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Abstract 

Background  Gene expression signatures can be used as prognostic biomarkers in various types of cancers. We aim 
to develop a gene signature for predicting the response to radiotherapy in glioma patients.

Methods  Radio-sensitive and radio-resistant glioma cell lines (M059J and M059K) were subjected to microarray 
analysis to screen for differentially expressed mRNAs. Additionally, we obtained 169 glioblastomas (GBM) samples 
and 5 normal samples from The Cancer Genome Atlas (TCGA) database, as well as 80 GBM samples and 4 normal 
samples from the GSE7696 set. The “DESeq2” R package was employed to identify differentially expressed genes 
(DEGs) between the normal brain samples and GBM samples. Combining the prognostic-related molecules identified 
from the TCGA, we developed a radiosensitivity-related prognostic risk signature (RRPRS) in the training set, which 
includes 152 patients with glioblastoma. Subsequently, we validated the reliability of the RRPRS in a validation set 
containing 616 patients with glioma from the TCGA database, as well as an internal validation set consisting of 31 glio-
blastoma patients from the Nanfang Hospital, Southern Medical University.

Results  Based on the microarray and LASSO COX regression analysis, we developed a nine-gene radiosensitivity-
related prognostic risk signature. Patients with glioma were divided into high- or low-risk groups based on the median 
risk score. The Kaplan–Meier survival analysis showed that the progression-free survival (PFS) of the high-risk group 
was significantly shorter. The signature accurately predicted PFS as assessed by time-dependent receiver operating 
characteristic curve (ROC) analyses. Stratified analysis demonstrated that the signature is specific to predict the out-
come of patients who were treated using radiotherapy. Univariate and multivariate Cox regression analysis revealed 
that the predictor was an independent predictor for the prognosis of patients with glioma. The prognostic nomo-
grams accompanied by calibration curves displayed the 1-, 2-, and 3-year PFS and OS in patients with glioma.

Conclusion  Our study established a new nine-gene radiosensitivity-related prognostic risk signature that can predict 
the prognosis of patients with glioma who received radiotherapy. The nomogram showed great potential to predict 
the prognosis of patients with glioma treated using radiotherapy.
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Introduction
Glioma is the most common primary central nervous 
system (CNS) cancer, accounting for 78.3% of all malig-
nant brain tumors [1–3]. Highly malignant gliomas 
have a poor prognosis, with a median PFS of less than 
7  months [4, 5]. At present, the comprehensive glioma 
treatment strategy is based on maximal surgical resec-
tion, chemotherapy, and radiotherapy. Among them, 
radiotherapy has significant clinical benefits in improv-
ing outcomes for patients with glioma [6, 7]. However, 
despite its efficacy, 95% of patients with glioblastoma 
relapse after radiotherapy, with more than 80% of the 
relapse pattern occurring within the irradiation field [8, 
9]. This suggests that radiation resistance of glioma cells 
may be a significant factor. Several studies have identi-
fied potential mechanisms of radio-resistance in gliomas, 
including glioma cell stemness, DNA damage repair, cell 
cycle blockade, changes to the tumor microenviron-
ment, and regulation of autophagy [10, 11]. However, the 
underlying molecular mechanisms of radio-resistance 
remain unclear. Molecular markers, including 1p/19q 
co-deletion and mutations in TERT (encoding telom-
erase reverse transcriptase), P53, and ATRX (encoding 
alpha thalassemia/mental retardation syndrome X-linked 
chromatin remodeler), have been identified as crucial 
predictors of patient prognosis and treatment sensitivity 
[12–14]. Identifying biomarkers associated with radio-
therapy response is essential to understanding the mech-
anism of glioma radio-resistance.

Some studies [15–17] have demonstrated the prognos-
tic ability of gene signatures for disease prognosis, and 
the prediction of metastasis and recurrence in patients. 
And, there are also several studies concentrating on the 
sensitivity of radiotherapy in patients with gliomas. Lin 
et  al. [18] developed a three-lncRNA signature to pre-
dict clinical outcomes in low-grade glioma patients after 
radiotherapy, which was established according to radio-
therapeutic response (complete or partial responses) and 
divided patients into the radiotherapy-resistant group 
and radiotherapy-sensitive group and analyzed the differ-
entially expressed lncRNAs. Zhang et al. [19] established 
a five-microRNA signature according to the association 
of the LGG (Low Grade Glioma) patients’ overall survival 
(OS) with microRNA expression. Yan et al. [20] analyzed 
those genes significantly associated with OS in radio-
therapy patients and intersected immune-related genes 
to construct a 21-gene signature to identify patients with 
LGGs who would benefit from radiotherapy. However, 
there are several limitations to those studies. Firstly, most 

