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Abstract 

Background  Increasing evidence suggests that hepatocellular carcinoma (HCC) stem cells (LCSCs) play an essential 
part in HCC recurrence, metastasis, and chemotherapy and radiotherapy resistance. Multiple studies have dem-
onstrated that stemness-related genes facilitate the progression of tumors. However, the mechanism by which 
stemness-related genes contribute to HCC is not well understood. Here, we aim to construct a stemness-related 
score (SRscores) model for deeper analysis of stemness-related genes, assisting with the prognosis and individualized 
treatment of HCC patients.Further, we found that the gene LPCAT1 was highly expressed in tumor tissues by immu-
nohistochemistry, and sphere-forming assay revealed that knockdown of LPCAT1 inhibited the sphere-forming ability 
of hepatocellular carcinoma cells.

Methods  We used the TCGA-LIHC dataset to screen stemness-related genes of HCC from the MSigDB database. 
Prognosis, tumor microenvironment, immunological checkpoints, tumor immune dysfunction, rejection, treatment 
sensitivity, and putative biological pathways were examined. Random forest created the SRscores model. The anti-
PD-1/anti-CTLA4 immunotherapy, tumor mutational burden, medication sensitivity, and cancer stem cell index were 
compared between the high- and low-risk score groups. We also examined risk scores for different cell types using 
single-cell RNA sequencing data and correlated transcription factor activity in cancer stem cells with SRscores genes. 
Finally, we tested core marker expression and biological functions.

Results  Patients can be divided into two subtypes (Cluster1 and Cluster2) based on the TCGA-LIHC dataset’s 
identification of 11 stemness-related genes. Additionally, a SRscores was developed based on subtypes. Clus-
ter2 and the group with the lowest SRscores had superior survival and immunotherapy response than Cluster1 
and the group with the highest SRscores. The group with a high SRscores was significantly more enriched in classical 
tumor pathways than the group with a low SRscores. Multiple transcription factors and SRscores genes are correlated. 
The core gene LPCAT1 is highly expressed in rat liver cancer tissues and promotes tumor cell sphere formation.

Conclusion  A SRscores model can be utilized to predict the prognosis of HCC patients as well as their response 
to immunotherapy.
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Introduction
Hepatocellular carcinoma (HCC) is the most predomi-
nant type of primary liver malignancy, accounting for 
approximately 90% of all prior liver cancer cases, and 
has become a significant public health problem [1]. 
HCC patients have the sixth-highest incidence and the 
fourth-highest mortality rate, according to global oncol-
ogy statistics [2]. While morbidity and mortality rates are 
declining for many tumors, HCC incidence and mortal-
ity rates have increased significantly in many parts of the 
world, with a 43% increase in mortality from HCC in the 
United States between 2000 and 2016 [3, 4]. The major-
ity of patients with HCC are diagnosed and treated at a 
late stage, with limited treatment options and a median 
survival of less than one year [5]. Although surgery, 
radiotherapy, and immunotherapy have helped improve 
morbidity and mortality in HCC, the overall 5 year sur-
vival rate is only 18% [4, 6]. Therefore, further research 
and exploration of the molecular mechanisms underlying 
the occurrence and development of HCC and the search 
for specific and sensitive biomarkers are essential for the 
early diagnosis, prognostic assessment, and advancement 
of effective treatment strategies for HCC.

Cancer stem cells (CSCs) are a subpopulation of cells 
in tumors that are in a stem cell-like state and have a 
unique ability to self-renew and differentiate [7, 8]. There 
is growing evidence for the presence of tumor cells with 
stem cell properties (liver cancer stem cells, LCSCs) 
in HCC. Liver stem/progenitor cells are transformed 
into LCSCs during long-term inflammatory processes 
induced by factors such as chronic viral infection or alco-
hol [9–11]. The study suggests that CSCs are primarily 
responsible for recurrence, metastasis, chemo, and radia-
tion resistance in liver cancer [9, 12]. Therefore, targeting 
LCSCs therapy may become a strategy for treating HCC. 
Current single-cell transcriptomic analysis revealed 
that LCSCs exhibit heterogeneity, as well as that dis-
tinct genes in distinct subpopulations are independently 
associated with liver cancer prognosis, suggesting that 
additional LCSCs influence tumor progression and intra-
tumor heterogeneity [13, 14].

CSC growth depends on their microenvironment. 
CSCs have the ability to interact with surrounding cells, 
release substances, and rearrange the nearby micro-
environment to establish their own environment [15]. 
The CSC microenvironment contains cancer-associated 
fibroblasts (CAFs), endothelial cells, immunological 
cells, mesenchymal stem cells, and their growth fac-
tors and cytokines [15]. CSCs thrive in the complicated 
tumor microenvironment [15, 16]. CAFs promote CSC 
proliferation, invasion, and metastasis by secreting 
cytokine CXCL12, vascular endothelial growth fac-
tor, and stem cell growth factor [17]. They also support 

CSCs mechanically by producing fibrillar collagen. CSC 
microenvironments rely on endothelial cells. Hypoxia 
and vascular endothelial factors stimulate endothe-
lial cell blood vessel growth. These new blood arteries 
feed CSC metabolism for self-renewal, invasion, and 
metastasis [18]. Endothelial cells release IL-1, IL-3, 
IL-6, VEGF-A, and other cytokines that support CSC 
proliferation and tumor growth [19]. Immune cells help 
CSCs invade and metastasize, attract T regulatory cells 
through TGF-β and cytokines, and elude the immune 
system [20]. Thus, knowing stemness-related genes and 
TME interactions in HCC helps develop tailored CSC 
therapeutics.

