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Abstract 

Background Non-invasive risk stratification contributes to the precise treatment of prostate cancer (PCa). In previous 
studies, lymphocyte subsets were used to differentiate between low-/intermediate-risk and high-risk PCa, with limited 
clinical value and poor interpretability. Based on functional subsets of peripheral lymphocyte with the largest sample 
size to date, this study aims to construct an easy-to-use and robust nomogram to guide the tripartite risk stratifica-
tions for PCa.

Methods We retrospectively collected data from 2039 PCa and benign prostate disease (BPD) patients with 42 clini-
cal characteristics on functional subsets of peripheral lymphocyte. After quality control and feature selection, clinical 
data with the optimal feature subset were utilized for the 10-fold cross-validation of five Machine Learning (ML) mod-
els for the task of predicting low-, intermediate- and high-risk stratification of PCa. Then, a novel clinic-ML nomogram 
was constructed using probabilistic predictions of the trained ML models via the combination of a multivariable 
Ordinal Logistic Regression analysis and the proposed feature mapping algorithm.

Results 197 PCa patients, including 56 BPD, were enrolled in the study. An optimal subset with nine clinical fea-
tures was selected. Compared with the best ML model and the clinic nomogram, the clinic-ML nomogram achieved 
the superior performance with a sensitivity of 0.713 (95% CI 0.573–0.853), specificity of 0.869 (95% CI 0.764–0.974), F1 
of 0.699 (95% CI 0.557–0.841), and AUC of 0.864 (95% CI 0.794–0.935). The calibration curve and Decision Curve Analy-
sis (DCA) indicated the predictive capacity and net benefits of the clinic-ML nomogram were improved.

Conclusion Combining the interpretability and simplicity of a nomogram with the efficacy and robustness of ML 
models, the proposed clinic-ML nomogram can serve as an insight tool for preoperative assessment of PCa risk stratifi-
cations, and could provide essential information for the individual diagnosis and treatment in PCa patients.
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Introduction
Prostate cancer (PCa) is one of the leading cancer types 
for the estimated new cancer cases and deaths in men 
worldwide [1]. Proper management of PCa patients 
required accurately assess the presence of, and a diag-
nostic evaluation of the characteristic severity of, the 
disease, thereby avoiding misestimation of patients [2]. 
Prostate-specific antigen (PSA) is a commonly used 
clinical biomarker for screening and diagnosis of PCa, 
while its high false-positive rate for diagnosis as a PCa 
biomarker has been questioned [3]. In clinical practice, 
multiparametric MRI (mpMRI) techniques are promis-
ing in detection and characterization of PCa [4]. How-
ever, mpMRI is still restricted by benign confounding 
appearances and substantial intra- and inter-reader 
variability. Systematic prostate biopsy is commonly 
performed for cancer detection with relatively low 
sensitivity and specificity, which could lead to delayed 
diagnosis as well as over-diagnosis with unnecessary 
discomfort and cost [5, 6]. Urologists are looking for a 
novel, non-invasive way to improve the accuracy of PCa 
detection, staging, and risk stratifications.

Minimally blood or urine-based approaches (“liq-
uid biopsies”) are increasingly being used for cancer 
detection, enabling a precision oncology approach [7]. 
Information about tumors (e.g., circulating tumor cells, 
cell-free DNA and RNA) and immune responses (e.g., 
immune cell subsets, cytokines and exosome expres-
sion profiles) are potential diagnostic, prognostic and 
therapeutic targets of PCa [8, 9]. Inflammation and 
immune response contribute to tumorigenesis [10]. 
Many peripheral blood markers of inflammation and 
immune response are diagnostic and prognostic indi-
cators of PCa [11–13]. Lymphocyte subsets, including 
T cells, B cells, and innate lymphoid cells, can distin-
guish between benign prostate disease (BPD) and PCa 
and predict clinical risk (low-/intermediate-risk disease 
and high-risk disease) in asymptomatic men [9, 13]. 
Clinically significant PCa (CSPCa) refers to intermedi-
ate- and high-risk PCa that still requires treatment in 
clinical practice according to the EAU guidelines [14]. 
Therefore, “indolent cancers” (low-risk PCa) and BPD 
are more appropriately grouped together than interme-
diate-risk PCa in PCa screening. Furthermore, treat-
ment options for intermediate-risk patients range from 
focal therapy, radical prostatectomy to various radio-
therapy approaches, whereas high-risk PCa is candi-
date for systemic therapy, indicating that a distinction 
should be made between intermediate-risk disease and 
high-risk disease [14, 15]. Unfortunately, few studies 
have examined the ability of lymphocyte subsets to dis-
tinguish among low-, intermediate-, and high-risk PCa 
[9, 13]. In addition, functional status of lymphocytes if 

not all, have rarely been studied in terms of diagnostic 
performance.