patients underwent surgical resection, and there were no 
observable lesions to evaluate the radiotherapy response. 
Second, there are many confounding factors affecting 
the clinical survival data, including the extent of surgi-
cal resection and chemotherapy response. It might lead 
to clinical response or survival data that cannot fully 
reflect radio-sensitivity. To address these limitations, we 
constructed a pair of radio-resistant and radio-sensitive 
cell lines in  vitro, generated a microarray to obtain dif-
ferentially expressed genes (DEGs) related to radiosensi-
tivity, and combined these DEGs with PFS-related genes 
obtained from the TCGA database to identify radiosen-
sitivity-related genes. In this study, we sought to identify 
biomarkers of radiosensitivity in patients with glioma to 
predict their response to radiotherapy and their PFS. We 
derived the M059J and M059K cell lines from two parts 
of the same tumor, with the former being radio-sensitive 
and the latter being relatively resistant, demonstrating 
a sensitivity difference of approximately 30-fold. Using 
microarray analysis, we compared the mRNA expres-
sion profiles of the two cell lines and identified several 
hub genes related to radiosensitivity, constructing a radi-
osensitivity-related prognostic risk signature (RRPRS). 
We evaluated the performance of the RRPRS in different 
cohorts, examined its predictive power in patients with 
glioma, and developed nomograms to guide clinical prac-
tice and predict PFS and OS in glioma patients.

Methods
Cell lines and culture
The human glioblastoma cell line M059K (CRL-2365) 
and M059J (CRL-2366) cells were obtained from the 
American Type Culture Collection (ATCC, Manassas, 
VA). M059K cells express normal levels of DNA-depend-
ent protein kinase while M059J cells lack DNA-depend-
ent protein kinase activity. M059K was radio-resistant 
and M059J was relatively radio-sensitive (the sensitivity 
of radiotherapy differed by a factor of approximately 30)
[21]. M059K and M059J cells were maintained in Dulbec-
co’s modified Eagle’s medium (DMEM) and Ham’s F12 
medium (1:1 mixture) (GIBCO, Australia) supplemented 
with 10% fetal calf serum (GIBCO), 1 mM non-essential 
amino acid (Sigma) [22].

Microarrays and computational analysis
Microarray analysis was performed using the two human 
glioma cell line M059K and M059J cell as experimental 
models to select differentially expressed mRNAs. Three 
independent experiments were conducted for each cell 
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line. Total cellular RNA was extracted with TRIzol Rea-
gent (Invitrogen, Carlsbad, CA) and purified using a 
RNeasy Mini Kit (Qiagen, Valencia, CA). Subsequently, 
complementary DNA (cDNA) was synthesized and 
labeled for microarray hybridization using Arraystar 
(Rockville, MD). The microarray slides were cleaned and 
scanned using an Agilent DNA Microarray Scanner (Agi-
lent, Santa Clara, CA). The obtained data were subjected 
to complete sequencing analysis by KangChen Bio-tech 
(Project Code: H1211196), and the data were normal-
ized using GeneSpring GX v11.5 software package (Agile 
Technologies) with low-intensity filtering. To identify 
statistically significant differentially expressed mRNAs, 
we applied a Volcano Plot filtering between the two 
groups based on fold change (> 2.0) and a P-value thresh-
old (< 0.05). The results were further analyzed using hier-
archical clustering with the Cluster Treeview software 
(Stanford University, CA, USA).

Data collection and preprocessing
GSE7696 is a dataset from the Gene Expression Omni-
bus (GEO) that explores resistance factors to concurrent 
chemoradiotherapy and adjuvant chemotherapy, includ-
ing 80 glioblastoma samples and 4 normal brain tissue 
samples. The RNA-seq data of those samples were down-
loaded from the GEO database (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/). We used “GEO2R” to analyze differentially 
expressed genes between tumor tissue and normal tissue. 
The RNA-sequencing (RNA-seq) data of GBM (glioblas-
toma) (n = 174), lower grade glioma and glioblastoma 
(GBMLGG) (n = 702), and normal brain samples (n = 5) 
were downloaded from The Cancer Genome Atlas data-
set (TCGA, https://​portal.​gdc. cancer.gov) using UCSC 
Xena (https://​xenab​rowser.​net/​datap​ages/) in August 
2022. We excluded some patients who lacked clinical 
information (such as radiation therapy information) and 
final included 616 glioma patients, and 152 glioblas-
tomas, respectively. These data were uniformly trans-
formed into FPKM (Fragments Per Kilobase per Million) 
by the Toil process for comparative analysis. The detailed 
clinicopathological characteristics of the patients are 
shown in Table 1. Messenger RNA microarray data from 
the Chinese Glioma Genome Atlas (CGGA) of diffuse 
gliomas including clinical information were downloaded 
from the CGGA website on July, 17, 2022. Patients with-
out radiotherapy information were excluded and a total 
of 501 patients were enrolled in the CGGA cohort for 
analysis.

Identification of candidate genes
The “GEO2R” analysis was used to identify differen-
tially expressed genes in 80 glioblastoma samples and 
4 normal brain samples from GSE7696. P < 0.05, |log2 

foldchange (FC)|> 1 were set as cut-off values. Then, we 
used the “DESeq2” package in the R software to identify 
differentially expressed genes in 169 GBM samples and 5 
adjacent non-tumor samples. P < 0.05, |log2 foldchange 
(FC)|> 2 were set as  cut-off values. To investigate the 
response of gliomas to radiotherapy, we identified PFS-
associated genes in TCGA using the “survminer” pack-
age with a filtering criterion of P < 0.05 and Hazard Ratio 
(HR) > 1. The above genes that intersected with the DEGs 
screened by the microarray analysis were identified as 
candidate genes for the subsequent construction of the 
radiosensitivity-related prognostic model.

