
Bieler et al. Journal of Translational Medicine          (2023) 21:305  
https://doi.org/10.1186/s12967-023-04160-0

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

Benefits of applying molecular barcoding 
systems are not uniform across different 
genomic applications
Jonathan Bieler1, Slawomir Kubik1, Morgane Macheret1, Christian Pozzorini1, Adrian Willig1 and Zhenyu Xu1*    

Abstract 

Background  Despite the wide variety of Next Generation Sequencing (NGS)-based methods, it remains challeng-
ing to detect mutations present at very low frequencies. This problem is particularly relevant in oncology, where the 
limiting amount of input material, and its low quality, often limit the performance of the assays. Unique Molecular 
Identifiers (UMIs) are a molecular barcoding system often coupled with computational methods of noise suppression 
to improve the reliability of detection of rare variants. Although widely adopted, UMI inclusion imposes additional 
technical complexity and sequencing cost. Currently, there are no guidelines on UMI usage nor a comprehensive 
evaluation of their advantage across different applications.

Methods  We used DNA sequencing data generated by molecular barcoding and hybridization-based enrichment, 
from various types and quantities of input material (fresh frozen, formaldehyde-treated and cell-free DNA), to evaluate 
the performance of variant calling in different clinically relevant contexts.

Results  Noise suppression achieved by read grouping based on fragment mapping positions ensures reliable variant 
calling for many experimental designs even without exogenous UMIs. Exogenous barcodes significantly improve 
performance only when mapping position collisions occur, which is common in cell-free DNA.

Conclusions  We demonstrate that UMI usage is not universally beneficial across experimental designs and that it is 
worthwhile to critically consider the comparative advantage of UMI usage for a given NGS application prior to experi-
mental design.
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Background
Next-generation sequencing (NGS)-based methods 
are undisputed as the premier tools for the detection 
of genomic alterations in research and diagnostics. 
Nevertheless, fully leveraging their potential requires 
accounting for technological and analytical factors that 

limit the power of these approaches. Notably, identi-
fication of mutations with low frequency in the input 
sample presents a significant challenge. Reliable detec-
tion of such mutations is particularly crucial for oncol-
ogy applications, as the nucleic acid extracted from 
tumor tissue samples is derived from a heterogeneous 
cell population with diverse mutational profiles across 
subclones. Similarly, high-throughput sequencing of 
circulating tumor DNA (ctDNA) promises to enable 
personalized cancer therapy [1]; however, limited 
quantities of cell-free DNA (cfDNA) present in blood 
as well as high levels of noise relative to mutation fre-
quency currently limit the analytical performance for 
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this application. Indeed, the concentration of cfDNA 
in plasma ranges from 1 to 100 ng/mL [2], and the fre-
quency of mutations is often below 1% [3]. Presenting 
even more of a challenge, minimal (or “measurable”) 
residual disease (MRD) monitoring, either from ctDNA 
or white blood cell DNA, requires confident variant 
calling at fractions of 0.1% or lower [4, 5]. Detection of 
such rare events calls for careful considerations on the 
type and quantity of the input material, conversion of 
input molecules, the sequencing depth and noise sup-
pression methods. Currently, the above aspects are not 
standardized across clinical laboratories as no clear and 
consistent guidelines for MRD detection by NGS exist. 
It is crucial to understand the experimental and ana-
lytical limits to NGS experimental designs to leverage 

limited material most effectively for the identification 
of low-frequency mutations.

A robust NGS assay is required to provide exact 
qualitative (i.e. correct sequence) and quantitative 
(i.e. number of molecules) sequence information for 
input molecules. However, the ground truth sequences 
undergo multiple rounds of processing before the out-
put result. Each of the processing steps has the poten-
tial to introduce noise in the form of sequence errors or 
quantitative bias. Errors can result from damage to the 
template molecule, issues with input preparation (e.g. 
end repair and A-tailing), ligation of adapters, ampli-
fication and enrichment steps and those introduced 
during the sequencing process itself [6] (Fig. 1A). Low 
frequency variant calling is hampered by the presence 
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Fig. 1  UMI usage does not provide consistent improvement across experimental setups. A Schematic representation of signal and noise 
generation from the input DNA in a typical NGS experiment. B Schematic representation of the principle of noise suppression by read grouping 
prior to variant calling; calls recognized as noise (i.e. not found consistently across reads derived from both strands within a read group) are ignored 
during read collapsing. C Schematic depiction of a double-stranded UMI system (top) and its use to identify 2 input molecules from 8 sequencing 
reads (bottom). D Schematic representation of the experimental setup used to investigate variant calling performance in different types of input 
material; 3 types of input (FF, FFPE and cfDNA) were generated from mixtures of the reference samples GM12891 and GM12892 at various ratios 
(see the “Methods” section); the mixes were used to generate libraries that were subsequently enriched using hybridization capture with a panel 
targeting 110 variants and then sequenced; after sequencing and read alignment, variant calling was performed using read mapping positions 
alone or using mapping positions and UMI information. E Sensitivity of duplex consensus-based variant calling (using a threshold of at least 2 
duplexes to call) for 110 known variants present at VAF of 0.2% in three types of input material (12.5 ng cfDNA, 100 ng FF DNA, 25 ng FFPE DNA) 
with read grouping either using mapping positions alone or using mapping positions plus UMI information
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of sequence errors giving rise to signal comparable to, 
or higher than, the one of true mutations.