Automated methods to detect PCa and distinguish 
indolent from aggressive disease based on clinical 
records can assist in early diagnosis and treatment plan-
ning. Machine learning (ML), which employs compu-
tational algorithms that can accurately extract features 
without explicit pre-instructions, has been introduced 
as an advanced technique for aiding in the detection and 
characterization of PCa [9, 16–20]. ML approaches based 
on peripheral blood lymphocyte subsets can distinguish 
BPD from PCa, or low-/intermediate-risk from high-risk 
PCa from a small sample size in a hospital-based study 
[9, 13]. Thus, despite success of existing studies, these ML 
approaches don’t match the unmet medical need, with 
poor interpretation and low generalizability.

To address these challenges, this study included sub-
jects ranging from BPD, low-risk, intermediate-risk, and 
high-risk PCa with clinical characteristics collected from 
two campuses of Wuhan Tongji Hospital, forming the 
largest sample size to date regarding functional subsets 
of peripheral lymphocyte for the diagnosis of PCa. We 
aimed to develop an easy-to-use and robust clinic-ML 
nomogram to aid in the non-invasive diagnosis and tri-
partite risk stratification of PCa.

Methods
Patient data collection
The study was approved by the Research Ethics Commis-
sion of Tongji Hospital and the requirement for informed 
consent was waived by the Ethics Commission (IRB ID: 
TJ- IRB20211246). The study screened 2039 patients 
with PCa and BPD who were admitted to Wuhan Tongji 
Hospital (China) from August 1st, 2020 to October 20th, 
2022. Patients with missing laboratory, radiological or 
pathological data, or poor-quality MRI images were 
excluded from the study. Ultimately, 197 PCa patients, 
including 56 BPD, were enrolled in the study (Fig.  1). 
To maximize the utilization of the collected data, both 
nCSPCa and BPD were grouped into low-risk PCa cat-
egory. All enrolled patients had the records of 42 clinic 
characteristics in functional subsets of peripheral lym-
phocyte (Table 1). The subsets of peripheral lymphocyte 
were detected by flow cytometry. The serum concentra-
tions of interleukins were measured using the electro-
chemiluminescence immunoassay method (Cobas E602, 
Roche). The procedure for flow cytometry and interleu-
kins detection by the clinical laboratory of Wuhan Tongji 
Hospital has been previously described [21].

Procedures
The workflow of this study is depicted in Fig.  2. Fig-
ure  3 illustrates the construction pipeline of the clinic 
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Fig. 1 The flowchart of patient enrollment and data preprocessing

Fig. 2 Workflow for development and validation of the proposed clinic-ML nomogram for predictions of the risk stratification of PCa based 
on functional subsets of peripheral lymphocyte
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nomogram and the proposed clinic-machine learning 
nomogram.

Data preprocessing and feature selection
The clinical records of the patients were manually 
inspected for quality control to identify any missing or 
abnormal values. Each clinic characteristic was visualized 
through boxplots (Additional file  1: Fig. S1) during this 
inspection process. To address uncertainty in the input 
data, a few recorded values were truncated. For example, 
if the Prostate-Specific Antigen (PSA) values exceeded 
1000, they were re-processed and recorded as 1000. Simi-
larly, in the case of ATL, Interleukin-6, Interleukin-1β, 
and Interleukin-10, certain characteristic values below a 
specific threshold cannot be accurately recorded due to 
machine measurement precision. Consequently, all these 
values for ATL, Interleukin-6, and Interleukin-1β were 
uniformly truncated to 5, 1.5 and 5, respectively. Addi-
tionally, Interleukin-10 was removed from the records 
due to too many duplicate values. As a result, a total of 41 
clinic characteristics in functional subsets were used for 
the subsequent analysis.

After manual inspection, the clinical records were 
normalized using a min-max normalization scheme 
(Fig. 2A). The risk stratification of each patient was then 

manually assigned in accordance with the EAU guideline 
[14], resulting in 59 low-risk, 48 intermediate-risk, and 
90 high-risk PCa patients.

These preprocessed clinic records, along with the cor-
responding risk stratification assignment, were fed into 
a Lasso regression algorithm, which selected the most 
significant features, generating the dataset used for the 
subsequent analysis (Fig. 2B). The Lasso-selected clinical 
records were randomly split into a training set and a test 
set in a 4:1 ratio. Consequently, a total of 157 records are 
used to train the machine learning (ML) models and con-
struct the nomograms, and 40 records reserved for per-
formance evaluation.

Machine learning models
Five commonly used ML algorithms were employed in 
this study for the task of predicting the risk stratifica-
tion of PCa, including Support Vector Machine (SVM), 
Decision Tree (DT), Random Forest (RF), XGBoost and 
AdaBoost. These ML models were trained using a 10-fold 
cross-validation approach on the training set (Fig.  2B). 
The optimal ML model was then selected based on its 
performance evaluated in the test set (Additional file  1: 
Table  S1) and served as the performance baseline for 
comparison with nomograms.