We examined stemness-related gene expression and 
prognosis in TCGA-LIHC patients screened for somatic 
mutations. Unsupervised clustering was used to classify 
hepatocellular cancer patients into two subgroups based 
on screening stemness-associated genes. Cox regression 
and random forest analysis were used to create stemness-
related risk ratings from subtype-specific differentially 
expressed genes. Hepatocellular carcinoma subtypes and 
stemness-related risk scores were correlated with TME, 
drug sensitivity, chemotherapy/immunotherapy efficacy, 
and molecular function. We employed single-cell analy-
sis to measure gene expression for stemness-related risk 
scores in distinct cells, and we annotated cancer stem 
cells to see their gene distribution. Intriguingly, we also 
examined transcription factors with variable expression 
in cancer stem cells and SRscores genes. Finally, LPCAT1, 
a stemness-related risk score core gene, was experimen-
tally confirmed. The stemness-related sub-risk score pre-
dicted HCC patients’ prognoses and guided treatment.

Methods
Raw data source and processing
The TCHA-LIHC cohort was downloaded from The 
Cancer Genome Atlas (TCGA, https://​portal.​gdc.​cancer.​
gov/) and included 50 hepatocellular carcinoma para-
neoplastic samples and 369 hepatocellular carcinoma 
samples [21]. Download ICGC-LIRI-JP from the Interna-
tional Cancer Genome Consortium (ICGC, https://​dcc.​
icgc.​org/), including 240 hepatocellular carcinoma sam-
ples [22]. Download GSE125449 and GSE151530 from 
the Gene Expression Omnibus database (GEO, https://​
www.​ncbi.​nlm.​nih.​gov/​geo/), including 65 hepatocellu-
lar carcinoma samples [23, 24]. Twenty-nine stemness-
associated gene sets were collected from the Molecular 
Marker Database (MSigDB, https://​www.​gsea-​msigdb.​
org/​gsea/​msigdb/) (Additional file  4: Table  S1) [25, 26], 
and 345 genes were included in the follow-up analy-
sis after removal of duplicate genes (Additional file  5: 
Table S2).

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://dcc.icgc.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
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Based on multi‑omics analysis
Differential expression of stemness-related genes in 
tumor and paraneoplastic tissues was analyzed by 
DESeq2 package in R, and adjP < 0.05 and |Log fold 
change |> 1 were used as screening thresholds [27]. One-
way Cox regression analysis was performed using Surviv-
alR for all genes in the TCHA-LIHC cohort to identify 
genes significantly associated with Overall survival (OS). 
The intersection of differentially expressed stemness-
associated genes and prognostic genes was determined 
using the VennDiagram package, and a Venn diagram 
was drawn. Mutations in stemness-related genes were 
analyzed using the maftools package to screen for genes 
with a mutation percentage more significant than 0 [28]. 
These genes’ copy number variation (CNV) status was 
described using GISTIC 2.0, and chromosomal informa-
tion and loss status were obtained and visualized by cir-
cos plot [29].

Identification of stemness‑related subtypes
Unsupervised clustering was performed in the TCGA-
LIHC cohort via the Consensusclusterplus package based 
on genes with a proportion of mutations greater than 0 
[30]. The K-means (km) cluster method with Euclidean 
distance was used in this analysis and repeated 1000 
times to ensure reliability. And the effect of subtyping 
was examined by the PCA method, and Kaplan Meier 
survival curves were plotted for different subtypes using 
the survival package. The validation was performed in 
ICGC-LIRI-JP. To further explore the role of different 
subtypes in HCC, we used the GSVA package to compare 
potential action pathways between different subtypes. 
The CIBERSORT algorithm was used to compare the 
differences in immune cell infiltration between different 
subtypes. The ESTIMATE algorithm was used to com-
pare the various subtypes of tumor microenvironments 
(TME). Also, we analyzed the expression of immune 
checkpoints between different subtypes.

Prediction of chemotherapy sensitivity and response 
to immunotherapy
We assessed the efficacy response to multiple drugs in 
different stemness-related subtypes. First, the sensi-
tivity of different subtypes to chemotherapeutic drugs 
(expressed as half-maximal inhibitory concentration 
IC50 values) was predicted by the pRRophetic pack-
age. In addition, we used the Tumor Immune Dysfunc-
tion and Exclusion (TIDE) online algorithm (http:// tide. 
dfci. harvard. edu/) to estimate the immunotherapeutic 
response in each HCC patient. Second, we downloaded 
the IPS scores of CTLA4 and PD1 from TCIA (https://​
tcia.​at/​home) for HCC patients and compared the effect 

of immunotherapy for different subtypes. [31]. Also, we 
compared. Finally, the sensitivity of stemness-related 
genes to non-immunotherapeutic drugs was observed 
using the GSCA database (http://​bioin​fo.​life.​hust.​edu.​cn/​
GSCA/#/) [32].

Construction and validation of a prognostic 
stemness‑related model
We further analyzed differentially expressed genes 
(DEGs) between the two subtypes in the TCHA-LIHC 
cohort to fully explore the stemness-related subtypes. 
And a one-way cox analysis (p < 0.05) was performed 
for the use of DEGs, a random forest model was built 
using the randomForestSRC package, and the genes 
ranked in the top 10 relative importance were combined 
by a permutation to determine the optimal signature: 
StemnessRiskScore =

∑n
i=1

Coef i × xi , Where n repre-
sents the number of genes built by the scoring model, 
Coef equals the coefficient of each gene in the multi-
factorial cox regression, and x equals the expression of 
each stemness-related gene. SRscores = (0.075256372* 
expression of LPCAT1) + (−  0.004373688* expression  
of NDRG1) + (0.068014774* expression of G6PD) + (−   
0.035236454* expression of CYP7A1) + (−  0.022288854* 
expression of DNASE1L3) + (0.051083710* expression of 
SPP1) + (0.004196020* expression of SFN) + (0.264500258* 
expression of CDCA8)..And to validate the prognostic 
value of the SRscores and the assessment of the accu-
racy of survival prediction. The regression coefficients in 
TCGA were then applied to the ICGC-LIRI-JP validation 
cohort to calculate the SRscores.