Library conversion rate (LCR) reflects what fraction 
of the input molecules are represented in the sequenc-
ing data. Importantly, a single input molecule may be 
represented by many duplicate reads with distinct 
sequence errors. Therefore, some portion of sequenc-
ing noise can be suppressed by grouping reads accord-
ing to the input molecule from which they originate 
and determining the correct base call at each position 
within a group from the base frequency and read qual-
ity in a de-duplication process (Fig.  1B). In Illumina 
sequencing, each of the strands of an input DNA mol-
ecule may yield a population of library molecules, and 
ultimately reads, that can be tracked to either the origi-
nal forward or reverse strands. As the DNA strands 
get separated during the first PCR cycle, errors—even 
those occurring early in the amplification process—will 
be present in the reads derived from only one of the 
strands. This information can then be used to increase 
confidence for calls consistent across both strands [7, 
8]. A common mechanism for assigning reads to groups 
is the addition of molecular barcodes to the input mol-
ecules prior to amplification (Fig.  1C). Such barcodes, 
referred to as unique molecular identifiers (UMIs), con-
sist of a string of either random, semi-random, or pre-
defined nucleotides [9]. UMIs are generally recognized 
as an efficient tool for noise suppression by facilitat-
ing read grouping and collapsing prior to variant call-
ing, ultimately improving the efficiency of mutation 
detection [9–11]. Due to this advantage, UMI imple-
mentation has become a standard procedure across 
many NGS applications. However, the usage of UMIs 
increases experimental complexity and cost and it is 
not clear if it provides significant advantage across vari-
ous experimental setups. For instance, hybridization 
capture-based methods, unlike amplicon-based assays, 
enable read grouping without the addition of exogenous 
UMIs. Owing to random fragmentation of DNA, read 
mapping positions can be used as endogenous mol-
ecule identifiers that facilitate the assignment of read 
groups and allow for mapping position-based variant 
calling. Importantly, the value of exogenous UMI-based 
read grouping as compared to mapping position-based 
grouping has not been rigorously tested for clinical 
applications. To address this gap, we undertook system-
atic analysis of sequencing performance in the presence 
and absence of exogenous UMIs for various clinically 
relevant experimental contexts. We observed that the 
advantage of using UMIs in hybridization-based meth-
ods depends on the experimental setup, namely the 
amount of sequenced molecules and their fragmenta-
tion pattern.

Methods
Preparation of reference cfDNA samples
Nucleosomal DNA was generated from two differ-
ent human cell lines (GM12891 and GM12892, Coriell 
Institute) with the EZ Nucleosomal DNA Prep (Zymo 
Research, Cat. No. D5220) using the Atlantis dsDNase 
treatment according to the manufacturer’s instructions 
with minor modifications, as follows. After collection, 
cells were stored at −80 °C. For each cell line, a pellet of 
106 cells was thawed on ice, resuspended in 1 ml ice-cold 
lysis buffer (10 mM Tris–HCl pH 7.5, 10 mM NaCl, 3 mM 
MgCl2, 0.5% NP-40, 0.5 mM Spermidine) and incubated 
for 5 min on ice. The resulting nuclei were washed once 
with 200  μl ice-cold Atlantis digestion buffer, resus-
pended in 100  μl Atlantis digestion buffer with 0.25 U 
Atlantis dsDNAse and incubated for 1 h at 42 °C. To stop 
the digestion, 18 μl of Stop solution (75 mM EDTA, 1.5% 
SDS, 0.7 M NaCl) was added. Samples were then treated 
with RNaseA (0.3 mg/μl) for 15 min at 42 °C, then with 
proteinase K (1  mg/ml) for 30  min at 37  °C. Following 
enzymatic treatments, DNA was column purified with 
the Zymo Genomic DNA Clean & Concentrator kit 
(Zymo Research, Cat. No. D4065). To remove excessively 
large and small DNA fragments, samples were subjected 
to a dual size selection using AMPure XP Beads (Beck-
man Coulter) with bead:DNA ratios of 0.7 × and 1.5x. 
After fluorometric quantification, the DNA of cell lines 
were combined, generating DNA mixes with variants at 
the desired variant fractions.

Preparation of reference FFPE samples
To mimic clinically derived formalin-fixed paraffin-
embedded (FFPE) material using reference samples, 
DNA was generated from two different human cell lines 
(GM12891 and GM12892, Coriell Institute) and pellets 
subject to formaldehyde treatment. Briefly, pellets con-
taining 30–50 million cells were flash-frozen on dry-ice 
and carefully submerged in 15  ml of neutral buffered 
formalin or zinc formalin without disturbing the pel-
let. Cells were incubated for 72 h at 37 °C. Formalin was 
removed and replaced with 20 ml of 70% EtOH without 
resuspending the pellet. The cells were kept at 4 °C until 
further processing.

The pellet was dehydrated with the Tissue-Tek VIP6 
robot (Sakura) using the nerve program. The cassette 
with the pellet was subsequently embedded in paraffin. 
Scrolls were created by sectioning the paraffin block with 
the microtome (thickness of 15 µm).

Sample mixing for variant calling performance
To investigate the performance of variant calling for dif-
ferent types of input material, DNA of reference samples 
GM12891 and GM12892 (Coriell Institute) were mixed 
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at ratios at which the final VAFs in the mix, for variants 
heterozygous in GM12892 and absent in GM12891, were 
0.05%, 0.1%, 0.2%, 0.5%, 1% or 2%. Such mixes were gen-
erated in replicates, using 3 types of input material: fresh 
frozen DNA (FF DNA, 100 ng), FFPE DNA (25 ng) and 
cfDNA (12.5  ng). For measurements of collision rates, 
DNA of GM12891 alone was used as input for library 
preparation. See Additional file 1: Table S1 for details on 
all the libraries prepared.