Gene set enrichment analysis (GSEA)
To explore the different molecular patterns between 
radioresistant and radiosensitive cell strains, GSEA was 
performed using MSigDB collections using the “cluster-
Profiler” package in R [23].

Establishment of radiosensitivity‑related prognostic risk 
signature (RRPRS)
Then, Lasso COX regression was performed to deter-
mine the contributions of radiosensitivity-related genes 
in survival prediction using the R package “glmnet”, and 
nine hub genes were used to construct the prognostic 
risk models [24]. The risk score was calculated according 
to the standardized TCGA-GBM mRNA expression data 
in the training set.

X represents the coefficient of radiosensitivity-related 
genes in LASSO Cox regression analysis, Y represents 
the gene expression of radiosensitivity-related genes. 
By using ten-fold cross-validation, the results of LASSO 
model were validated. The cross-validation allows us 
to pick the RRPRS with the λ value having the lowest 
mean squared error or model variance. We calculated 
each patient’s risk score and the median risk score was 
used as the cutoff value to divide patients into high and 
low-risk subgroups, and the progression-free survival 
between these two groups was analyzed. The receiver 
operating characteristic (ROC) curves were produced 
by the timeROC package to evaluate the prognostic 
efficiency of the RRPRS. To make the model more con-
vincing, we validated it in the TCGA-GBMLGG cohort 
and the SMU-NFH cohort. We normalized the expres-
sion of relevant genes and calculated the risk score 
according to the above formula. The patients were also 
divided into high-risk and low-risk groups based on the 
median risk score, and compare the PFS between the 
two groups. The expression of each gene in the RRPRS 
was also standardized, and the PFS between the two 

Riskscore =

∑n

i
xiyi

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc
https://xenabrowser.net/datapages/
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Table 1  Demographics and clinicopathological features of patients with glioma in the TCGA and SMU-NFH cohorts

GBM glioblastoma, KPS Karnofsky performance score, OS status overall survival status, NA not available

Variables Training set Validation set SMU–NFH set

Total 
(n = 152)

High–risk 
group 
(n = 76)

Low–risk 
group 
(n = 76)

Total 
(n = 616)

High–risk 
group 
(n = 308)

Low–risk 
group 
(n = 308)

Total (n = 31) High–risk 
group 
(n = 16)

Low–risk 
group 
(n = 15)

Age(years) 60.1 ± 12.4 59.6 ± 14.8 52.4 ± 14.8 41.2 ± 12.7 43.8 ± 8.1 44.2 ± 16.4

Sex

 Female 54 27 27 267 129 138 14 6 8

 Male 98 49 49 349 179 170 17 10 7

KPS

 < 80 31 12 19 54 42 12 11 3 8

 ≥ 80 85 49 36 136 89 47 20 13 7

 NA 36 15 21 426 177 249 – – –

Progression

 NO 32 9 23 295 109 186 10 4 6

 Yes 120 67 53 321 199 122 21 12 9

OS status

 Alive 64 26 38 370 139 231 15 8 7

 Dead 86 50 36 246 169 77 16 8 8

IDH mutation status

 Mutant 10 1 9 388 112 276 7 2 5

 Wildtype 138 72 66 219 187 32 24 14 10

 NA 4 3 1 9 9 0 – – –

MGMT promoter status

 Methylated 52 24 28 NA NA NA 3 0 3

 Unmethyl-
ated

67 36 31 NA NA NA 28 16 12

 NA 33 16 17 NA NA NA – – –

Radiotherapy

 No 39 19 20 190 95 95 10 5 5

 Yes 111 57 54 426 213 213 21 11 10

 NA 2 0 2 – – – – – –

1p/19q codeletion status

 Codeletion 0 0 0 149 68 81 1 1 0

 Non–code-
letion

147 76 71 462 237 225 30 15 15

 NA 5 0 5 5 3 2 – – –

Histology

 Glioblas-
toma

152 76 76 159 139 20 31 16 15

 Astrocy-
toma

– – – 164 56 108 – – –

 Oligoastro-
cytoma

– – – 125 35 90 – – –

 Oligoden-
droglioma

– – – 168 78 90 – – –

WHO Grade

 Grade II – – – 226 73 153 – – –

 Grade III – – – 231 96 135 – – –

 Grade IV 152 76 76 159 139 20 31 16 15
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groups was also compared. The nomogram and cali-
bration plots produced for the model were constructed 
using the rms package (version 6.2) and survival pack-
age (version 3.2-10) in R.

Clinical specimens and study design
From February 2017 to August 2021, a total of 31 patients 
with glioblastoma were included at the Nanfang Hospi-
tal, Southern Medical University (SMU-NFH) cohort. All 
cases were pathologically diagnosed to be glioblastoma 
by experienced pathologists in the hospital. None of the 
patients had received any anti-tumor therapy before tis-
sue biopsy. All patients underwent staging magnetic 
resonance imaging (MRI) or computed tomography (CT) 
examination. Tumor assessments were performed at 
least 6 months using contrast-enhanced CT or MRI. Two 
radiologists (W-DH and RC) separately assessed all the 
imaging data, and disagreements were resolved by con-
sensus. This study adhered to ethical guidelines and was 
approved by the institutional ethical review boards of 
Southern Medical University Affiliated Nanfang Hospital 
(Project number: NFEC-202302-081), and the require-
ment for informed consent was waived. This study has 
been registered with the Medical Research Registration 
and Filing Information System (Number: MR-44-23-
008141). Supplementary Table  S2 contains the demo-
graphic and follow-up data of the 31 patients.