Messenger RNA expression‑based stemness index 
(mRNAsi) calculation
Transcript mRNAsi values (ranging from 0 to 1) were 
directly calculated for each HCC sample by the TCGAbi-
olinks package (R version 4.2.0), strongly correlated with 
stem cell characteristics, and widely used for predicting 
tumor stemness. In the TCHA-LIHC cohort, the prog-
nostic value of the mRNAsi index and its correlation with 
stemness-related subtypes and SRscores were further 
analyzed.

Single cell analysis
Single-cell data of hepatocellular carcinoma were 
obtained from the publicly available dataset GEO 
(GSE125499 and GSE151530). The 10 × Genomic plat-
form sequenced both datasets. For analysis using the R 
package Seurat, we filtered cells with UMI counts less 
than 200, while mitochondrial genes > 20% will also 
be filtered. The integrated data were screened for high 
variant genes, while the high variant genes were region-
centric using the ScaleData function. The data are then 

https://tcia.at/home
https://tcia.at/home
http://bioinfo.life.hust.edu.cn/GSCA/#/
http://bioinfo.life.hust.edu.cn/GSCA/#/
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subjected to PCA analysis and clustering analysis using 
the FindNeighbors process. Afterward, cell type identifi-
cation was performed using the SingleR package with the 
reference gene HumanPrimaryCellAtlasData. In addi-
tion, we looked for markers of hepatocellular carcinoma 
stem cells (CD44, EPCAM, HAPLN1, HNF1B, IGFBP5, 
IHH, KRT19, LFNG, LGR5, NANOG, POU5F1, PROM1, 
SOX2, THY1) by CellMarker 2.0 and annotated the cells 
accordingly [33]. Stemness-related gene sets were scored 
in the single-cell dataset using the AddModuleScore 
function [34].

We analyzed all subpopulations of hepatocellular car-
cinoma single cells by R package SCENIC, inferred co-
expression modules between transcription factors and 
candidate target genes based on the GENIE3 algorithm, 
and also performed cis-regulatory motif analysis (cis-
regulatory motif ) for each co-expression module using 
RcisTarget [35]. Finally, the transcription factor activity 
was obtained by scoring each regulon activity of each cell 
using the AUCell algorithm, and the regulons were clus-
tered by transcription factor activity [36]. The clustering 
method was used to calculate the correlation between 
transcription factor activities, to calculate the Connec-
tion Specificity Index (CSI) matrix of regulons, and to 
perform clustering, and the clustered modules were vis-
ualized in a UMAP plot. Finally, the average regulatory 
activity of each transcription factor was calculated and 
visualized.

HE and immunohistochemistry
Paraffin-embedded tumor tissue was cut into 4 μm sec-
tions, dewaxed, and rehydrated. HE and immunohisto-
chemical staining were performed according to standard 
protocols. HE staining: Sections were deparaffinized, 
stained with hematoxylin–eosin, dehydrated, transpar-
ent, and sealed, then photographed under microscopic 
(Nikon, ECLIPSE Ts2-FL) observation. Immunohisto-
chemical staining: After slicing, dewaxing and antigen 
repair were performed, and the normal sheep serum 
working solution was sealed. Each tissue was dripped 
with LPCAT1 Polyclonal Antibody (protentech, 16112-
1-AP) and incubated overnight at 4 ℃ in a refrigerator. 
Incubate the secondary antibody for 30 min after clean-
ing. Then, perform color rendering, re-staining, dehydra-
tion, and sealing. Finally, take photos using a microscope 
(Nikon, ECLIPSE Ts2-FL).

Cell culture, shRNA transfection, and RTqPCR
The human HCC cell line HCCLM3 was purchased at 
Cellcook (https://​www.​cellc​ook.​com/) and provided 
for genotyping identification.The HCCLM3 was cul-
tured in DMEM (Gibco, C11995500BT) containing 10% 
(v/v) fetal bovine serum (FBS, ExCell Bio, FSP500) and 

1% penicillin–streptomycin (penicillin 100 U/ml and 
streptomycin 0.1  mg/ml, Beyotime). And the cells were 
incubated at 37  °C in a 5% CO2 incubator. The shRNA 
against LPCAT1 and negative control (NC) were ordered 
in Beijing Tsingke Biotech (https://​tsing​ke.​com.​cn/). 
The sequence of the shRNA is as follows: shLPCAT1-1( 
sense 5′–3′): CCG​GTA​CCC​GGA​TCA​GAC​ACA​TTT​
CTC​TCG​AGA​GAA​ATG​TGT​CTG​ATC​CGG​GTA​TTT​
TTT; shLPCAT1-2( sense 5′–3′): CCG​GAG​ATA​GGT​
ATT​GCG​GAG​TTT​GTC​TCG​AGA​CAA​ACT​CCG​CAA​
TAC​CTA​TCT​TTT​TTT; shLPCAT1-3( sense 5′–3′): 
CCG​GAC​GGA​AAG​TGG​CCA​CAG​ATA​ATC​TCG​AGA​
TTA​TCT​GTG​GCC​ACT​TTC​CGT​TTT​TTT​.HCCLM3 
was first spread into 6-well plates, and after growing to 
70–80%,the cells were transfected with plasmids by pol-
yethylenimine (PEI, Polysciences, 23966–1). RTqPCR 
detected the knockdown efficiency of HCCLM3. Total 
RNA was extracted with TRIzol reagent (Takara) and 
then reversed and transcribed into cDNA using the Pri-
meScript RT Master Mix kit (Takara, RR036A). RT-PCR 
was performed using TB Green® Premix Ex Taq™ II 
(Takara,RR820A). RT-qPCR detected relative expression 
of LPCAT1. GAPDH was used as a reference for endog-
enous normalization. The sequence of LPCAT1: (For-
ward) TAT​TCC​GAG​CCA​TTG​ACC​AAGAG, (Reverse) 
GAA​ATG​TGT​CTG​ATC​CGG​GTACA.The sequence of 
GAPDH: (Forward) GGT​ATG​ACA​ACG​AAT​TTG​GC, 
(Reverse) GAG​CAC​AGG​GTA​CTT​TAT​TG.