To investigate the extent of variant signal loss occur-
ring due to collisions, and for each type of input DNA, 
FASTQ files derived from sequencing of DNA mixes 
with various VAFs were merged with combinations of 
FASTQ files derived from pure GM12891 sample (e.g. 
0.5% mix + 25  ng of GM12891, 0.5% + 25  ng + 5  ng of 
GM12891, etc. see Fig. 4D). This allowed to obtain con-
ditions at which variant fraction was “diluted” by the 
background sample in a manner proportional to the total 
input amount of the background samples used. Even 
with modest number of pure GM12891 samples the total 
number of possible combinations can grow very large. 
Thus the number of combinations was limited by impos-
ing a minimum total input amount difference between 
two successive combinations (FF: 20  ng, FFPE: 10  ng, 
cfDNA: 5 ng) and keeping only one combination per total 
input amount.

Targeted libraries preparation & capture panel
Targeted libraries were created using capture-based 
enrichment technology including molecular barcodes. 
Various types and amounts of DNA, including cfDNA, 
FFPE DNA and FF DNA, were used for library prepara-
tion with KAPA HyperPlus kit (Roche). Briefly, DNA 
was enzymatically fragmented (for FF DNA only), end-
repaired and A-tailed, followed by ligation to custom 
short Y-shaped adapters with a double-stranded molecu-
lar barcode of 4–5 bp. The ligation products were puri-
fied with AMPure beads (Beckman Coulter) and then 
amplified by PCR for 10 to 14 cycles, depending on the 
amount of input DNA, using Illumina-compatible prim-
ers with dual-indices. Amplified libraries were cleaned-
up with AMPure beads (Beckman Coulter).

The pools were mixed with human Cot-1 DNA (Life 
Technologies) and xGen Universal Blockers-TS Mix oli-
gos (Integrated DNA Technologies) and lyophilized. 
Pellets were resuspended in a hybridization mixture, 
denatured for 10 min at 95 °C and incubated for 4–16 h at 
65 °C in the presence of biotinylated probes (xGen Lock-
down, IDT®). The probe panel spanned 46 kbp and cov-
ered a set of 110 selected loci bearing variants (70 SNVs, 
20 deletions, 20 insertions) present in the GM12892 
genome and absent in GM12891 [12]. Probe-hybridized 
library fragments were captured with Dynabeads M270 

Streptavidin (Invitrogen), washed, amplified by PCR for 
15 cycles and purified using AMPure beads (Beckman 
Coulter).

Sequencing
All libraries were sequenced using a NovaSeq sequencer 
(Illumina) on a S4 lane as specified by the manufacturer. 
Paired-end sequencing reads of 150 bases were gener-
ated (2 × 150 cycles) together with two index reads of 8 
bases. Libraries were loaded on the sequencer such that 
coverage was proportional to the input material aiming 
to obtain at least 5 reads per molecule on average. This 
guarantees that most molecules converted into library 
were sequenced at least once.

Statistical analysis
Data processing
Demultiplexing and molecular barcode trimming was 
performed on base-call files (BCL) using bcl2fastq2 and 
the resulting FASTQ files were aligned against the human 
genome reference hg19 (GRCh37.p5) using BWA [13]. 
All post-alignment processing and analysis was done 
using custom tools written in the Julia language [14].

UMI processing & molecular counting
UMIs were trimmed during demultiplexing and 
appended to the read name. The UMI sequences were 
then used to group fragments sharing the same mapping 
position, with a tolerance of one mismatch to account 
for sequencing errors. When ignoring the UMIs in the 
analysis, the fragments were grouped based on mapping 
position alone. The molecules were further classified as 
simplex or duplex depending on the presence of one or 
both strands in the group. When counting molecules, 
both simplex and duplex were included.

Duplex variant calling & analytical performance
Groups of PCR duplicates were collapsed to consen-
sus sequences prior to pileup, based upon a previously 
described method [7]. Two alternative approaches were 
used for read grouping: pairs of reads were grouped into 
DNA molecules either using their mapping positions 
alone (labeled in figures as "no UMIs”) or using the map-
ping position and molecular barcode sequence informa-
tion together (“with UMIs”). Molecules for which only 
one of the two strands were sequenced were discarded 
and at least 3 reads in the group were required to form 
a consensus. For each remaining molecule a base call 
consensus was obtained for each strand. At least 70% 
base call consistency within a strand was required to 
form a consensus. Finally, a consensus was obtained for 
both strands of each molecule, producing a single high-
confidence sequence for each DNA molecule. Alternative 
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bases were required to be present in both strand consen-
sus sequences to be retained in the final representation.

For a given position, a pileup of the consensus 
sequences was performed and the number of molecules 
supporting a given variant was counted. Variant calls 
were made by applying a threshold to that molecular 
count.

Sensitivity was computed as the fraction of confirmed 
variants that were called. Specificity was computed as 
the ratio of false calls to all theoretically possible false 
calls across all interrogated positions where no variant is 
expected. The number of theoretical false calls equals to 
the number of positions with no expected variant multi-
plied by 5 (for three possible single nucleotide changes, 
an indel and a deletion). Since more than 1 false posi-
tive is possible per position, this ensures that specific-
ity remains in a range between 0 and 100%. To make the 
value easier to interpret, specificity was expressed as the 
number of false positive calls per 1 kb.