Fig. 3 Diagram of the clinic-ML nomogram and the clinic nomogram. The clinic-ML nomogram (g) is converted from the ML nomogram (e) 
via FMA (f) which extracts the feature importance (d) from ML models (b) trained on patients’ records with clinical features (a). The clinic nomogram 
(h) is constructed directly based on clinical features (a)
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Development and validation of the clinic‑machine learning 
nomogram
First, a clinic nomogram was created using a multivari-
able Ordinal Logistic Regression (OLR) algorithm on 
the clinic data from the training set (Fig. 2C). Second, 

a ML nomogram was built through the application of 
a multivariable OLR algorithm utilizing the probabil-
istic predictions of the five trained ML models. Third, 
to fully leverage the interpretability of the nomogram, 
a feature mapping algorithm (FMA) was developed to 

Table 1 Clinical characteristics of patients

Features
(mean + SD)

Training set Test set p‑value
157 (80%) 40 (20%)

Age (years) 66.24 ± 7.85 64.65 ± 7.22 0.2506

PSA 96.88 ± 230.79 100.68 ± 220.24 0.9257

Neutrophil percentage (%) 61.70 ± 10.42 58.53 ± 10.81 0.0914

Neutrophils (×109/L) 3.94 ± 1.81 3.70 ± 1.41 0.3583

Lymphocyte percentage (%) 26.31 ± 8.86 28.82 ± 9.01 0.1130

Lymphocytes (×109/L) 1.55 ± 0.53 1.73 ± 0.65 0.0770

Hemoglobing (/L) 132.43 ± 15.32 136.15 ± 14.17 0.1673

ALT (U/L) 19.77 ± 13.50 21.77 ± 15.55 0.4202

Alkaline phosphatase (U/L) 143.60 ± 382.69 117.65 ± 234.60 0.5937

Lactate dehydrogenase 180.68 ± 93.13 164.40 ± 26.21 0.0587

Serum creatinine (mmol/l) 87.45 ± 45.94 100.85 ± 85.84 0.1834

T cells (CD3+CD19−) (%) 67.70 ± 9.47 69.24 ± 8.08 0.3470

T cells (CD3+CD19−) (/μl) 1040.21 ± 314.91 1173.60 ± 462.04 0.0334*

B cells (CD3−CD19+) (%) 12.14 ± 5.54 13.07 ± 6.36 0.3641

B cells (CD3−CD19+) (/μl) 190.44 ± 120.22 240.05 ± 193.13 0.0451*

Th cells (CD3+CD4+) (%) 43.41 ± 8.56 46.49 ± 7.72 0.0406*

Th cells (CD3+CD4+) (/μl) 666.55 ± 222.74 801.12 ± 364.37 0.0038*

Ts cells (CD3+CD8+) (%) 20.70 ± 6.59 19.48 ± 6.53 0.3002

Ts cells (CD3+CD8+) (/μl) 318.72 ± 134.72 315.95 ± 124.61 0.9068

NK cells (CD3−/CD16+CD56+) (%) 19.37 ± 9.65 16.86 ± 7.90 0.1318

NK cells (CD3−/CD16+CD56+) (/μl) 307.17 ± 204.40 267.38 ± 132.43 0.1409

T cells + B cells + NK cells (%) 99.22 ± 0.64 99.18 ± 0.98 0.7586

T cells + B cells + NK cells (/μl) 1537.82 ± 463.60 1681.03 ± 629.11 0.1104

Th/Ts 2.36 ± 1.02 2.71 ± 1.14 0.0612

Th cells + CD28+(CD3+CD4+CD28+) (/Th) 94.53 ± 7.10 93.30 ± 9.02 0.3579

Ts cells + CD28+(CD3+CD8+CD28+) (/Ts) 58.58 ± 17.65 59.85 ± 16.75 0.6843

Activated T cells (CD3+HLA−DR+) (/μl) 17.90 ± 6.33 17.31 ± 7.30 0.6113

Activated Ts cells (CD3+CD8+HLA−DR+)/Ts (%) 44.46 ± 13.06 41.33 ± 10.24 0.1109

Naïve Th cells (CD3+CD4+CD45RA+)/Th (%) 32.45 ± 13.49 35.65 ± 14.50 0.1910

Memory Th cells (CD3+CD4+CD45RO+)/Th (%) 67.61 ± 13.57 64.35 ± 14.50 0.1843

Regulatory T cells (CD3+CD4+CD25+CD127low+) (/μl) 3.82 ± 1.22 4.00 ± 1.34 0.4085

Naïve regulatory T cells (CD45RA+CD3+CD4+CD25+CD127low+) (/μl) 0.76 ± 0.47 0.79 ± 0.50 0.6688

Induced regulatory T cells (CD45RO+CD3+CD4+CD25+CD127low+) (/μl) 3.06 ± 0.93 3.21 ± 1.10 0.3944

IFN-γ+CD4+T cells /Th (%) 21.47 ± 8.21 19.48 ± 6.75 0.1610

IFN-γ+CD8+T cells /Ts (%) 62.31 ± 15.37 59.91 ± 13.51 0.3690

IFN-γ+NK cells/NK (%) 74.80 ± 14.78 73.58 ± 13.25 0.6383

Interleukin-1β (pg/mL) 7.38 ± 6.18 6.63 ± 4.87 0.4237

Interleukin-2R (U/mL) 498.19 ± 320.20 533.62 ± 509.28 0.5878

Interleukin-6 (pg/mL) 6.87 ± 12.45 6.78 ± 9.36 0.9612

Interleukin-8 (pg/mL) 27.15 ± 36.89 36.77 ± 55.40 0.1927

Tumor necrosis factor-α (pg/mL) 19.58 ± 31.55 23.62 ± 28.55 0.4645
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convert the ML monogram into a clinic-ML nomo-
gram, using clinic features as variables (Fig. 3). Finally, 
the performance of the clinic nomogram and the pro-
posed clinic-ML nomogram was evaluated on the 
test set using the Area Under the Curve (AUC) of the 
Receiver Operating Characteristic (ROC) and the cali-
bration curve, and the clinical utility was measured 
through Decision Curve Analysis (DCA) (Fig. 2D).