Tumorsphere formation assay
HCCLM3 cells (5 × 103 cells/well) were inoculated into 
ultra-low adherence well plates with 2 ml of DMEM-F12 
medium (Gibco,C11330500BT) supplemented with bFGF 
(Peprotech, 100-18B-10), EGF (Peprotech,AF-100–15), 
N2(Gibco, 17,502,048), and B27 cytokines (Gibco, 
17,504,044). The tumor spheroids were observed and 
photographed under the microscope (LEICA,DMI3000 
B) after 4–5 days of culture.

Statistical analysis
All statistics were performed using R3.6.3 and R4.2.0 ver-
sions. The Wilcoxon test (Wilcoxon rank sum test) was 
used for two sets of continuous type variable data. The 
Spearman correlation test was used for the correlation 
between gene expressions. Univariate and multifactorial 
Cox regression was used to define prognostic correlates, 
ROC curves were calculated using the timeROC package, 
and the area under the line was used to assess the prog-
nostic effect of the SRscores. p < 0.05 was used as a crite-
rion for the statistical significance of differences.

https://www.cellcook.com/
https://tsingke.com.cn/
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Results
Expression and mutation analysis of stemness‑related 
genes in HCC
The data from TCGA-LIHC were analyzed comprehen-
sively. Differential analysis between liver cancer  and 
paracancer  tissues revealed differences in 103 out of 
345 stemness-related genes, with up-regulated and 
down-regulated genes as shown in Fig. 1A volcano plot. 
A univariate Cox analysis identified 5163 prognosis-
associated genes in the TCGA-LIHC. The intersec-
tion was taken with 103 stemness-associated genes, 

and 27 stemness-associated genes showed differential 
and prognostic values in HCC (Fig.  1B). In a one-way 
cox analysis of these 27 genes, two genes were found 
to be protective factors for HR < 1, and 22 genes were 
risk factors for HR > 1 (Additional file  1: Fig. S1A). To 
investigate the genetic mutation of these genes in HCC, 
we analyzed the incidence of somatic mutations and 
found that 11 of the 27 genes associated with stemness 
had a mutation frequency of > 1% (Fig.  1C). In addi-
tion, copy number variants (CNV) were analyzed, and 
copy number alterations were found to be prevalent 
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in 11 stemness-associated genes (Fig.  1D). Among 
them, there were extensive CNV increases in ASPM, 
SLC4A11, SOX11, and OSR1, while CNV decreases in 
ESR1, CITED2, PRDM15, and FOLR1. Figure 1E shows 
the chromosomal locations of the 11 stemness-associ-
ated genes with CNV variants. Figure 1F demonstrates 
that the expression of these 11 genes at the mRNA level 
differs substantially between tumor and normal tissue. 
Consequently, stemness-related genes may play a cru-
cial role in the development of HCC.

Identification of subtypes of HCC by stemness‑associated 
genes
Clustering analysis of 363 tumor patients with TCGA-
LIHC based on 11 stemness-associated genes using the 
ConensusClusterPlus R package revealed two subtypes, 
including 168 cases in Cluster 1 and 187 cases in Cluster 
2 (Fig. 1G). Additional file 1: Fig. S1B depicts the inter-
actions of these 11 stemness-associated genes. Using 
PCA analysis to evaluate the differences between the two 
subtypes, it was determined that the two stemness sub-
types differed markedly in the transcriptome (Fig.  1H). 
Survival analysis was also used to evaluate the prog-
nostic value of the two subtypes of stemness in clinical 
practice. The OS of patients with both subtypes was sig-
nificantly different (p = 0.029), with Cluster 1 having a 
significantly worse prognosis (Fig.  1I). Nine of these 11 
stemness-related genes displayed differential expression 
between the two subtypes, as shown in Fig. 1J. To verify 
these two typings’ stability and applicability, we validated 
unsupervised cluster analysis using ICGC-LIRI-JP. It was 
well divided into two categories (Fig.  1K), PCA analysis 
was significantly different (Fig.  1L), survival was quite 
different between the two subtypes (p = 0.00091). Clus-
ter1 had a significantly poorer prognosis (Fig.  1M), and 
ten of eleven stemness-related genes were significantly 
different between the two subtypes (Fig. 1N). Using the 
TCGA-LIHC dataset, we analyzed the distribution of 
somatic mutations for high and low SRscores and found 
that TP53 was predominant in Cluster1 patients. At the 
same time, CTNNB1 predominated among patients in 
Cluster 2 (Additional file 1: Fig. S1C, D). Somatic muta-
tions result from diverse mutational processes such as 
DNA repair defects and exposure to exogenous or endog-
enous mutagens. Different mutational processes produce 
different mutation types, i.e., mutational characteristics. 
Therefore we used NMF to characterize the genomic 
landscape comprehensively. In Cluster1, MMR and Gua-
nine damage predominate, while in Cluster2, MMR and 
Adenine damage predominate (Additional file 1: Fig. S1E, 
F).