Sample extraction and sequencing
Samples from all 31 patients included in the Southern 
Medical University cohort were analyzed using RNA-
seq. The formalin-fixed, paraffin-embedded (FFPE) 
tissue were collected before chemotherapy and radio-
therapy treatment. RNA Sequencing and analysis were 
performed at the Genomics Laboratory of GenomicCare 
Biotechnology (Shanghai, China). For FFPE tissue, RNA 
was purified using a MagMAX FFPE DNA/RNA Ultra kit 
(cat# A31881, ThermoFisher), reverse-transcribed using 
the NEBNext RNA First Strand Synthesis Module (cat# 
E7525S, NEB, Ipswich, MA, USA), and NEBNext Ultra 
II non-directional RNA Second Strand Synthesis Mod-
ule (cat# E6111S, NEB) for cDNA Synthesis. RNA-seq 
libraries were prepared from the cDNA using SureSelect 
XT HS and Low Input Library Preparation Kit for ILM 
(Pre PCR) (cat# G9704, Agilent, Santa Clara, CA, USA) 
following the manufacturer’s instructions. The libraries 
were sequenced on an Illumina NovaSeq-6000 Sequenc-
ing System (Illumina Inc., San Diego, CA, USA) to gen-
erate 150 × 150 paired-end reads. The expression level of 
each mRNA was presented as fragments per kilobase of 
transcript per million mapped reads (FPKM).

Data quality control
RNA-seq reads were mapped to NCBI human genome 
reference assembly hg19 using STAR (version 020201) 
[25] and a count matrix was generated. The raw read 
counts were further normalized by log2-counts per mil-
lion normalization and the list of genes expressed dif-
ferentially between groups was generated using DESeq2 
[26].

Statistical analysis
Data analysis was carried out by R software (verion3.6.3) 
and corresponding R packages [27]. Log-rank tests or 
Cox regression analysis were used to evaluate the sta-
tistical significance for PFS and OS. Receiver operat-
ing characteristics (ROC) curves were constructed to 
examine the sensitivity and specificity of survival predic-
tion. The area under the ROC curve (AUC) values were 
used to evaluate model performances (using the R pack-
age ROCR). Univariate and multivariate Cox regression 
analyses were used to evaluate the influence of various 
potential risk factors on PFS in patients with glioma [28]. 
A significant difference was defined by a P < 0.05.

Results
Flow‑chart and mRNA expression profile in two human 
glioma cell lines
We first presented the workflow process of our study in 
a flow chart (Fig.  1a). To investigate the potential role 
of genes in the radiosensitivity of glioma, we performed 
microarray analysis to assess the differentially expressed 
genes (DEGs) between the M059K cell line and its paren-
tal cell line, M059J. The Principal Component Analysis 
(PCA) of the original dataset between the two cell lines 
showed a distinct pattern of molecular characteriza-
tion (Fig. 1b). A volcano plot (Fig. 1c) showed the DEGs 
between the two groups, and we identified 1850 DEGs, 
of which 897 were upregulated and 953 were downregu-
lated. (R: ggplot2 package, P < 0.05 and fold change > 2.0). 
Hierarchical clustering of DEGs between M059K and 
M059J cells is presented as a heatmap (Fig. 1d). The Gene 
set enrichment analysis (GSEA) indicated that the radio-
resistant cell line M059K was associated with enrichment 
of angiogenesis, mesenchymal transformation, and inter-
feron response (IFNα), which provided a foundation for 
our investigation of the mechanism of radio-resistance in 
patients with glioma (Additional file 1: Fig. S1 a–c).

Establishment of a radiosensitivity‑related prognostic risk 
signature (RRPRS)
First, we identified 3393 genes that were differen-
tially expressed between 80 glioblastoma samples 
and four normal brain tissue samples from GSE7696 
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using “GEO2R”, which was designed to study the fac-
tors influencing radiation resistance in glioblastoma. 
P < 0.05, |log2 foldchange (FC)|> 1 were set as cut-off 
values. We obtained 169 GBM samples and 5 adjacent 
non-tumor tissues from TCGA. A total of 3352 dif-
ferentially expressed genes were identified using the 
“DESeq2” package with a minimum of twofold change, 
and a P-value of P < 0.05. For prognostic analysis, Cox 
proportional hazards analysis was performed using the 
“survminer” package in R. We identified 1124 genes 
related to progress-free survival (PFS) based on a fil-
tering criterion of P < 0.05 and hazard ratio (HR) > 1 
in the TCGA-GBM data. We intersected the DEGs 
obtained by microarray analysis, GSE7696, and TCGA 
and ultimately identified 14 radiosensitivity-related 
genes. (Fig. 2a). Next, we evaluated the expression lev-
els of these 14 hub genes in the two cell lines (Fig. 2b), 
and found that some genes were highly expressed in 
radio-resistant cells while others were highly expressed 
in radio-sensitive cells. In other words, these 14 key 
genes had different expression patterns in the two cell 
lines with different radiotherapy sensitivities. We then 
created a heat map displaying the cross-correlations 
between all genes (Fig. 2c), and a forest plot was gener-
ated to show the effect of the hub genes on PFS prog-
nosis (Fig.  2d), suggesting that these molecules might 
have a relationship with the efficacy of radiotherapy in 
patients with glioma. Lastly, we performed a LASSO 
Cox regression analysis of the hub genes, which further 

narrowed the number of these radiosensitivity-related 
genes to nine, and established an RRPRS (Fig. 2e, f ).