The FMA generates for the clinic-ML nomogram the 
values of clinic features (CF) as

where  FIi,j is the feature importance of the ith clinic fea-
ture in the jth trained ML model,  MVj is the value of the 
jth ML models in the ML nomogram with i∈(1,M) and 
j∈(1,N) where M is the number of clinic features and N 
is the number of ML models, respectively. With the help 
of the FMA, the ML nomogram can be conveniently con-
verted into a new clinic-ML nomogram whose variables 
are clinic features. The conversion enhances the inter-
pretability while keeping the efficiency and power of the 
ML models.

Statistical analysis
T-test or Mann-Whitney U-test were used for continuous 
variables conforming to normal distribution and homo-
geneity of variance. The Kruskal-Wallis H-test was used 
for testing other continuous and categorical variables. 
The implementation of ML algorithms, Lasso regression 
and ROC analysis was carried out using the Scikit-learn 
package in Python 3.6. All other statistical analyses were 
performed using the R statistical software Version 3.4.1. 
The “rms” package was utilized for the univariate, multi-
variate, and ordinal logistic regression analyses. The cali-
bration plots and DCA were performed using the “rms” 
and “dca” package, respectively. The statistically signifi-
cant difference between the AUCs of two ROCs was ana-
lyzed using the Delong test. A two-sided p value of less 
than 0.05 was considered statistically significant.

Results
Characteristics of patients
There were no significant differences arising in most 
clinic features between patients in the training and test 
sets (Table  1). However, significant differences were 
detected among low-, intermediate- and high-risk PCa 
patients in twelve clinic features in the training set, 
including Age, PSA, Neutrophil percentage, Neutrophils, 
Hemoglobing, Alkaline phosphatase, Lactate dehydroge-
nase, Th/Ts, Activated Ts cells, Interleukin-1β, Interleu-
kin-2R, and Interleukin-6 (p < 0.05) (Table 2).

(1)CFi =

N∑

j=1

FIi,j ×MV j

Selection of clinic features for ML models and the clinic 
nomogram
The Lasso regression was applied to determine the opti-
mal subset of the clinic features (Fig. 4), yielding a total 
of nine features, i.e., Age, Alkaline phosphatase, B cells 
(CD3−CD19+), Interleukin-1β, Interleukin-2R, Lactate 
dehydrogenase, Neutrophil percentage, PSA and Th/Ts. 
These nine features were then utilized for the construc-
tion of both the ML models and the clinic monogram.

Performance assessment of ML algorithms
The data with Lasso-selected nine features were fed into 
five ML algorithms with a 10-fold cross validation. All 
ML algorithms show competitive performance in dis-
criminating various risk stratifications (Fig.  5). The best 
performance was achieved by XGBoost which indicated 
favorable predictive efficacy in both training and test sets 
with AUC values of 0.989 and 0.842, sensitivity of 0.930 
and 0.700, and specificity of 0.965 and 0.850, respectively 
(Table 5).

Development and performance assessment 
of the clinic‑ML nomogram
Results of the univariate and multivariate logistic regres-
sion analysis (Table 3) suggested that predictions of four 
ML models, i.e., AdaBoost, Decision Tree, Random For-
est, and XGBoost, were independent predictors of risk 
stratifications of PCa. Therefore, a multivariate OLR 
using probabilistic predictions of the four ML models 
was employed to construct the ML nomogram, which is 
then converted to a clinic-ML nomogram through the 
proposed FMA (Fig. 6B). VIFs of the variables in the ML 
nomogram were found to be within acceptable limits, as 
5.13, 1.92, 5.08, and 2.39, respectively.

The predictive scores of the clinic-ML nomogram were 
strongly correlated with the risk stratifications of PCa in 
both the training and test set (Fig. 7A). Using cutoff val-
ues of 2.24 and 6.00 for the clinic-ML nomogram pre-
dictive scores, the patients were classified into three risk 
stratification groups, and the results indicated the pattern 
of PCa patients was substantially different among the 
low-, intermediate- and high-risk stratification groups 
(Fig. 7B). For instance, in the test set, the probability of 
PCa patients was found to be significantly higher in the 
low-risk group compared to those in the intermediate- 
and high-risk groups (p < 0.05).