Analysis of tumor microenvironment and signaling 
pathways between two subtypes in HCC
By comparing the infiltrative immune cell component 
in the TME between the two subtypes, we discovered 
a higher rate of immune cell infiltration in Cluster1 in 
addition to the immune hyper-infiltrative zone depicted 
by the heat map (Fig. 2A). In the heat map, it was found 
that in the high immune infiltration area, anti-immune 
response cells such as Type 1  T helper cells, activated 
CD8 + T cells, and immunosuppressive cells such as 
immature dendritic cells, regulatory T cells, and neu-
trophils were significantly enriched. Interestingly, most 
of the samples in Cluster1 showed low immune infil-
tration, while most of the samples in Cluster2 showed 
high immune infiltration. These suggest that TME may 
promote the recruitment or differentiation of immune 
cells [37].To distinguish the specific immune compo-
nents between the two subtypes in the tumor immune 
microenvironment, the distinctions between 28 immune 
cells were calculated (Fig.  2B). Due to the dispari-
ties in immune infiltration between the two subtypes, 
we further analyzed the differences between immune 
checkpoints. The results showed considerable immune 
checkpoint differences between the two subtypes 
(Fig.  2C). To further explore the possible mechanisms 
between the different subtypes, we analyzed the differ-
ences in enrichment pathways between the two subtypes 
based on GSVA. The results showed that Cluster1 was 
mainly enriched in cell cycle, DNA replication, homolo-
gous recombination, and notch signaling pathway, while 
Cluster2 has enriched primarily in glutathione metabo-
lism, α-linolenic acid metabolism, Cysteine and methio-
nine metabolism, or other metabolism-related pathways 
were mainly enriched in Cluster2 (Fig. 2D). Glutathione 
promotes T-cell activation, proliferation, and differen-
tiation and is essential for maintaining T cell immunity 
[38].α-linolenic acid plays a protective role in various 
tumors.MDSCs may limit T cell activation by limiting the 
effectiveness of cysteine on T cells [39]. And methionine 
metabolism correlates with the number of CD8 + T cells 
[40]. These results suggest that these pathways play an 
essential role in the immune infiltration of tumors, but 
the specific complex mechanisms need to be explored by 
more in-depth experiments.

Analysis of chemotherapy sensitivity 
and immunotherapeutic response between two subtypes 
in HCC
Chemotherapy remains the standard treatment for can-
cer patients. Using pRophetic algorithm, we determined 
the sensitivity of both subtypes to conventional chemo-
therapeutic medications.Cluster1 was found to be more 
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sensitive to Sorafenib, Cytarabine, Cisplatin, Doxoru-
bicin, and other medications (Fig.  2F). Using the TIDE 
algorithm, we also assessed the immunotherapeutic 

response of both subtypes. Figure  2E demonstrates that 
immunotherapy benefited more Cluster2 patients than 
Cluster1 patients. The effect of immunotherapy on the 
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immune checkpoints PD-1 and CTLA4 in patients with 
both subtypes of TCIA was investigated further. Fig-
ure 2G demonstrates that Cluster2 was more efficacious 
against CTLA4, anti-PD-1, and combinations of both. 
These results indicate that stemness subtypes   is associ-
ated with immunotherapy and chemotherapy sensitivity.

Construction and validation of a prognostic model based 
on the analysis of differences between two subtypes
First, we analyzed the DEGs between the two subtypes 
and obtained 550 genes. Then, random forest analy-
sis filtered out the genes with high relative importance 
(Fig.  3A). Subsequently, a log-rank test was performed 
by combining these 10 genes in 1023 (210–1) permuta-
tions, and the prognostic model was evaluated. Figure 3B 

shows the − log10 (log-rank P) values of the top 20 mod-
els, from which the highest ranking signature consists of 
8 genes (LPCAT1, NDRG1, G6PD, CYP7A1, DNASE1L3, 
SPP1, SFN, CDCA8) was selected for the construction of 
the stemness risk model. The SRscores was calculated for 
each HCC patient by this score.

Figure  3C reveals that Cluster1 patients had a sub-
stantially higher SRscores (p < 0.001) than Cluster2 
patients. Patients with a high SRscores had a substantially 
worse prognosis than those with a low score (p < 0.001) 
(Fig.  3D). In TCGA-LIHC, a time-dependent ROC 
curve analysis determined the sensitivity and specific-
ity of the SRscores, with an AUC of 0.773% (Fig.  3G). 
ICGC-LIRI-JP was then validated in order to establish 
the model’s dependability. Figure 3E reveals that Cluster1 
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patients had a higher SRscores than Cluster2 patients. In 
the survival analysis, patients with a high SRscores had 
a substantially worse prognosis (Fig.  3F), with a time-
dependent ROC curve AUC value of 0.75 (Fig. 3H). The 
pie chart demonstrates that patients with higher risk 
scores have more advanced pathological staging than 
those with lower risk scores. (Fig.  3I). The aforemen-
tioned findings indicate that the risk model is highly 
adaptable and has an outstanding prognostic effect on 
HCC patients.

Genomic characterization of high and low SRscores, TMB, 
tumor microenvironment, and signaling pathway analysis
Using the TCGA-LIHC dataset, we analyzed the distri-
bution of somatic mutations in high and low SRscores. 
The analysis revealed that patients with low-risk scores 
were predominately CTNNB1 positive. Similarly, TP53 
was prevalent among patients with high-risk scores 
(Fig.  4A, B). Additionally, we exhaustively character-
ized the genomic landscape. Figure 4C, D demonstrates 
that MMR and Guanine damage dominated the low-risk 
score, whereas MMR and Adenine damage were van-
quished in the high-risk score. Calculating the TMB for 
each patient with HCC, we discovered that the TMB was 
greater in the group with a high stem risk score (Fig. 4E). 
By prognostic analysis, we found that the high TMB 
group had a poorer prognosis than the low TMB group 
(Fig.  4F). More importantly, by combining TMB group-
ing and SRscores for survival analysis, patients with low 
TMB and low SRscores had significantly longer OS than 
patients with high TMB and high SRscores (Fig.  4G). 
We also performed GSVA pathway enrichment analy-
sis between high and low SRscores groups. The results 
showed that cell cycle,mTOR signaling pathway,P53 
signaling pathway,NOTCH signaling pathway, and other 
pathways closely related to tumor progression were sig-
nificantly enriched in the high-stem risk group. In con-
trast, in the low SRscores group, metabolism-related 
pathways such as FATTY_ACID_METABOLISM, RETI-
NOL_METABOLISM, TYROSINE_METABOLISM, 
GLYCINE_SERINE_AND_THREONINE_METABO-
LISM were mainly enriched (Additional file 1: Fig. S1I). 
Such is also comparable to the subtype results. In addi-
tion, we calculated the immune cell subpopulation infil-
tration in the high and low SRscores groups, and found 
greater Eosinophil and Neutrophil infiltration in the low 

SRscores group, which was associated with improved 
survival, compared to the high SRscores group. (Addi-
tional file  2: Fig. S2A). We further analyzed the differ-
ences between immune checkpoints. The results showed 
considerable immune checkpoint differences between 
the high and low SRscores groups (Additional file 2: Fig. 
S2B). We further described the correlations of the eight 
genes that constitute the stemness risk model, and there 
was a significant negative correlation between most of 
them (Additional file  1: Fig. S1G, H). In addition, these 
genes had substantial correlations with multiple immune 
cells (Additional file  2: Fig. S2C).These results suggest 
that these genes may contribute to the biological differ-
ences between the high and low-scoring groups.

