. 2005;5(1):51–63.

	37.	 Saiz N, Williams KM, Seshan VE, Hadjantonakis AK. Asynchronous fate 
decisions by single cells collectively ensure consistent lineage composi-
tion in the mouse blastocyst. Nat Commun. 2016;7:13463.

	38.	 Franceschi VR, Nakata PA. Calcium oxalate in plants: formation and func-
tion. Annu Rev Plant Biol. 2005;56:41–71.

	39.	 Zhao N, Peacock SO, Lo CH, Heidman LM, Rice MA, Fahrenholtz CD, 
Greene AM, Magani F, Copello VA, Martinez MJ, et al. Arginine vasopressin 
receptor 1a is a therapeutic target for castration-resistant prostate cancer. 
Sci Transl Med. 2019. https://​doi.​org/​10.​1126/​scitr​anslm​ed.​aaw46​36.

	40.	 Luistro L, He W, Smith M, Packman K, Vilenchik M, Carvajal D, Roberts J, 
Cai J, Berkofsky-Fessler W, Hilton H, et al. Preclinical profile of a potent 
gamma-secretase inhibitor targeting notch signaling with in vivo efficacy 
and pharmacodynamic properties. Cancer Res. 2009;69(19):7672–80.

	41.	 Qi J, Sun H, Zhang Y, Wang Z, Xun Z, Li Z, Ding X, Bao R, Hong L, Jia 
W, et al. Single-cell and spatial analysis reveal interaction of FAP(+) 
fibroblasts and SPP1(+) macrophages in colorectal cancer. Nat Commun. 
2022;13(1):1742.

	42.	 Deng G, Zeng F, Su J, Zhao S, Hu R, Zhu W, Hu S, Chen X, Yin M. BET inhibi-
tor suppresses melanoma progression via the noncanonical NF-kappaB/
SPP1 pathway. Theranostics. 2020;10(25):11428–43.

	43.	 Sparkes A, De Baetselier P, Roelants K, De Trez C, Magez S, Van Gin-
derachter JA, Raes G, Bucala R, Stijlemans B. The non-mammalian MIF 
superfamily. Immunobiology. 2017;222(3):473–82.

	44.	 Kindt N, Journe F, Laurent G, Saussez S. Involvement of macrophage 
migration inhibitory factor in cancer and novel therapeutic targets. Oncol 
Lett. 2016;12(4):2247–53.

	45.	 Lee Tong I, Young Richard A. Transcriptional regulation and its misregula-
tion in disease. Cell. 2013;152(6):1237–51.

	46.	 Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, 
Taipale J, Hughes TR, Weirauch MT. The human transcription factors. Cell. 
2018;172(4):650–65.

	47.	 Jen J, Tang YA, Lu YH, Lin CC, Lai WW, Wang YC. Oct4 transcriptionally 
regulates the expression of long non-coding RNAs NEAT1 and MALAT1 to 
promote lung cancer progression. Mol Cancer. 2017;16(1):104.

	48.	 Xu C, Xie D, Yu SC, Yang XJ, He LR, Yang J, Ping YF, Wang B, Yang L, Xu SL, 
et al. beta-Catenin/POU5F1/SOX2 transcription factor complex mediates 
IGF-I receptor signaling and predicts poor prognosis in lung adenocarci-
noma. Cancer Res. 2013;73(10):3181–9.

	49.	 Tung CH, Huang MF, Liang CH, Wu YY, Wu JE, Hsu CL, Chen YL, Hong TM. 
alpha-Catulin promotes cancer stemness by antagonizing WWP1-medi-
ated KLF5 degradation in lung cancer. Theranostics. 2022;12(3):1173–86.

	50.	 Fendler A, Bauer D, Busch J, Jung K, Wulf-Goldenberg A, Kunz S, Song K, 
Myszczyszyn A, Elezkurtaj S, Erguen B, et al. Inhibiting WNT and NOTCH 
in renal cancer stem cells and the implications for human patients. Nat 
Commun. 2020;11(1):929.