Meanwhile, for the purpose of performance compari-
son, the Lasso-selected clinic features were utilized to 
construct the clinic monogram (Fig. 3). Analysis of uni-
variate and multivariate logistic regressions revealed that 
five clinic variables, i.e., Age, B cells (CD3−CD19+), Neu-
trophil percentage, PSA and Th/Ts, were independent 
predictors of risk stratifications (Table  4). Subsequently, 
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Table 2 Clinical characteristics of the training and test sets of PCa with risk stratifications

*p < 0.05, with significant differences for clinical characteristics of low-, intermediate- and high-risk groups

Features
(Mean + SD)

Training set Test set

Low Intermediate High p‑value Low Intermediate High p‑value

47 (29.94%) 38 (24.20%) 72 (45.86%) 12 (30.00%) 10 (25.00%) 18 (45.00%)

Age (years) 63.23 ± 8.18 65.53 ± 7.10 68.57 ± 7.42 0.0002* 62.67 ± 7.35 65.80 ± 6.53 65.33 ± 7.81 0.3669

PSA 7.56 ± 7.24 12.67 ± 9.50 199.62 ± 312.92 0.0000* 7.07 ± 4.85 9.60 ± 4.90 213.68 ± 299.19 0.0069*

Neutrophil percentage (%) 65.96 ± 11.34 58.69 ± 10.44 60.51 ± 9.04 0.0103* 60.68 ± 9.56 52.95 ± 11.26 60.20 ± 11.14 0.9428

Neutrophils (×  109/L) 4.60 ± 2.05 3.55 ± 1.80 3.72 ± 1.55 0.0164* 4.03 ± 1.65 2.89 ± 0.90 3.93 ± 1.40 0.9830

Lymphocyte percentage (%) 23.33 ± 9.44 29.32 ± 9.25 26.65 ± 7.77 0.0841 27.87 ± 8.85 34.57 ± 7.91 26.27 ± 8.96 0.4912

Lymphocytes (×  109/L) 1.52 ± 0.65 1.64 ± 0.57 1.53 ± 0.42 0.9605 1.79 ± 0.84 1.88 ± 0.72 1.62 ± 0.50 0.4476

Hemoglobin (/L) 134.13 ± 16.14 137.16 ± 11.84 128.82 ± 15.81 0.0389* 141.75 ± 8.43 136.30 ± 5.79 132.33 ± 19.26 0.0789

ALT (U/L) 21.72 ± 13.18 19.13 ± 12.07 18.83 ± 14.52 0.2742 18.25 ± 9.33 16.10 ± 7.65 27.28 ± 20.53 0.0965

Alkaline phosphatase (U/L) 73.62 ± 29.75 67.87 ± 15.89 229.25 ± 556.22 0.0212* 78.08 ± 23.07 64.40 ± 14.37 173.61 ± 350.66 0.2527

Lactate dehydrogenase 168.89 ± 37.15 157.05 ± 34.14 200.83 ± 129.90 0.0450* 157.58 ± 19.69 158.10 ± 23.03 172.44 ± 30.99 0.1147

Serum creatinine (mmol/l) 91.04 ± 64.35 83.82 ± 12.77 87.03 ± 43.40 0.6881 78.92 ± 10.77 85.10 ± 14.89 124.22 ± 126.82 0.1470

T cells (CD3+CD19−) (%) 67.57 ± 8.16 67.44 ± 9.43 67.92 ± 10.43 0.8305 69.01 ± 9.44 69.69 ± 5.06 69.16 ± 9.06 0.9763

T cells (CD3+CD19−) (/μl) 1059.34 ± 370.24 1100.29 ± 325.67 996.01 ± 266.54 0.2295 1225.58 ± 563.22 1361.70 ± 501.53 1034.44 ± 347.35 0.2196

B cells (CD3−CD19+) (%) 12.74 ± 5.69 12.55 ± 6.07 11.54 ± 5.20 0.2335 12.74 ± 5.44 11.66 ± 7.49 14.07 ± 6.63 0.5322

B cells (CD3−CD19+) (/μl) 211.09 ± 152.39 208.21 ± 136.04 167.58 ± 79.30 0.0428 252.58 ± 208.95 265.40 ± 285.55 217.61 ± 123.77 0.6058

Th cells (CD3+CD4+) (%) 42.65 ± 7.65 42.38 ± 8.95 44.44 ± 8.96 0.2327 45.93 ± 8.34 48.17 ± 8.43 45.93 ± 7.43 0.9376

Th cells (CD3+CD4+) (/μl) 677.06 ± 276.78 686.00 ± 213.15 649.42 ± 189.27 0.4727 840.33 ± 470.67 948.60 ± 394.25 693.06 ± 245.99 0.2295

Ts cells (CD3+CD8+) (%) 22.14 ± 7.31 20.36 ± 5.49 19.94 ± 6.61 0.0845 20.41 ± 8.38 17.79 ± 6.34 19.81 ± 5.57 0.8858

Ts cells (CD3+CD8+) (/μl) 339.81 ± 132.66 336.53 ± 151.08 295.56 ± 125.80 0.0664 342.50 ± 146.68 330.10 ± 111.75 290.39 ± 121.23 0.2579

NK cells (CD3−/CD16+CD56+) (%) 18.86 ± 8.17 19.27 ± 9.26 19.76 ± 10.84 0.6167 17.12 ± 9.10 17.93 ± 8.35 16.10 ± 7.41 0.7029