The predictive value of the RRPRS for the PFS of patients 
with glioma
After screening those patients who lacked radiation 
therapy information, 152 patients with glioblastoma and 
616 patients with glioma in the TCGA database were 
included in training cohorts and validation cohorts, 
respectively, while the test cohort consisted of 31 glio-
blastoma patients from Nanfang Hospital, Southern 
Medical University (SMU-NFH). The detailed clinico-
pathological characteristics of the patients are shown in 
Table 1. Univariate Cox regression analysis showed that 
age, IDH (encoding isocitrate dehydrogenase) muta-
tion status, 1p19q codeletion status, O6-methylguanine 
(O6-MeG)-DNA methyltransferase (MGMT) status, 
and RRPRS risk scores correlated significantly with the 
PFS of patients with glioma (Table  2). Multivariate Cox 
regression analysis confirmed that RRPRS remained an 
independent prognostic factor after adjusting for other 
clinicopathological factors. The same results were also 
recapitulated in the CGGA database (Additional file  1: 
Table S1).

Using the median risk score as the cutoff value, the 
training set patients were divided into RRPRS-high-
risk (n = 76) and RRPRS-low-risk groups (n = 76). The 
same approach was used for the validation set and test 
cohort. In the training set, the Kaplan–Meier survival 

Fig. 1  Flow-chart and mRNA expression profile in 2 human glioma cell lines. a the workflow of the current study. b Principal component analysis 
(PCA). PCA was performed across the 6 samples (M059K and M059J cells) using normalized log2 gene expression levels. Based on two principal 
components (PC1 and PC2), M059J (blue data points) and M059K (red data points) showed evidence of separation in gene-expression space. 
Volcano plots: c the vertical lines correspond to 2.0-fold up and down and the horizontal line represents a p-value of 0.05. Thus, the red point 
in the plot represents the differentially expressed genes with statistical significance; d hierarchical clustering shows a distinguishable mRNA 
expression profiling among samples
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Fig. 2  Establishment of a Radiosensitivity-Related Prognostic Risk Signature (RRPRS). a venn diagram showing overlapping mRNAs from the results 
of mRNA microarray analysis (the mRNA microarray analysis screened out 1850 DEGs, after de-duplicating, there were 1549 left), GSE7696 database, 
and TCGA database prediction (Prognosis is the 1124 genes related to PFS); b hierarchical clustering of the six samples with the 14 differentially 
expressed mRNAs using Euclidean distance and average linkage clustering. Each row represents an individual gene, and each column represents 
an individual sample; c a heatmap of the correlations among multiple genes; d Univariate Cox regression analysis of 14 significant DEGs for PFS 
in the TCGA cohort shown as a forest plot; e, f Lasso Cox regression analysis of radiosensitivity-related genes
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curve showed that the PFS of the RRPRS-high-risk group 
was significantly shorter than that of the low-risk group 
(P < 0.001) (Fig.  3a). Furthermore, the model built using 
the RRPRS showed good performance on the ROC analy-
sis for PFS, with AUC values of 0.747, 0.867, and 0.879 
for 1-year, 2-year, and 3-year PFS, respectively (Fig. 3b). 
Figure  3c illustrates the risk score distribution, survival 
status distribution, and gene expression of each patient in 
the training set. The heat map showed that the high-risk 
group had higher expression levels of OSMR and PLK2, 
while the low-risk group had lower expression levels of 
ITPKA and L1CAM. In the validation set and SMU-NFH 
set, the PFS for the RRPRS-high-risk group was also 
shorter (P < 0.001 and P = 0.034, log-rank test) (Fig. 3d, g). 
The AUCs for 1-year, 2-year, and 3-year PFS were 0.778, 
0.689, and 0.673 in the validation set, respectively, and 
0.609 and 0.847 in the data from our center (Fig. 3e, h). 
The risk score, survival information, and the expression 
distributions of the nine genes in the patients are shown 
in Fig. 3f and i.

Radiotherapy stratification analysis
To evaluate whether the RRPRS can predict radiation 
therapy outcomes in patients with glioma, we performed 
stratified analyses in the validation set and SMU-NFH set 
since most patients from the TCGA datasets had received 
radiotherapy according to the clinical information shown 
in Table 1. The PFS in the different risk groups of patients 
with glioma who received radiotherapy was statistically 
significant (Fig.  4a–c), in contrast to the non-radiother-
apy group (Fig. 4d–f). To further verify the effectiveness 
of the predictor, the CGGA database was used to validate 
the prediction efficacy of RRPRS. Since the data on PFS 

of patients were lacking in the CGGA database, we used 
overall survival for analysis. The Kaplan–Meier curve 
analysis in patients who received radiotherapy revealed 
that those who had a high RRPRS-risk score had signifi-
cantly worse overall survival (OS) compared to those with 
a low RRPRS-risk score (P = 0.02) (Additional file 1: Fig. 
S2a). In contrast, no significant difference was observed 
in the non-radiotherapy group (Additional file  1: Fig. 
S2b). Additional file  1: Fig. S2c showed the relationship 
between risk score distribution and nine-genes expres-
sion distribution of patients in the CGGA database. In 
summary, the results suggest that the RRPRS performed 
well in predicting the progression-free survival (PFS) in 
patients undergoing radiation therapy.