The standard receiver operating characteristic (ROC) 
curve was computed by changing the threshold on the 
required number of molecules supporting a variant and 
the area under the curve (AUC) was obtained by numeri-
cally integrating the ROC.

Model for the probability of sequencing one alternative 
molecule at a given VAF
Given a number of molecules N  and a VAF it is possi-
ble to evaluate the probability of sequencing at least 
one molecule carrying the alternative allele ( Nalt = 1) . 
Assuming each molecule is sequenced at least once 
(which should be the case when one wants to perform 
noise suppression with UMIs), the Nalt follows a binomal 
distribution,Nalt ∼ Binomial(N ,VAF) , and thus the 
probability of sequencing at least one molecule is given 
by:1− Binomial(N ,VAF; 0).

Model for the relation between input amount and molecular 
count
Approximately 300 genomic equivalents are found in 
1 ng of DNA, so that for a given input amount in nano-
grams, and a given LCR, the average molecular count is 
given by: N = 300× Input × LCR.

Results and discussion
Benefits of applying molecular barcoding are not uniform 
across NGS‑based applications
To assess the impact of exogenous UMIs on the efficiency 
of rare mutation detection, we prepared FF DNA, FFPE 
DNA or artificial cfDNA using characterized reference 
samples (see “Methods” section). Artificial cfDNA was 
generated using enzymatic cleavage which, unlike sonica-
tion-based shearing, yields material with a fragmentation 

pattern closely resembling clinical samples [12]. As 
input, we used quantities that are within range typically 
encountered in clinical settings (100 ng FF DNA, 25 ng 
FFPE DNA and 12.5  ng cfDNA). Sequencing libraries 
were prepared using adapters bearing double-stranded 
UMIs. Regions containing 110 confirmed variants, pre-
sent at variant allele fraction (VAF) of 0.2%, were subse-
quently enriched using a hybridization-based approach 
(Fig.  1D). We compared variant calling results using 
mapping positions alone or using additional UMI-based 
information for read grouping. Analysis of variant detec-
tion sensitivity revealed that the performance achieved 
with the UMIs was not significantly different (p > 0.05, 
Fisher’s exact test) from the one obtained using only the 
fragment mapping positions for FF (54.5% vs 43.9%) and 
FFPE (50.8% vs 45.5%) samples. In contrast, a significant 
improvement (p < 10–7, Fisher’s exact test) in sensitiv-
ity was observed for cfDNA when UMI information was 
considered (84.8% vs 35.7%) (Fig. 1E). These results sug-
gested that the impact on performance is not consistent 
across different sample types when comparing applying 
UMI information versus using mapping positions alone 
for read group assignment. Given this observation, we 
dissected the differential effects of UMI usage consider-
ing the major factors driving efficiency of variant detec-
tion and reviewing read group-based variant calling in 
different scenarios.

Signal and noise levels depend on input material 
and experimental design
The benefit of UMI usage relies on suppressing sequenc-
ing read noise while maintaining the signal. We sought 
to investigate the relationship between these two pro-
cesses from the perspective of different experimen-
tal conditions. In an NGS experiment, “signal” refers 
to the sequence mapped to a given genomic position 
that correctly reflects the sample genotype. The signal 
is impacted by errors introduced at multiple workflow 
stages (“noise”). Reliable variant calling requires (i) effi-
cient signal retrieval (avoiding false-negative and false-
positive calls) and (ii) separation of the signal from noise 
(discriminating true-positive from false-positive calls). 
The type of available biological specimen determines the 
input material characteristics and therefore the expected 
output data features, including noise levels.

The chance of detecting a given mutation can be 
described by a binomial distribution depending on how 
frequently the mutation is present in the input genomes 
and how many molecules overlapping the position of 
interest are sequenced (Fig. 2A, Methods). For example, 
achieving a 95% chance of detecting a mutation pre-
sent at VAF = 0.1% (crucial for MRD monitoring from 
cfDNA) requires sequencing at least ~ 3000 molecules 
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overlapping the mutated position, even in the absence 
of noise. The number of sequenced molecules (molecu-
lar count) is determined by (i) the amount of input mate-
rial (total available molecules), (ii) LCR (fraction of input 
molecules converted to library) and (iii) the sequencing 
depth. Approximately 300 genomic equivalents are found 
in 1 ng of dsDNA. Therefore, to sequence 3000 genome 
equivalents, a method with LCR of 50% (value reported 
previously for cfDNA processing [15]) would require 
at least 20  ng of input DNA (Fig.  2B). Consequently, 
achieving 95% sensitivity for detection of low frequency 
mutations may prove impossible when very little input 
material is available or when the method LCR is low. 
Given the number of duplexes obtained in our experi-
ment (about 1′000 on average for 100  ng FF DNA, 950 
for 25 ng FFPE DNA and 1′900 for 12.5 ng cfDNA), the 
mean probabilities of detecting at least two variant mol-
ecules at 0.2% VAF were 59%, 56% and 89% for FF, FFPE 
and cfDNA respectively. Notably, our variant calling 
approach necessitated conversion of both strands for 
variant call, and the FF condition showed relatively low 

duplex recovery rate, possibly due to suboptimal library 
preparation or capture conditions. Good agreement with 
observed sensitivities (54.5%, 50.8% and 84.8%, respec-
tively, Fig.  1E) confirms nonetheless that the molecular 
count is a major determinant of sensitivity.