NK cells (CD3−/CD16+CD56+) (/μl) 297.21 ± 165.47 317.00 ± 186.65 308.47 ± 237.42 0.7993 281.17 ± 142.86 313.80 ± 138.71 232.39 ± 123.17 0.2773

T cells + B cells + NK cells (%) 99.17 ± 0.74 99.26 ± 0.58 99.23 ± 0.61 0.6742 98.86 ± 1.71 99.28 ± 0.47 99.33 ± 0.36 0.2191

T cells + B cells + NK cells (/μl) 1567.64 ± 557.32 1625.50 ± 441.12 1472.07 ± 404.37 0.2198 1759.33 ± 757.08 1940.90 ± 713.72 1484.44 ± 453.55 0.1964

Th/Ts 2.17 ± 0.88 2.24 ± 0.79 2.55 ± 1.19 0.0362* 2.65 ± 1.15 3.09 ± 1.44 2.55 ± 0.99 0.7307

Th cells + CD28+(CD3+CD4+CD28+) (/Th) 94.44 ± 7.14 93.92 ± 7.51 94.91 ± 6.98 0.6804 92.40 ± 11.83 91.95 ± 11.49 94.65 ± 5.22 0.4833

Ts cells + CD28+(CD3+CD8+CD28+) (/Ts) 59.28 ± 20.46 56.62 ± 16.45 59.17 ± 16.55 0.9609 63.03 ± 23.60 54.84 ± 17.78 60.51 ± 10.48 0.7789

Activated T cells (CD3+HLA−DR+) (/μl) 17.16 ± 6.34 18.68 ± 6.24 17.98 ± 6.45 0.5603 17.71 ± 10.66 17.14 ± 6.55 17.14 ± 5.38 0.8456

Activated Ts cells (CD3+CD8+HLA−DR+)/
Ts (%)

40.53 ± 13.36 46.01 ± 11.88 46.21 ± 13.16 0.0265* 42.12 ± 12.23 42.45 ± 12.10 40.17 ± 8.35 0.5956

Naïve Th cells (CD3+CD4+CD45RA+)/
Th (%)

32.64 ± 13.23 32.58 ± 10.86 32.27 ± 15.08 0.8808 32.98 ± 16.39 43.66 ± 17.85 32.99 ± 10.12 0.8436

Memory Th cells (CD3+CD4+ CD45RO+)/
Th (%)

67.36 ± 13.23 67.42 ± 10.86 67.87 ± 15.23 0.8358 67.02 ± 16.39 56.35 ± 17.85 67.01 ± 10.12 0.8435

Regulatory T cells 
(CD3+CD4+CD25+CD127low+) (/μl)

3.52 ± 1.15 4.17 ± 1.47 3.83 ± 1.08 0.2530 3.26 ± 1.30 4.10 ± 1.00 4.44 ± 1.41 0.0193*

Naïve regulatory T cells 
(CD45RA+CD3+CD4+CD25+CD127low+) 
(/μl)

0.69 ± 0.39 0.87 ± 0.66 0.74 ± 0.38 0.6436 0.57 ± 0.32 1.01 ± 0.62 0.82 ± 0.49 0.2496

Induced regulatory T cells 
(CD45RO+CD3+CD4+CD25+CD127low+) 
(/μl)

2.83 ± 0.90 3.30 ± 1.03 3.09 ± 0.88 0.2073 2.69 ± 1.03 3.09 ± 0.75 3.62 ± 1.22 0.0208*

IFN-γ+CD4+T cells/Th (%) 21.89 ± 7.82 22.33 ± 8.92 20.73 ± 8.17 0.4090 21.62 ± 8.81 17.81 ± 6.96 18.98 ± 5.12 0.3543

IFN-γ+CD8+T cells/Ts (%) 60.66 ± 17.63 61.97 ± 13.45 63.57 ± 14.93 0.3101 61.64 ± 14.76 61.32 ± 13.10 57.97 ± 13.79 0.4574

IFN-γ+NK cells/NK (%) 76.37 ± 14.31 73.49 ± 14.85 74.46 ± 15.25 0.5405 71.08 ± 12.17 77.28 ± 8.53 73.20 ± 16.31 0.7531

Interleukin-1β (pg/mL) 6.55 ± 4.06 5.92 ± 3.05 8.69 ± 8.10 0.0446* 6.48 ± 3.46 8.29 ± 9.12 5.82 ± 1.33 0.6391

Interleukin-2R (U/mL) 427.45 ± 189.32 444.39 ± 149.37 572.76 ± 425.87 0.0112* 381.67 ± 94.99 403.60 ± 88.02 707.17 ± 736.35 0.0750

Interleukin-6 (pg/mL) 3.79 ± 4.86 4.99 ± 13.06 9.87 ± 14.87 0.0067* 4.33 ± 5.37 2.37 ± 1.38 10.87 ± 12.37 0.0423*

Interleukin-8 (pg/mL) 18.28 ± 21.49 31.45 ± 41.75 30.67 ± 41.55 0.0912 37.36 ± 63.98 15.81 ± 12.54 48.02 ± 64.01 0.5254