Stratified PFS analysis based on the risk model 
in the validation set of the TCGA cohort
To verify the predictive efficiency in stratified cohorts, 
patients were stratified according to other clini-
cal parameters in the validation set, such as sex, age 
(≤ 60/> 60 years), and CNS WHO classification (Grade 
II/III/IV). Kaplan–Meier curves showed that the high-
risk group had a shorter PFS than the low-risk group 
in all subgroups (P ≤ 0.001) (Fig.  5a–f ), indicating 
that the RRPRS risk score is a robust predictor of PFS 
across all subgroups. We further explored the rela-
tionship between the risk score and clinical param-
eters in patients with glioma. Higher risk scores were 
associated with higher histopathological glioma grade 
(Fig. 5g). Additionally, IDH wildtype status and MGMT 
promoter unmethylated status demonstrated higher 

Table 2  Univariate and multivariate Cox regression analysis of the RRPRS for PFS in patients with glioma

For PFS variables Training set Validation set

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR (95% CI) P- value HR (95% CI) P- value HR (95% CI) P -value HR (95% CI) P- value

Sex (male vs female) 1.160 (0.794–1.696) 0.443 0.919 (0.513–1.645) 0.777 1.085 (0.869–1.355) 0.47 1.060 (0.840–1.338) 0.623

Age 1.014 (1.000–1.027) 0.049 1.009 (0.985–1.034) 0.47 1.038 (1.030–1.046)  < 0.001 1.011 (1.001–1.020) 0.028
KPS (≥ 80 vs < 80) 1.478 (0.889–2.457) 0.132 1.215 (0.674–2.192) 0.517 – – – –

1p19q codeletion 
status (codel vs non-
codel)

– – – – 0.29 (0.206–0.408)  < 0.001 0.374 (0.233–0.600)  < 0.001

IDH mutation status 
(mutant vs wildtype)

0.323 (0.131–0.798) 0.014 0.607 (0.111–3.322) 0.565 0.153 (0.120–0.195)  < 0.001 0.488 (0.326–0.731)  < 0.001

MGMT status (methyl-
ated vs un-methylated)

0.530 (0.341–0.822) 0.005 0.974 (0.516–1.839) 0.936 – – – –

Radiotherapy 0.990 (0.965–1.017) 0.481 0.989 (0.962–1.017) 0.439 0.682 (0.527–0.882) 0.004 1.601 (1.173–2.186) 0.003
RRPRS (high-risk vs 
low-risk)

3.412 (2.324–5.008)  < 0.001 3.605 (1.510–8.611) 0.004 2.911 (2.437–3.476)  < 0.001 1.878 (1.343–2.625)  < 0.001
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risk scores, indicating that the risk score is associated 
with resistance to chemoradiotherapy. Overall, our 
results showed that the RRPRS risk score is a reliable 
predictor of PFS in glioma patients.

Survival analysis for the genes in the RRPRS
To determine the prognostic value of the nine genes in 
the RRPRS, we calculated the risk score for each patient 
with glioblastoma in the TCGA dataset and divided them 
into high-risk and low-risk groups based on the median 

Fig. 3  The predictive value of the RRPRS for the PFS of patients with glioma. Kaplan–Meier plots, time‐dependent ROC curves, the distributions 
of risk scores, survival status, and expression of radiosensitivity-related genes in the training set (a–c), validation set (d–f), and the SMU-NFH cohort 
(g–i). Significance for PFS analysis was calculated using a log-rank test, with the red line representing the RRPRS-high-risk group and the blue line 
representing the RRPRS-low-risk group. Red in the heatmap represents a high expression level and blue represents a low expression level
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risk score. We then performed a Kaplan–Meier survival 
analysis for each of the nine genes using the “survival and 
survminer package” in R (Fig. 6a–i). The results showed 
that these nine genes significantly affected the PFS of the 
patients, and most of the genes also impacted the OS of 
patients with GBM (Additional file  1: Fig. S3). The sur-
vival time of PFS and OS in the high-expression group 
was significantly lower than that in the low-expression 
group. However, there was no significant difference in OS 
between the high and low-expression groups for NPTN 
and TMEM71.

Establishment of nomograms to predict the OS and PFS 
in patients with glioma
To further improve the predictive accuracy of the RRPRS, 
we established prognostic nomograms for PFS and OS, 
which included the risk score and other independent 
prognostic factors from the multivariate analysis. As 
shown in Fig. 7a and c, the higher the total score based 
on the sum of the assigned numbers for each factor in 
the nomograms, the worse the 1-year, 2-year, and 3-year 
PFS and OS rates. Subsequent analysis showed that the 
1-, 2-, and 3-year PFS and OS calibration curves were 
close to the ideal curve, suggesting that the nomogram 

could accurately predict the radiation therapy outcomes 
of patients with glioma (Fig. 7b and d).