Achieving adequate molecular coverage is required, but 
not sufficient for reliable variant detection, since trans-
mission of molecule sequence information to sequencing 
data may not be stoichiometric. Biases relate to the fact 
that certain molecules (or even individual DNA strands) 
can be more likely than others to efficiently progress 
through any step of the protocol [16]. A bias can occur at 
the step of template preparation, amplification, fragment 
size selection, enrichment, and/or sequencing and it is 
driven by molecule-specific factors such as the molecule 
AT content, among others (Additional file 2: Figure S1A).

Several factors determine the limit of detection (LoD) 
for the frequency of identifiable alterations [12]. Even 
if in a simplified theory the LoD can reach arbitrarily 
low values with sufficient molecular coverage, in prac-
tice it is in fact limited by noise in the sequencing reads. 
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Importantly, there are various biochemical or computa-
tional solutions to reduce the amount of noise and mini-
mize or correct for bias (Fig. 2C).

Abundant, high-quality material can be obtained from 
fresh frozen tissue, blood, saliva, or urine samples. How-
ever, for solid tumors, biopsy-derived tissue samples are 
typically FFPE-treated prior to DNA or RNA isolation, 
often resulting in physically and chemically degraded 
material, thereby hampering efficient library conversion 
and inflating errors. Cell-free DNA is typically of good 
quality but is highly fragmented and available in small 
quantities. As expected, in the samples presented in 
Fig. 1E, the false positive rate (for a fixed threshold for a 
call of at least two duplexes) was 2.3 FPs per kb for FFPE, 
0.44 for FF and 0.03 for cfDNA. Therefore, the input 
material has a significant impact on the signal to noise 
ratio for downstream sequencing applications.

Part of noise in the measured variant fraction is caused 
by random sampling, and this becomes elevated when 
molecular count is low. As a result, the variance of the 
signal is higher and errors reach higher frequencies. 
This is clear when comparing signal and noise levels in 
data generated with varying input amounts of the same 
sample (Fig. 2D). Since obtaining high amounts of input 
material is challenging in certain contexts (e.g. cfDNA), 
maintaining high conversion rate of the starting material 
coupled with efficient methods of signal detection and 
noise suppression is necessary to maximize information 
recovery.

Collisions decrease the sensitivity of mapping 
position‑based variant calling
Assigning reads to groups and employing de-duplication 
to identify input molecules before variant calling signifi-
cantly reduces the noise in sequencing data. However, 
not every NGS application requires such noise suppres-
sion. For example, good quality DNA processed with 
high LCR, such as white blood cell DNA, can yield data 
with error levels low enough not to benefit from read 
grouping before variant calling at a desired VAF. On the 
contrary, variant calling in data generated with FFPE 
samples, which is characterized by high noise levels and 
low molecule counts, may greatly benefit from noise 
suppression via read grouping. Multiple approaches 
exist for assigning reads to groups and using this infor-
mation to infer input molecule sequence [7, 10, 11]. For 
all presented data in this work, duplex-based molecule 
sequence determination was used to call variants (see 
“Methods” section).

Despite read group-based variant calling that relies on 
mapping positions being a powerful and simple method 
of noise suppression, it can fail in situations where indi-
vidual input molecules share the same mapping positions 

– an event known as “collision”. As a result, if a variant is 
present in a read group containing fewer duplicates than 
the colliding group (Fig. 3A, top), the variant information 
will be ignored upon read collapsing.

Collision rate, defined as the fraction of read groups 
that display at least one collision, as inferred from 
sequencing data, depends on the fragmentation pattern 
of the input material. Therefore, it is expected to be low 
in methods applying random shearing of DNA (sonica-
tion or enzymatic cleavage) and reach 100% for ampli-
con-based methods where molecule boundaries are 
predefined by primer positions. Exogenous UMIs can be 
used to measure and resolve collisions by uniquely tag-
ging the starting molecules (Fig.  3A, bottom). The sen-
sitivity of amplicon-based assays without UMIs may be 
lower than that of hybridization capture methods, as they 
cannot rely on molecule distinction by mapping position 
[12].

To systematically address the impact of collisions on 
sequencing sensitivity of different samples, we measured 
collision rates for different types of input material—FF 
DNA, FFPE DNA and cfDNA—generated from the same 
reference sample (GM12891) and captured with a hybrid-
ization-based approach (Fig. 3B). Mapping positions and 
UMI information were used to identify individual mol-
ecules. Analysis of the collision rate in function of the 
number of molecules revealed that cfDNA samples are 
characterized by particularly high collision rates (~ 44% 
with 20′000 sequenced molecules using 50  ng input) 
when compared to FF (~ 12% with 20′000 sequenced 
molecules using 300 ng input) and FFPE-derived (~ 23% 
with 20′000 sequenced molecules using 200  ng input) 
DNA (Fig. 3C). This is a direct consequence of cell-free 
DNA being generated by nucleases, a process guided by 
nucleosome positioning [17]. Basic units of chromatin 
are composed of ~ 147 bp of DNA wrapped around each 
nucleosome core particle and short intervening linkers in 
between. During chromatin degradation, the linkers are 
much more accessible to nucleases than DNA in the core, 
resulting in a restricted set of highly frequent fragment 
edges [18].