Additionally, we examined the expression of these 
eight genes in cancerous and paraneoplastic tissues using 
the TCGA-LIHC dataset. The expression of LPCAT1, 
NDRG1, G6PD, CYP7A1, SPP1, SFN, and CDCA8 was 
significantly higher in cancer tissues than in paraneo-
plastic tissues, whereas the expression of DNASE1L3 was 
significantly lower in cancer tissues (Additional file 1: Fig. 
S1J). We used the IOBR package to analyze the correla-
tion between high and low SRscores groups and multiple 
tumor-related characteristics datasets. It was found that 
the high-stem risk score group was significantly enriched 
in classical tumor pathways such as WNT, TGF-β, JAK-
STAT3, mTOR, etc. (Additional file  2: Fig. S2G). We 
also used the GSCA database to assess the correlation 
between genes of SRscores and pathways such as apopto-
sis, cell cycle, and EMT. We found that most genes were 
involved in the activation of pathways of tumor progres-
sion (Additional file  2: Fig. S2D).These results suggest 
these genes may contribute to tumor progression and 
poor prognosis.

Analysis of pharmacotherapy for high and low SRscores
Using the GSCA database, we analyzed the sensitiv-
ity of genes and chemotherapeutic medications for the 
SRscores. Additional file 2: Fig. S2E, F demonstrates that 
SPP1, SFN, NDRG1, and G6PD are sensitive to the major-
ity of medications. Using the pRophetic software, we also 
determined the sensitivity of high and low SRscores cat-
egories to chemotherapy drugs. Figure 4H demonstrates 
that the group with a high SRscores was more sensitive to 
Sorafenib, Cytarabine, Cisplatin, and Doxorubicin than 
the group with a low risk score. Similar to the subtypes, 

Fig. 4  Mutation, TMB, and drug sensitivity analysis in SRscores groups. A, B In the SRscores group, waterfall plots show the distribution of somatic 
mutations in the genes with the highest mutation frequencies. C, D Bayesian NMF identification of mutation markers in the SRscores group. The 
middle and following plots show the relative proportions of the total number of mutations and mutation types. E Differences in TMB between high 
and low SRscores groups. F Prognostic analysis of the high TMB and low TMB groups. G Prognostic analysis of the combined interventional SRscores 
and TMB. H Box plot of estimated IC50 of chemotherapeutic drugs between SRscores group. I TIDE algorithm for immunotherapy response 
between the high-SRscores group and the low-SRscores group

(See figure on next page.)
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the group with a reduced risk score and a better prog-
nosis benefited more from immunotherapy (Fig. 4I). We 
also investigated the effect of immunotherapy with the 
immune regulators PD-1 and CTLA4 on scores indicat-
ing high and low stemness risk. There was no significant 
difference between the two groups, unfortunately.These 
results can assist in selecting chemotherapeutic agents 
when immunotherapy is combined with chemotherapy in 
clinical practice.

Analysis of mRNAsi binding subtypes and SRscores
The new version of the TCGAbiolinks package calculated 
the mRNAsi of each patient in the TCGA-LIHC data-
set. We investigated the relationship between mRNAsi, 
stemness subtypes, and SRscores. We ranked HCC sam-
ples according to their mRNAsi values from low to high 
and examined their correlation with stemness subtypes, 
SRscores, and clinical characteristics (Fig.  5A). Cluster1 
and the group with a high SRscores were found to be 
highly concentrated in the high mRNAsi region. In con-
trast, Cluster2 and the group with a low SRscores were 
primarily concentrated on the low mRNAsi region, as 
depicted in Fig. 5C, D.

mRNAsi and SRscores showed a significant positive 
correlation (R = 0.34, P < 0.001), as shown in Fig.  5E. 
In addition, the prognostic analysis demonstrated that 
patients with elevated mRNAsi had a worse prognosis 
than those with low mRNAsi (Fig. 5B). Figure 5F depicts 
the distribution of HCC patients between these three 
subtypes using a Sankey diagram, and the results are 
consistent with those described previously.The distribu-
tion of HCC patients between subtypes, SRscores groups, 
and mRNAsi groups was presented using the Sankey 
diagram. The results were also consistent with those 
described above, with samples from the better prognostic 
Cluster2, low SRscores groups, and low-mRNAsi groups 
essentially overlapping. Samples from the poorer prog-
nostic Cluster1, high SRscores groups, and high-mRNAsi 
groups overlap (Fig. 5F).