Discussion
Radiotherapy is a standard treatment modality for high-
grade gliomas, which could improve the OS survival time 
from months to years. However, with treatment prolon-
gation, radiotherapy resistance commonly occurs in the 
radiation field of glioma patients. Despite the continu-
ous improvement of radiotherapy techniques including 
Intensity Modulated Radiation Therapy (IMRT), Volu-
metric Modulated Arc Therapy (VMAT), and Tomo-
therapy (TOMO) in recent years aimed at making 
radiotherapy more individualized and precise, a large 
proportion of patients with high-grade glioma still expe-
rience recurrence after radiotherapy. Hence, identifying 
features related to radiotherapy sensitivity is still a sig-
nificant challenge. Some investigators have discovered 
differentially expressed genes (DEGs) profiles and signa-
tures in glioma by mining data from the GEO and TCGA 
databases. For example, Yan et al. [20] suggested that the 
prognosis of patients in the glioma radio-resistant group 
is significantly worse than that in the radio-sensitive 
group. Lin et  al. [18] analyzed the lncRNA-expression 
profiles of 167 LGG patients from the TCGA database 

Fig. 4  Radiotherapy stratification analysis. The RRPRS could further divide patients with glioma with radiotherapy (a–c) or without radiotherapy 
(d–f) into two groups with significantly different PFS values
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and developed a risk-score model based on the expression 
of 3 lncRNAs, which were significantly associated with 
OS in patients with glioma. Zhang et al. [19] established a 
five-microRNA signature according to the association of 
the LGG patients’ overall survival (OS) with microRNA 
expression. Recently, Yan et al. [20] analyzed genes signif-
icantly associated with OS in radiotherapy patients and 
intersected immune-related genes to construct a 21-gene 

signature to identify patients with LGGs who would ben-
efit from radiotherapy. However, these studies mostly 
failed to control for confounding factors or provide justi-
fication for them, such as the extent of surgical resection, 
chemotherapy regimens, and compliance, which might 
lead to clinical response or survival information that can-
not fully reflect radio-sensitivity. Therefore, the clinical 
application of prognostic biomarkers in glioma remains 

Fig. 5  Stratified PFS analysis based on the risk model in the validation set of the TCGA cohort. Based on the RRPRS, stratified PFS analysis 
was performed in patients with glioma with different clinical parameters for the validation set, such as sex (a, b), age group (c, d), CNS WHO 
classification (e, f), and the relationship between the risk score and histological type (g), IDH mutation status (h), MGMT promoter status (i). 
Significance for survival analysis was calculated using Cox regression, with the red line representing the RRPRS-high-risk group and the blue line 
representing the low-risk group
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very limited to date. Here, we constructed glioma radio-
sensitive and radio-resistant cell lines for microarray 
analysis and reported the first DEGs profiling related to 
the radiotherapy sensitivity of glioma.

In this study, we took the intersection of the DEGs 
obtained from the microarray analysis and the prognos-
tic-related genes screened from the online databases, 

particularly those DEGs that correlated with PFS and 
treatment response. Subsequently, LASSO-COX regres-
sion analysis was used to establish a nine-gene prognos-
tic signature related to radiotherapy sensitivity. Notably, 
we identified a novel 9 gene radio-sensitivity signature 
for patients with glioma in this cohort. Kaplan Meier 
survival analysis demonstrated the effectiveness of the 9 

Fig. 6  Survival analysis associated with the genes in Radiosensitivity-Related Prognostic Risk Signature (RRPRS). Kaplan–Meier plots with the PFS 
probability of the patients according to stratification by the expression levels of each individual gene. The ordinate axis represents the probability 
of survival (0–1), and the abscissa axis represents the PFS in days. Blue represents patients with gene expression levels below the median expression 
of the gene, and red represents patients with expression levels above the median
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genes in predicting the response to radiotherapy treat-
ment. Multivariate Cox-regression analysis identified the 
9 genes signature as an independent prognostic factor for 
patients with glioma. We demonstrated that radiotherapy 
provides a clear survival benefit to patients classified as 
low-risk by the 9 genes The further use of this classifier 
signature might allow us better identification of patients 
who are likely to benefit from conventional radiotherapy. 
Therefore, our RRPRS model for patients with glioma 
serves as both a prognostic and a predictive approach, as 

patients in the high-risk group are more likely to relapse 
and less sensitive to radiation therapy. This underscores 
the importance of administering higher dose radiother-
apy or other high-intensity treatments, including immu-
notherapy and targeted therapies, to high-risk patients as 
soon as possible.