Importantly, higher collision rates in cfDNA than in 
FF and FFPE material can explain our initial observation 
of the stronger impact of exogenous UMIs on variant 
detection sensitivity in cfDNA as unresolved collisions 
may lead to a loss of variant signal during read collaps-
ing. Consistently, the discrepancy between the number 
of molecules determined using UMIs and using mapping 
position alone is greater in cfDNA samples when com-
pared to FF and FFPE-derived DNA (Fig.  3D). Typical 
cfDNA yields in clinical setting are often no higher than 
10 ng per ml of plasma [19], but the discrepancy in mol-
ecule counts is high even with such low input (i.e. ~ 9400 
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vs ~ 4300 molecules, 119% difference). Conversely, for FF 
DNA molecule count discrepancy at typical input quanti-
ties (i.e. 100–200  ng) is more limited. DNA yields from 
FFPE samples vary greatly and are often limited to less 
than 100 ng for input [20], a quantity where the molecule 
count difference is small.

The probability of collision also increases with the 
number of sequenced molecules, even if fragmentation 
is random (Fig.  3E). Nevertheless, at typical sequencing 
depths yielding read coverage below 10′000x, and for 
typical input amounts, collision rates did not exceed 10% 
for FF and FFPE DNA. Thus, we conclude that usage of 
UMIs for identification of individual starting molecules 
and read grouping provides only a limited advantage over 
mapping position grouping in such scenarios.

Impact of exogenous barcoding on variant calling 
performance
To investigate in detail the effect of collisions on variant 
calling, we prepared a series of samples in which, by mix-
ing two types of reference material, we obtained VAFs in 
a range of 0.05–2% (Fig.  1D). Such material was gener-
ated for different types of DNA (FF, FFPE and cfDNA) 
and used for library preparation, enriched for 110 loci 
bearing variants and sequenced. Variant calling methods 
utilizing UMIs allow noise suppression to levels lower 
than procedures not applying any read grouping, as could 
be observed in our dataset (Fig. 4A). However, the final 
noise level still depends on characteristics such as input 
material type, quantity, LCR, sequencing depth, among 
others.
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As discussed, UMIs should be particularly benefi-
cial in  situations where mapping position collisions are 
frequent but will have little impact on performance 
for mapping position-based read grouping with few to 
no collisions. Investigating sensitivity for a fixed mol-
ecule support  threshold used for variant calling, we 
indeed observed a strong impact of collisions for cfDNA 
(Fig. 1E). Similarly, we observed a reduction of the false 
positive rate when using mapping-position only com-
pared to using UMIs and mapping-position, with a 
stronger effect for cfDNA (reduction of 0.85 × for FFPE, 
0.74 × for FF and 0.45 × for cfDNA). This is expected 
as artifacts will be suppressed by collisions in the same 
manner as the real signal. Thus, in order to quantify the 
impact of UMIs independently of the variant calling 
threshold used we calculated the area under the receiver 
operating characteristic (ROC) curve (AUC), interpret-
ing reduction in AUC as a measure of an overall decrease 
of the statistical power of the method.

As expected, when variant calling performance with 
and without UMI information is compared across differ-
ent types of input material and variant fractions, a strong 
impact of UMIs is notable only for cfDNA (AUC 0.84 
with UMI vs 0.52 without UMI at VAF = 0.1%), while very 
little effect is observed in FF and FFPE-derived samples 
(AUC 0.68 vs 0.64 and 0.62 vs 0.59, respectively), where 
collisions are less frequent (Fig. 4C). In our dataset, per-
formance at lower VAF values, when using UMIs, was 
somewhat higher for cfDNA than for FF and FFPE DNA. 
However, this difference may stem from technical fac-
tors playing role during library preparation, such as input 
quality, amount and conversion rate.

The positive impact of UMIs on performance is related 
to improved signal retention in situations where variant 
information would otherwise be lost due to collisions 
during read deduplication. We sought to systematically 
estimate the extent of signal loss in various input sce-
narios. To this end, we diluted in silico (see “Methods” 
section) samples of FF DNA, FFPE DNA or cfDNA with 
variants present at specified VAFs (0.5–2%), to obtain 
a range of datasets with lower VAF values (Fig. 4D). As 
the diluted samples contained more total input material, 
the probability of collisions thus increased with decreas-
ing VAF. We measured the number of molecules with the 
alternative allele of each variant (“NALT”) (Fig.  4E, top). 
Molecule sequence was determined either by taking the 
UMI information into account or by relying on mapping 
position alone. For each condition, we then computed the 
fraction of variant-supporting (ALT) molecules whose 
signal was lost due to collisions with reference allele-
bearing (REF) molecules (Fig. 4E, bottom).

As expected, overall variant signal loss was highest in 
cfDNA, as this is the input type with the highest collision 

rate, reaching up to 80% of ALT molecules lost to colli-
sions at the maximum total input. In the clinical setting, 
this highlights the need for UMIs when using cfDNA 
to ensure variant detection sensitivity. Since the colli-
sion rate increases with input, the signal loss similarly 
increased with input amount for all types, confirming 
that collisions can pose an issue for FFPE and fresh fro-
zen samples given use of a sufficiently large quantity of 
input material. Therefore, for applications such as MRD 
tracking, where deep sequencing of a large quantity of 
input material is recommended, application of molecu-
lar barcoding will have positive impact on sensitivity. 
Importantly, the extent of signal loss did not depend 
significantly on the VAF, indicating that the probability 
of losing variant information due to collision is similar 
regardless of the fraction of ALT molecules in the input 
within the tested range. This is expected for low VAFs 
(< 5%) as in these conditions the ALT molecules are much 
more likely to collide with a REF molecule than an ALT 
molecule.

Thus, UMIs may help to improve the efficiency of vari-
ant calling over mapping-position read grouping meth-
ods in datasets with frequent collisions by suppressing 
noise and preventing signal loss.