Tumor necrosis factor-α (pg/mL) 16.88 ± 20.70 19.12 ± 28.35 21.59 ± 38.68 0.4259 22.05 ± 26.87 18.59 ± 26.37 27.47 ± 32.40 0.5790
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Fig. 4 Lasso regression to generate the selected clinic features with iterative fitting using 5-fold cross-validation. Variation of the hyperparameter 
λ in Lasso regression is plotted vs. MSE (mean-squared-error) (A) and the coefficient profiles of clinic features (B). The light-blue vertical lines in (A) 
were drawn at the optimal values with one standard-deviation criteria. The vertical dashed line was drawn at the value selected at the logarithmic 
scale (λ), and nine features with non-zero coefficients are indicated

Fig. 5 ROC of five ML algorithm in the training set (A) and the test set (B)
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Fig. 6 (upper) The clinic nomogram and (lower) the clinic-ML nomogram
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the corresponding clinic nomogram was constructed 
(Fig. 6A).

Performance of the clinic-ML nomogram and clinic 
nomogram was assessed using ROC analysis, show-
ing the clinic-ML nomogram outperformed the clinic 
nomogram, with an AUC value of 0.998 vs. 0.897 in the 

training set, and 0.864 vs. 0.837 in the test set, respec-
tively (Fig.  8; Table  5). The Delong test indicated that 
there was a significant difference in the AUC values of 
two nomograms in the training and test sets (p < 0.05). In 
addition, the performance of the clinic-ML nomogram 
was also superior to that of the optimal ML model, i.e., 

Fig. 7 A Box plots indicating patterns of correlation between risk stratifications and the clinic-ML nomogram predictive scores in the training 
(upper left) and test set (upper right). B Number of PCa patients in low-, intermediate- and high-risk groups according to the clinic-ML nomogram 
predictive scores in the training (lower left) and test set (lower right)
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XGBoost (Table  5). The calibration curve demonstrated 
improved prediction performance of the clinic-ML nom-
ogram compared to the other models (Fig. 9), which was 
further validated by the DCA, showing improved net 
benefits of the clinic-ML nomogram over both XGBoost 
and the clinic nomogram in both the training and test set 
(Fig. 10).

Discussion
The retrospective study aims to develop a clinic-ML 
nomogram for predicting risk stratifications of PCa 
patients based on functional subsets of peripheral lym-
phocyte. A total of 197 PCa patients were included and 
41 clinic characteristics were collected, forming the 
largest number of samples used in a study of its kind. 
After Lasso regression, an optimal subset of nine clinic 
features, i.e., Age, Alkaline phosphatase, B cells (CD3−
CD19+), Interleukin-1β, Interleukin-2R, Lactate dehy-
drogenase, Neutrophil percentage, PSA and Th/Ts, was 

selected and explored for the prognostic validity of the 
proposed clinic-ML nomogram by comparing it with a 
conventional clinic nomogram and various ML models 
both of which were constructed directly based on clinic 
characteristics. The results demonstrated that the clinic-
ML nomogram fully leveraged the predictive capability 
of ML algorithms and outperformed the conventional 
nomogram and the best ML model in terms of accuracy 
and clinical utility. Meanwhile, the clinic-ML nomogram 
was more distinguishable and easier to manipulate than 
the clinic nomogram among three risk stratifications 
(Fig. 6), and had a strong guiding effect on active surveil-
lance treatment for low-risk PCa patients (Fig. 7). Thus, 
the clinic-ML nomogram can serve as an insight tool for 
preoperative assessment of risk stratifications of PCa, 
combining the interpretability and simplicity of a nomo-
gram with the efficacy and robustness of ML algorithms.

This study divided PCa patients into three risk groups, 
which is more closely related to the clinical treatment. 
However, few studies have been conducted to predict 
three-levels of risk stratifications of PCa using lympho-
cyte subsets with a nomogram. Our study combined the 
nomogram and the ML models to further improve the 
diagnostic efficiency. Meanwhile, some other studies uti-
lized imaging data (such as PSMA PET/CT, MRI, TRUS) 
with other clinic indicators to establish the nomogram 
for the prediction of PCa risk stratifications [22–25]. 
Despite of the improved performance with the imag-
ing data modality, those studies achieved comparable, 
if not slightly inferior, results compared to the present 
study (Additional file 1: Table S2). In addition, the use of 
“scores” calculated by sophisticated algorithms as vari-
ables in the nomogram may be helpful in improving pre-
diction accuracy, but may also increase the complexity 
of the nomogram and make it more difficult to interpret 
[17, 26]. The approach taken in this study, which used the 
most significant examination feature as variables in the 

Table 3 Logistic regression for predicting risk stratifications of 
PCa based on predictions of five ML algorithms

*p < 0.05. Values in bold indicate independent predictors in the multivariate 
logistic regression

ML Models Univariate logistic 
regression

Multivariate logistic 
regression

OR (95% CL) p‑value OR (95% CL) p‑value

AdaBoost 2.535 (2.358–
2.726)