The 9 genes RRPRS is composed of OSMR, PLK2, 
CHRM3, NPTN, POSTN, TMEM71, ITPKA, L1CAM, 
and PDLIM1. Although individual studies have previ-
ously investigated these genes, their collective impact on 

Fig. 7  Establishment of nomograms to predict OS and PFS in patients with glioma. The nomogram a, c covering gender, age, Karnofsky physical 
status (KPS), IDH mutation status, 1p19q codeletion status and risk score, at 1-year, 2-year, and 3-year in patients with glioma. b, d calibration curve 
for the PFS and OS nomogram models
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the response to radiotherapy remains unclear. Oncos-
tatin M receptor (OSMR) belongs to the interleukin-6 
receptor family. Ahmad et  al. [29] found that OSMR 
could regulate glioma stem cell respiration and confer 
resistance to radiotherapy via the regulation of oxida-
tive phosphorylation. Polo like kinase 2 (PLK2), a mem-
ber of the serine/threonine kinases family, could induce 
glioblastoma resistance to temozolomide by regulat-
ing Hes family BHLH transcription factor 1 (HES1) and 
notch signaling [30]. Cholinergic receptor muscarinic 3 
(CHRM3), a member of the G protein-coupled receptor 
family, was shown to inhibit tumor cell viability, colony 
formation, migration, and invasion, and promote apop-
tosis when silenced [31]. Neuroplastin (NPTN), which 
encodes a type I transmembrane protein belonging to 
the Ig superfamily, can promote lung cancer progression 
through epithelial-mesenchyme transition (EMT) [32]. 
Periostin (POSTN) was found to be directly related to 
glioma tumor grade and recurrence, promoting glioma 
cell invasion and adhesion while increasing the survival 
rate of glioma stem cells [33]. Previous studies [34] have 
found that the transmembrane protein 71 (TMEM71) is 
upregulated in GSCs and Temozolomide-resistant cells, 
and TMEM71 expression correlated positively with the 
degree of glioma malignancy, which might be mediated 
by involvement in tumor immune and inflammatory 
responses, cell proliferation, cell migration, chemot-
axis, and response to drugs. Ma et al. [35] suggested that 
inositol-trisphosphate 3-kinase A (ITPKA) might pro-
mote transcriptional dysregulation through methylation, 
leading to glioma development and progression. L1 cell 
adhesion molecule (L1CAM) was shown to enhance the 
radiation resistance of glioma stem cells by increasing 
the phosphorylation of ATM and CHK2, slowing down 
cell death, and improving the formation efficiency and 
size of GSC tumor spheres [36]. PDZ and LIM domain 1 
(PDLIM1) might be associated with glioma invasion and 
was highly expressed in multicentric GBM, suggesting 
its potential role in promoting GBM aggressiveness [37]. 
Although the specific mechanisms by which these genes 
affect sensitivity to radiotherapy require further study, 
the results suggested that the sensitivity and specificity of 
the RRPRS were significantly higher than for any single 
gene. There were significant survival differences between 
the high-and low-risk groups according to the RRPRS. 
The training and validation groups demonstrated the pre-
dictive power of RRPRS for the survival of patients with 
glioma.

During the enrollment of patients in our center, some 
patients did not receive radiotherapy because of finan-
cial or personal reasons, which also existed in the TCGA 
database. Therefore, we divided the population into a 
radiotherapy group and a non-radiotherapy group. We 

found that among patients who received radiotherapy, 
the incidence of death and disease progression in the 
low-risk patients was lower, and the high-risk group 
had a higher likelihood of disease progression and poor 
prognosis. There was no significant survival difference 
between the two groups that did not receive radiother-
apy, suggesting that RRPRS is specific to radiotherapy 
and only predicts the outcome of radiotherapy patients. 
This also showed the significance of the prognostic model 
in the study of radiotherapy sensitivity, which might have 
a guiding significance to predict the recurrence time of 
radiotherapy patients. Therefore, during the process 
of clinical radiotherapy, those high-risk patients could 
receive radiotherapy earlier or a higher dose of the local 
tumor, with the hope of reducing the risk of recurrence 
and improving tumor control rates and survival. For low-
risk patients, a relatively low radiotherapy dose could be 
given to reduce the possibility of radiation brain injury 
under the condition of ensuring lower recurrence risk 
and better survival time.

However, there are some limitations to this study. 
Firstly, the six samples of glioma radiation-sensitive and 
resistant cells were constructed in  vitro for chip analy-
sis. In this process, we only considered the difference in 
radiotherapy sensitivity caused by the simple tumor cells, 
ignoring the influence of the tumor microenvironment. 
Secondly, during the validation of our cohort, we only 
included a small sample size of 31 patients with glioblas-
toma, which may not be representative of all patients with 
glioma. Thirdly, our study, whether from a public data-
base or our cohort, was retrospective in nature, and the 
results have not been validated in a prospective cohort. 
Finally, further exploration of the molecular mechanisms 
underlying radiotherapy resistance is required to identify 
potential therapeutic targets that can be translated into 
clinical practice.

Conclusions
In this study, we used microarray analysis of the radio-
sensitive and radio-resistant glioma cell lines (M059J 
and M059K) to explore their differential gene expression 
patterns. Using the intersection of the prognostic genes 
identified from the TCGA and GEO, we obtained several 
radio-sensitive related genes. Then, LASSO-COX regres-
sion analysis was used to establish prognosis characteris-
tics related to radiotherapy sensitivity. Then, we validated 
the novel RRPRS in different cohorts to predict disease 
recurrence after radiotherapy for patients with glioma. 
The results showed that the RRPRS could be a prognostic 
indicator for patients with glioma, which could predict 
PFS and help to identify patients with glioma who are 
likely to benefit from radiotherapy. Our results indicated 
that the radiosensitivity-related nine-gene prognostic 
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risk signature is potential and prognostic indicator for 
patients with glioma treated using radiotherapy.
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