Limitations of exogenous barcode usage
Our data demonstrate that the benefits of using UMIs are 
not universal and depend both on the method setup and 
the applied analytics with a range of factors affecting the 
performance of detection of rare alterations. Variant call-
ing methods relying on duplex sequences require that a 
significant fraction of molecules have both strands con-
verted and sequenced. Therefore, low LCR values leading 
to predominant conversion of only one strand per input 
DNA molecule will not support the level of information 
necessary to benefit from duplex-based noise suppres-
sion. Similar problem will occur if sequencing depth is 
disproportionally small relative to the number of mole-
cules: read groups for each molecule will be too small, or 
will not contain both strands, preventing efficient error 
correction.

Design of UMI system requires taking several fac-
tors into account. First, the number of possible UMIs 
must be large enough to address the diversity of collid-
ing molecules in the input sample. If the number of pos-
sible UMIs is not significantly higher than the number of 
colliding molecules, the molecule count may be under-
estimated, leading to signal loss. As collisions are less 
frequent for capture-based enrichment methods, much 
lower diversity is required for such workflows in com-
parison with amplicon-based assays. Conversely, some 
RNA-based methods might require extremely diverse 
UMI pools for reliable read deduplication [21]. A model 
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for the determination of the minimum UMI length has 
been proposed based on the total number of DNA frag-
ments and the distribution of allele frequencies [22]. In 
the case of a commonly used amplicon-based method, 
UMIs of length of 6–8 bp, depending on the deduplica-
tion method, were sufficient to identify all molecules 
when 50  ng input DNA was used [23]. Second, UMIs 
should have sequences distinct enough to prevent mis-
assignment of UMI sequences due to amplification or 
sequencing errors (Additional file  2: Figure S1B). The 
minimal Hamming distance between UMI sequences 
should consider the overall length of the barcode. For 
commercially available UMIs, the estimated assignment 
error rates range between 0.1 and 0.4% [11, 23]. Third, 
the de-duplication method must allow for a certain num-
ber of mismatches to assign reads with similar, but non-
identical, UMIs to the same molecule (Additional file 2: 
Figure S1C). Otherwise, the number of molecules will be 
artificially inflated due to UMI sequencing errors [11]. 
Finally, the size of a barcode has also an impact on the 
sequencing cost: 16 bp-long UMIs consume 11% of 150-
bp long reads and 16% of 100 bp-long reads, reducing the 
effective sequencing output devoted to interrogated tar-
gets. Additionally, longer UMIs provide higher sequence 
degeneracy but may increase the formation of primer 
dimers or lead to non-specific binding events.

Certain types of errors cannot be corrected by consen-
sus variant calling. These include symmetrical double-
stranded damage to input molecules, errors occurring 
simultaneously on both strands at the same position, or 
other artifacts introduced during library preparation. An 
example of the latter are hairpin structures introduced 
during end repair and adapter ligation (Additional file 2: 
Figure S1D). In that case, additional palindromic or semi-
palindromic sequences at read ends are present across 
multiple different molecules, leading to a false-positive 
variant call. Sequence errors occurring systematically 
at certain genomic positions, such as the homopolymer 
tracts, cannot be corrected by read grouping and dedu-
plication prior to variant calling as they arise indepen-
dently in reads derived from distinct starting molecules. 
Thus, UMI usage, while providing crucial advantages 
for variant calling in specific situations, have limitations 
that can be both context-specific as well as global across 
applications.

Conclusions
Detecting low frequency mutations, critical for oncol-
ogy applications, currently presents a significant chal-
lenge. Scarcity of input, degradation of FFPE material 
and high levels of noise limit the analytical perfor-
mance of NGS-based methods. Improving the detec-
tion of rare mutations cannot be achieved by a single 
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universal method across all applications. As multiple 
factors affect both the signal recovery and noise levels, 
the final choice of workflow should be guided by factors 
including the quantity, quality and type of input mate-
rial, the library preparation method, the enrichment 
strategy, the sequencing technology, and the sequenc-
ing depth.

UMIs are a common addition to sequencing work-
flows intended to improve detection of low frequency 
variants. Using systematic calculations, we demonstrate 
specific, clinically-relevant scenarios in which the usage 
of UMIs is indeed beneficial for improved variant call-
ing performance (Fig. 5), particularly when a significant 
collision rate is observed in the sequencing data. Since 
in many experimental setups the collision rate is not a 
major factor limiting sensitivity, UMI usage should be 
carefully considered on a case-by-case basis rather than 
adopted as default. We believe that our empirical dem-
onstrations of UMI utility will help in guidance of the 
UMI system choice for various NGS applications.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​023-​04160-0.

Additional file 1. Supplementary Table 1.

Additional file 2. Figure S1.

Acknowledgements
Not applicable.

Author contributions
JB, MM, CP, AW and ZX designed the study. MM performed the experiments. 
JB, CP and SK analyzed and interpreted the data. SK and JB wrote the manu-
script. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Sequencing data is available in NCBI Sequence Read Archive (https://​www.​
ncbi.​nlm.​nih.​gov/​sra) under submission number PRJNA937211.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
All authors are employees of SOPHiA GENETICS.

Received: 8 February 2023   Accepted: 25 April 2023

References
	1.	 Shu Y, Wu X, Tong X, Wang X, Chang Z, Mao Y, et al. Circulating tumor 

DNA mutation profiling by targeted next generation sequencing pro-
vides guidance for personalized treatments in multiple cancer types. Sci 
Rep. 2017;7(1):583.