Single cell analysis of SRscores
To further explore the expression profile of the SRscores, 
we analyzed its distribution and expression in the 
scRNA-seq dataset. First, we downloaded the single-cell 
dataset (GSE125449, GSE151530) from the GEO data-
base with quality control (Additional file 3: Fig. S3A, C). 
Subsequently, the UMAP and tSNE algorithms were used 
to cluster all cells, which could be divided into 31 clusters 
(Additional file 3: Fig. S3B). According to marker genes, 
these 31 clusters were annotated as B cells, Endothe-
lial cells, Plasma cells, Macrophages, Smooth muscle 
cells, stem cells, T cells, CD8 + T cells, and Fibroblasts 
(Additional file  3: Fig. S3D, E). To further validate the 

accuracy of cancer stem cell clustering, we also used 
the CytoTRACE package to calculate the stem cell char-
acteristic scores (i.e. CytoTRACE scores) for each cell, 
with CytoTRACE scores ranging from 0 to 1, while 
higher scores indicate higher stemness (less differentia-
tion) and vice versa. In turn, the tumor stemness level 
of each cell was assessed, with high scores correspond-
ing to high tumor stemness (Fig.  6A). As expected, we 
found that the stem cells we clustered had significantly 
higher CytoTRACE scores compared to other cell popu-
lations (Fig.  6C) [41, 42]. In addition, we found that in 
the tumor tissues of HCC patients, high SRscores were 
shown in Hepatocytes (Fig. 6B, D, Additional file 3: Fig. 
S3F). Interestingly, we further analyzed the expression of 
eight genes of the stemness score risk model in these cells 
and found the highest expression in stem cells (Fig.  6E, 
Additional file 3: Fig. S3G). Finally, we analyzed the co-
localization of LPCAT1 and NDRG1, the two genes with 
the most substantial importance shown by random for-
est, and found a strong localization consistency (Addi-
tional file 3: Fig. S3H).

It is well known that transcription factors play an 
important role in tumor development, and in addition, 
they play an indispensable role in the promotion of tumor 
development by tumor stem cells [43–46]. To investigate 
the expression activity of transcription factors in tumor 
stem cells and the correlation with SRscores genes, we 
performed a single-cell clustering analysis. First, we clas-
sified the cells within the liver cancer tissue into 11 cell 
clusters by transcription factor clustering effects and 
found that the stem cells were mainly in the M8 cluster 
(Fig.  7A–C). Furthermore, after calculating the aver-
age regulatory activity of transcription factors in the 
M8 module, we screened the transcription factors with 
an average regulatory activity > 2 in stem cells for visu-
alization and correlation analysis with stemness genes 
and found that genes such as TCF3, SMARCA4, TFF3, 
RFX6, SMARCB1, and HES6 were enriched in stem cells 
(Fig. 7D, E). Finally, we analyzed the correlation between 
these transcription factors and stemness-related genes in 
hepatocellular carcinoma transcriptome data and found 
a significant correlation between NDRG1 and these tran-
scription factors compared to LPCAT1 (Fig. 7F).

LPCAT1 regulates the stemness of HCC
Random forest analysis revealed that LPCAT1 is the 
most critical gene in the stemness risk model. Therefore, 
we validated LPCAT1 expression and potential func-
tion in CSC characterization at a histological and cellu-
lar level. The basis of our previous work has established a 
batch of rat models of hepatocellular carcinoma with pre-
served paraffin specimens [47]. HE staining confirmed 
the successful construction of hepatocellular carcinoma 
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(Fig.  8A), and immunohistochemistry results showed 
that the expression of LPCAT1 was significantly higher in 
HCC than in normal rat liver tissue (Fig. 8B). The study 
reported the highest expression of LPCAT1 in HCCLM3 
in hepatocellular carcinoma cells in  vitro [48]. There-
fore, we selected specific shRNAs to inhibit LPCAT1 

expression in HCCLM3 (shRNA-1, shRNA-2, shRNA-3; 
Fig.  8C). We then performed sphere formation experi-
ments using the more efficient knockdown shRNA-2, 
shRNA-3, and the control group. We found that the max-
imum diameter of spheres was significantly reduced in 
the shRNA group compared to the NC group (Fig. 8D, E). 
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It showed that the knockdown of LPCAT1 could inhibit 
the stemness characteristics of HCC cells.

Discussion
Due to their distinct biological functions in tumors, 
CSCs have gained the interest of numerous researchers 
in recent years. Consequently, they play a vital role in the 
progression, metastasis, recurrence, and radiotherapy 
resistance of HCC [9, 12]. Growing evidence suggests 
that LCSCs are the primary organizers of HCC initiation, 
such as liver tumor initiating cells [49]. Nonetheless, the 
physiopathology and mechanisms of LCSCs in hepatocel-
lular carcinoma require further investigation. Here, we 
analyzed the role of stemness-related genes in HCC using 
bioinformatics to examine the molecular characteristics 
of these genes. Moreover, the key resuts were validated 
in the experiements.We obtained 11 stemness-associated 
genes based on a multi-omics screen for unsupervised 
cluster analysis, identified two subtypes, and constructed 
a SRscores by subtypes. The differences in survival sta-
tus, TME, somatic mutations, and drug sensitivity of 

HCC patients by subtyping and SRscores were evaluated. 
These studies provide a more accurate prognostic analy-
sis for HCC patients.

HCC is difficult to diagnose in its early stages, and 
patients with advanced disease have a poor prognosis. 
With the advancement of immunotherapy, oncology is 
increasingly employing immunotherapeutic agents. In 
clinical treatment, immunodetection inhibitors such as 
anti-PD1, anti-PDL1, and anti-CTLA4 monoclonal anti-
body therapy are widely utilized. TME provides a suit-
able environment for protecting and regulating CSCs, 
which supports the growth and differentiation of CSCs 
and thus promotes tumor metastasis [50]. Understand-
ing the characteristics of CSCs and TMEs in HCC is 
crucial. CSCs can secrete immunosuppressive cytokines 
that enable tumor-associated macrophages to secrete 
multiple inflammatory cytokines and recruit myeloid-
derived suppressor cells (MDSCs), thereby facilitating 
the formation of a tumor microenvironment conducive 
to CSCs’ survival [51, 52]. Our findings also validate 
that macrophages and MDSCs were more abundant in 

Fig. 6  Single-cell annotations and SRscores in single cells. A t-distribution random neighborhood embedding (tSNE) plots of malignant cells 
from HCC. B, D Display of SRscores in each cell subpopulation. C CytoTRACE scores of each cell population. E Expression of the eight genes 
constituting the SRscores in each cell subpopulation
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the high SRscores group. In addition, some biomarkers, 
such as PD-L1, human epidermal growth factor recep-
tor 2 (HER2), vascular growth factor (VEGF), and TMB 
are highly predictive of tumor immunotherapy [53, 54]. 
We analyzed the efficacy of immunotherapy using data 
from TIDE and TCIA databases on HCC patients. We 
observed that patients in Cluster 2 and those with a low 
stemness score were more responsive to immunotherapy. 
Moreover, Cluster2 patients were more amenable to anti-
PD-1 and anti-CTLA4 therapies.