	51.	 Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauss A, Blaud-
szun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer stem cells-origins 
and biomarkers: perspectives for targeted personalized therapies. Front 
Immunol. 2020;11:1280.

	52.	 Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, 
Chen F, et al. Targeting cancer stem cell pathways for cancer therapy. 
Signal Transduct Target Ther. 2020;5(1):8.

	53.	 Ahmed F, Samantasinghar A, Soomro AM, Kim S, Choi KH. A systematic 
review of computational approaches to understand cancer biology for 
informed drug repurposing. J Biomed Inform. 2023;142:104373.

	54.	 Ahmed F, Ho SG, Samantasinghar A, Memon FH, Rahim CSA, Soomro 
AM, Pratibha Sunildutt N, Kim KH, Choi KH. Drug repurposing in psoriasis, 
performed by reversal of disease-associated gene expression profiles. 
Comput Struct Biotechnol J. 2022;20:6097–107.

	55.	 Ahmed F, Kang IS, Kim KH, Asif A, Rahim CSA, Samantasinghar A, Memon 
FH, Choi KH. Drug repurposing for viral cancers: a paradigm of machine 
learning, deep learning, and virtual screening-based approaches. J Med 
Virol. 2023;95(4):e28693.

	56.	 Ahmed F, Soomro AM, Chethikkattuveli Salih AR, Samantasinghar A, Asif 
A, Kang IS, Choi KH. A comprehensive review of artificial intelligence and 
network based approaches to drug repurposing in Covid-19. Biomed 
Pharmacother. 2022;153:113350.

	57.	 Ahmed F, Lee JW, Samantasinghar A, Kim YS, Kim KH, Kang IS, Memon 
FH, Lim JH, Choi KH. SperoPredictor: an integrated machine learning and 
molecular docking-based drug repurposing framework with use case of 
COVID-19. Front Public Health. 2022;10:902123.

	58.	 Bhattacharya R, Ye XC, Wang R, Ling X, McManus M, Fan F, Boulbes D, Ellis 
LM. Intracrine VEGF signaling mediates the activity of prosurvival path-
ways in human colorectal cancer cells. Cancer Res. 2016;76(10):3014–24.

	59.	 Chen P, Zhao D, Li J, Liang X, Li J, Chang A, Henry VK, Lan Z, Spring DJ, Rao 
G, et al. Symbiotic macrophage-glioma cell interactions reveal synthetic 
lethality in PTEN-null glioma. Cancer Cell. 2019;35(6):868–84.

	60.	 Matsushita H, Yang YM, Pandol SJ, Seki E. Exosome migration inhibitory 
factor as a marker and therapeutic target for pancreatic cancer. Gastroen-
terology. 2016;150(4):1033–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1126/scitranslmed.aaw4636

	Single-cell transcriptome sequencing reveals aberrantly activated inter-tumor cell signaling pathways in the development of clear cell renal cell carcinoma
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Data and clinical sample collection
	Single-cell transcriptome sequencing data analysis
	Single-cell copy-number variation analysis
	Single-cell trajectory analysis
	Cell–cell communication analysis
	Single-cell transcription factor analysis
	Multiplex immunofluorescence staining
	Statistical analysis

	Results
	Establishment of a single-cell landscape for ccRCC and normal kidney tissues
	Identification of tumor cells with two distinct transcriptional profiles in ccRCC samples
	Construction of an intercellular communication atlas for the 15 cell clusters
	Discovering physiological intercellular signaling pathways between epithelial cells and aberrant intercellular signaling pathways between tumor cells
	Transcription factor analysis reveals POU5F1 targeting regulation of SPP1 in the C2-E.T cluster
	The inter-tumor cell SPP1 signaling pathway promotes malignant phenotypes

	Discussion
	Conclusion
	Anchor 26
	Acknowledgements
	References