	2.	 Volik S, Alcaide M, Morin RD, Collins C. Cell-free DNA (cfDNA): clinical 
significance and utility in cancer shaped by emerging technologies. Mol 
Cancer Res. 2016;14(10):898–908.

	3.	 Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. 
Detection of circulating tumor DNA in early- and late-stage human 
malignancies. Sci Transl Med. 2014. https://​doi.​org/​10.​1126/​scitr​anslm​ed.​
30070​94.

	4.	 Yoest JM, Shirai CL, Duncavage EJ. Sequencing-based measurable 
residual disease testing in acute myeloid leukemia. Front Cell Dev Biol. 
2020;8(8):249.

	5.	 Perrot A, Lauwers-Cances V, Corre J, Robillard N, Hulin C, Chretien 
ML, et al. Minimal residual disease negativity using deep sequenc-
ing is a major prognostic factor in multiple myeloma. Blood. 
2018;132(23):2456–64.

	6.	 Ma X, Shao Y, Tian L, Flasch DA, Mulder HL, Edmonson MN, et al. Analy-
sis of error profiles in deep next-generation sequencing data. Genome 
Biol. 2019;20(1):50.

	7.	 Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection 
of ultra-rare mutations by next-generation sequencing. Proc Natl Acad 
Sci. 2012;109(36):14508–13.

	8.	 Rose Brannon A, Jayakumaran G, Diosdado M, Patel J, Razumova A, Hu 
Y, et al. Enhanced specificity of clinical high-sensitivity tumor mutation 
profiling in cell-free DNA via paired normal sequencing using MSK-
ACCESS. Nat Commun. 2021;12(1):3770.

	9.	 Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, et al. 
Counting absolute numbers of molecules using unique molecular 
identifiers. Nat Methods. 2012;9(1):72–4.

	10.	 Mitchell K, Brito JJ, Mandric I, Wu Q, Knyazev S, Chang S, et al. Bench-
marking of computational error-correction methods for next-genera-
tion sequencing data. Genome Biol. 2020;21(1):71.

	11.	 Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors 
in unique molecular identifiers to improve quantification accuracy. 
Genome Res. 2017;27(3):491–9.

	12.	 Bieler J, Pozzorini C, Garcia J, Tuck AC, Macheret M, Willig A, et al. 
High-throughput nucleotide resolution predictions of assay limitations 
increase the reliability and concordance of clinical tests. JCO Clin 
Cancer Inform. 2021;5:1085–95.

	13.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

	14.	 Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to 
numerical computing. SIAM Rev. 2017;59(1):65–98.

	15.	 Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct 
detection of early-stage cancers using circulating tumor DNA. Sci 
Transl Med. 2017;9(403):eaan2415.

	16.	 Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, et al. Ana-
lyzing and minimizing PCR amplification bias in Illumina sequencing 
libraries. Genome Biol. 2011;12(2):R18.

	17.	 Han DSC, Lo YMD. The nexus of cfDNA and nuclease biology. Trends 
Genet. 2021;37(8):758–70.

	18.	 Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA com-
prises an in vivo nucleosome footprint that informs its tissues-of-origin. 
Cell. 2016;164(1–2):57–68.

	19.	 Maass KK, Schad PS, Finster AME, Puranachot P, Rosing F, Wedig T, et al. 
From sampling to sequencing: a liquid biopsy pre-analytic workflow to 
maximize multi-layer genomic information from a single tube. Cancers. 
2021;13(12):3002.

	20.	 McDonough SJ, Bhagwate A, Sun Z, Wang C, Zschunke M, Gorman JA, 
et al. Use of FFPE-derived DNA in next generation sequencing: DNA 
extraction methods. PLOS ONE. 2019;14(4):e0211400.

	21.	 Saunders K, Bert AG, Dredge BK, Toubia J, Gregory PA, Pillman KA, et al. 
Insufficiently complex unique-molecular identifiers (UMIs) distort small 
RNA sequencing. Sci Rep. 2020;10(1):14593.

	22.	 Clement K, Farouni R, Bauer DE, Pinello L. AmpUMI: design and analysis of 
unique molecular identifiers for deep amplicon sequencing. Bioinformat-
ics. 2018;34(13):i202–10.

https://doi.org/10.1186/s12967-023-04160-0
https://doi.org/10.1186/s12967-023-04160-0
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://doi.org/10.1126/scitranslmed.3007094
https://doi.org/10.1126/scitranslmed.3007094


Page 13 of 13Bieler et al. Journal of Translational Medicine          (2023) 21:305 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	23.	 Chung J, Lee KW, Lee C, Shin SH, Kyung S, Jeon HJ, et al. Performance 
evaluation of commercial library construction kits for PCR-based tar-
geted sequencing using a unique molecular identifier. BMC Genomics. 
2019;20(1):216.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Benefits of applying molecular barcoding systems are not uniform across different genomic applications
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Preparation of reference cfDNA samples
	Preparation of reference FFPE samples
	Sample mixing for variant calling performance
	Targeted libraries preparation & capture panel
	Sequencing
	Statistical analysis
	Data processing
	UMI processing & molecular counting
	Duplex variant calling & analytical performance
	Model for the probability of sequencing one alternative molecule at a given VAF
	Model for the relation between input amount and molecular count


	Results and discussion
	Benefits of applying molecular barcoding are not uniform across NGS-based applications
	Signal and noise levels depend on input material and experimental design
	Collisions decrease the sensitivity of mapping position-based variant calling
	Impact of exogenous barcoding on variant calling performance
	Limitations of exogenous barcode usage

	Conclusions
	Anchor 27
	Acknowledgements
	References