0.000* 1.154 (1.090–
1.222)

0.000*

Decision Tree 2.667 (2.563–
2.774)

0.000* 1.554 (1.438–
1.680)

0.000*

Random Forest 2.449 (2.286–
2.622)

0.000* 1.150 (1.088–
1.214)

0.000*

SVM 1.906 (1.681–
2.162)

0.000* 1.014 (0.980–
1.050)

0.419

XGBoost 2.577 (2.462–
2.696)

0.000* 1.354 (1.260–
1.455)

0.000*

Table 4 Logistic regression for predicting risk stratifications of PCa based on clinic features

*p < 0.05. Values in bold indicate independent predictors in the multivariate logistic regression

Clinic Features Univariate logistic regression Multivariate logistic regression

OR (95%CL) p‑value OR (95%CL) p‑value

Age 1.286 (1.129–1.465) 0.000* 1.137 (1.008–1.284) 0.037*

Alkaline phosphatase 1.171 (1.024–1.339) 0.021* 1.121 (0.998–1.260) 0.054

B cells (CD3−CD19+) 0.870 (0.761–0.995) 0.043* 0.844 (0.746–0.956) 0.008*

Interleukin-1β 1.148 (1.003–1.313) 0.045* 1.095 (0.972–1.234) 0.133

Interleukin-2R 1.189 (1.041 1.359) 0.011* 1.120 (0.996–1.260) 0.059

Lactate dehydrogenase 1.147 (1.003–1.313) 0.045* 1.110 (0.987–1.248) 0.082

Neutrophil percentage 0.839 (0.734–0.959) 0.010* 0.799 (0.708–0.902) 0.000*

PSA 1.379 (1.215–1.564) 0.000* 1.228 (1.084–1.391) 0.001*

Th/Ts 1.155 (1.009–1.320) 0.036* 1.200 (1.069–1.346) 0.002*
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clinical ML nomogram, may provide a more direct and 
simple method for assessing patient risk stratifications.

The study presented several limitations that should 
be acknowledged. Firstly, all the data were collected 
exclusively from one medical center with two campuses 
located in the same city. Therefore, the generalizability 
of the proposed clinic-ML nomogram to other popula-
tions and settings remains unknown and requires fur-
ther evaluation in other cohorts. To address this issue, a 
multi-center study is planned to assess the external valid-
ity and robustness of the clinic-ML nomogram. Secondly, 
the number of ML algorithms used in the development 
of the clinic-ML nomogram was limited, and future 
studies may benefit from the inclusion of additional ML 

algorithms to enhance the performance of the nomo-
gram. Thirdly, the imaging data plays a crucial role in the 
diagnosis and staging of PCa, and its integration into the 
clinic-ML nomogram could further improve its diagnos-
tic efficiency and predictive power.

The application of nomograms in clinic diagnosis has 
gained popularity in recent years due to their simplicity, 
intuition, and interpretability [27]. The integration of 
nomograms with powerful ML algorithms to improve 
the performance while maintaining interpretability 
of the nomogram is a research hot-spot [28–30]. The 
proposed clinic-ML nomogram is an easy-to-use and 
powerful tool for accurately predicting the risk strati-
fication of PCa patients, which could provide essential 

Fig. 8 ROC of the clinic-ML nomogram, the clinic nomogram and XGBoost in the training set (A) and the test set (B)

Table 5 Performance evaluation of XGBoost, the clinic nomogram and the clinic-ML nomogram in the training (first line in each cell) 
and test set (second line in each cell)

Better results are shown in bold

Models Sensitivity
(95% CL)

Specificity
(95% CL)

F1
(95% CL)

AUC 
(95% CL)

XGBoost 0.924 (0.883–0.965)
0.680 (0.535–0.825)

0.963 (0.933–0.993)
0.853 (0.743–0.963)

0.927 (0.886–0.968)
0.664 (0.518–0.810)

0.989 (0.980–0.998)
0.842 (0.764–0.919)

Clinic nomogram 0.704 (0.633–0.775)
0.609 (0.458–0.760)

0.870(0.817–0.923)
0.822 (0.703–0.941)

0.700(0.628–0.772)
0.585 (0.432–0.738)

0.897 (0.867–0.926)
0.837 (0.764–0.910)

Clinic-ML nomogram 0.983 (0.963–1.000)
0.713 (0.573–0.853)

0.994 (0.982–1.000)
0.869 (0.764–0.974)

0.985 (0.966–1.000)
0.699 (0.557–0.841)

0.998 (0.996–1.000)
0.864 (0.794–0.935)
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Fig. 9 Calibration curve of the clinic-ML nomogram in the training set (A) and the test set (B). Dashed lines indicate the reference line 
where an ideal nomogram would be. Red solid lines indicate the performance of the nomogram, while green solid lines indicate bias correction 
in the nomogram

Fig. 10 DCA for predicting risk stratifications (low-risk vs. intermediate- and high-risk) of PCa using XGBoost, the clinic nomogram, and the clinic-ML 
nomograms in the training (A) and test set (B)
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information for individual diagnosis and treatment in 
PCa.
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