Malta et  al. developed the OCLR technique to calcu-
late the transcriptional stem cell index (mRNAsi) using 
the 11,774-gene mRNA expression profile [55, 56]. We 
used the same method to calculate the mRNAsi of HCC 
patients. Our findings are similar to previous studies in 

that patients with high mRNAsi had a poorer prognosis 
[57]. Patients in the better surviving Cluster2 and low 
SRscores groups had lower mRNAsi. The SRscores and 
mRNAsi showed a significant positive correlation. Our 
findings were similar to previous studies in that patients 
with high mRNAsi had a poorer prognosis. Patients in 
the better surviving Cluster2 and low SRscores groups 
had lower mRNAsi. The interventional risk score and 
mRNAsi showed a significant positive correlation. Stud-
ies have shown that the mRNAsi, such as Wnt, Nuclear 
factor-κB (NF-κB), Janus kinase/signal transducers and 
activators of transcription (JAK-STAT), Phosphati-
dylinositol-3-kinase (PI3K)/AKT/mammalian target of 
rapamycin (mTOR) and other signaling pathways can 
regulate the growth of CSCs [58]. We found that the high 

Fig. 7  Correlation of transcription factors and stemness-related genes was confirmed by single-cell analysis. A Cell annotations 
for the HCC-integrated dataset are shown on the UMAP plots, with different colored representations of cell types. B Identify regulatory modules 
based on the regulator CSI matrix and extract core transcription factors, binding motifs, and corresponding cell types. C The distribution 
of transcription factors among cell populations in each module. D Heat map showing the expression of the screened transcription factors 
in each cell population. E The enrichment of the screened transcription factors in each cell population. F Heat map display of the correlation 
between screened transcription factors and stemness-related genes
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SRscores group was significantly enriched in these path-
ways. In conclusion, we suggest that the SRscores can 
reflect the characteristics of CSCs.

We did transcriptional and single-cell analyses. Stem 
cells had a considerably higher SRscores. Stem cells had 
much higher gene expression than other cells. Our sin-
gle-cell data only examined HCC tumor tissues, there-
fore these genes may be substantially expressed in CSCs. 
Transcription factors influence tumor stem cell biology, 
according to several studies. Bioinformatic study showed 
that tumor stem cells activated TCF3, SMARCA4, TFF3, 
etc. (Fig.  7D, E). Joint transcriptome data analysis sug-
gested these transcription factors regulate stemness 
risk-related genes. Single-cell sequencing from hepato-
cellular cancer stem cells did not evaluate these genes. 
We can improve risk-scoring models and CSC treat-
ment by studying the distribution and expression of these 
genes in CSCs. We also have not investigated the detailed 
regulatory relationships between transcription factors 
and these genes, which would allow us to investigate the 
specific networks of stemness genes that regulate tumori-
genesis and development.

Eight genes were utilized to generate a stemness-
related risk score.LPCAT1 (Lysophosphatidylcholine 

Acyltransferase 1) is a gene that codes for a protein that 
is essential for phospholipid metabolism.LPCAT1 is cru-
cial to the development of diverse tumors and may func-
tion as a potential prognostic marker. [59–62]. Uehara 
et  al. found that LPCAT1 expression was significantly 
higher in gastric cancer compared to paraneoplastic tis-
sue [63]. It has been shown that LPCAT1 can promote 
endometrial tumor cell growth and stemness by affect-
ing the TGF-β signaling pathway [61].In HCC, LPCAT1 
is an oncogene that promotes the growth and metastasis 
of liver cancer cells [64]. Using a rat model of hepatocel-
lular carcinoma, we found that LPCAT1 expression was 
substantially higher in tumor tissues compared to nor-
mal tissues. In addition, silencing LPCAT1 inhibited the 
stemness of hepatocellular carcinoma cells.

In conclusion, stemness-related subtypes and risk 
scores were developed. We also systematically described 
their associations with TME immune cell infiltra-
tion, drug sensitivity, and TMB. These results dem-
onstrate different subtypes and high and low-risk 
score groups in HCC patients. These stemness-related 
genes’ interaction is vital in tumor development and 
treatment. The SRscores may provide new ideas for 

Fig. 8  LPCAT1 expression and stemness in HCC (A) Hematoxylin–Eosin staining detection of normal and hepatocellular carcinoma (B) 
Immunohistochemical detection of LPCAT1 expression in normal and hepatocellular carcinoma groups. C Knockdown of LPCAT1 in HCCLM3 
cells and validated by qRT-PCR, **p < 0.01;***p < 0. 001. D, E Sphere formation assay was performed after transfection of HCCLM3 cells using NC, 
sh-2, and sh-3, the sphere size of each group was photographed, and the maximum sphere diameter statistic was performed, Scale bar of 200 μm 
is shown, ***p < 0. 001
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subsequent assessment of patient survival, guiding indi-
vidualized treatment and improving the effectiveness of 
immunotherapy.

Nonetheless, our investigation inevitably has some 
limitations. The data in our study were obtained from 
public databases. Although animal and cellular investi-
gations were conducted for validation, additional clinical 
validation is required to confirm the practical accuracy. 
Second, there is a paucity of clinical data validation, and 
large samples will be required in the future to validate the 
accuracy of the stemness model in hospitals with which 
we collaborate. The clinical significance of stemness 
subtypes and SRscores must be investigated further. In 
addition, only the role of the core gene LPCAT1 in HCC 
was validated, and the role and mechanism of stemness-
related genes in HCC require further validation of func-
tional experiments of other genes in the model.
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