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Abstract 

Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflam-
matory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in 
impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are 
known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM 
and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an 
important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved 
glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction 
with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters 
detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, 
through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of 
some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the 
prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The pre-
sent review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and 
some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
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Background
Type 2 diabetes mellitus (T2DM) is an endocrine meta-
bolic disorder characterized by dysfunctional pancre-
atic β-cells and peripheral insulin resistance, resulting in 
abnormalities of glucose metabolism, dyslipidemia, and 
chronic inflammation [1]. T2DM is commonly associ-
ated with poor blood glucose control, dyslipidemia, and 
obesity, and has become a global public health concern 
due to the rising prevalence and implications of the dis-
ease [2, 3]. In 2021, about 537 million people will be diag-
nosed with diabetes (DM), and this number is estimated 
to increase to 643 million by 2030; 90–95 percent of DM 
diagnoses are T2DM [4, 5].

Genetic, metabolic, lifestyle, and dietary patterns 
are among the most influential determinants of T2DM 
[6]. Although ethnicity and family history/genetic 
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predisposition have a substantial genetic basis for devel-
oping T2DM, epidemiological studies indicate that 
T2DM can be prevented by improving modifiable risk 
factors (obesity, low physical activity, and unhealthy diet) 
[7, 8]. In genome-wide association studies, the variants in 
zinc finger gene 1 (JAZF1), insulin-like growth factor 2 
mRNA-binding protein 2 (IGF2BP2), transcription factor 
7 like 2 (TCF7L2), melanocortin 4 receptor (MC4R), cell 
division cycle 123 (CDC123), potassium voltage-gated 
channel subfamily Q member 1 (KCNQ1), insulin-like 
growth factor 2 mRNA binding protein 2 (IGF2BP2), sol-
ute carrier family 16 member 11 (SLC16A11), and PHD 
finger protein 2 (PHF2) have all been previously were 
involved in lipid metabolism and were associated with 
T2DM in adults [9, 10].

Dyslipidemia, caused by elevated plasma triglycer-
ide (TG), increased low density lipoprotein cholesterol 
(LDL), and reduced high dense lipoprotein cholesterol 
(HDL), is typically observed in T2DM [11]. Mitochon-
drial dysfunction, ER stress, inflammation, abnormal 
fatty acid regulation, and β-oxidation may all be involved 
in dyslipidemia [12, 13]. Excessive dietary intake of free 
fatty acids (FFA) in patients with T2DM induces the syn-
thesis of phospholipids, glycerolipids, and sphingolipids, 
hence exacerbating insulin resistance and resulting in 
lipotoxicity [14, 15]. Currently, lipidomics will help in the 
understanding of changes in lipid metabolism and eluci-
date the metabolic pathways underlying the relationship 
between diet, dyslipidemia, and T2DM.

Lipidomics is a branch of metabolomics that identifies 
and quantifies the lipids produced by cells in response 
to pathogenic stimuli [16]. The purpose of lipidomics 
research is to identify and quantitatively determine the 
spectrum of intact lipid molecules found in cells and 
biological fluids, as well as to relate their composition 
to genetics, proteomics, nutrition, and disease [16, 17]. 
Recently, increased lipidomic research has been con-
ducted to identify biomarkers for and explain the cellular 
pathogenic processes of lipid metabolism abnormalities, 
which play a role in the pathogenesis of several diseases 
including T2DM, cancer, Alzheimer’s disease, cardiovas-
cular disease, nonalcoholic fatty liver disease, and obesity 
[18–22]. Since the 2000s, lipidomics has been used to 
identify potential predictive and diagnostic parameters of 
T2DM [23, 24].

Population-based studies have indicated that phos-
pholipids containing glycine, lysophosphatidylcholine 
acyl, acetylcarnitine, α-hydroxybutyrate, and choline 
are precursors of glucose tolerance abnormalities. Due 
to the lack of information on plasma lipidome changes 
during the shift from prediabetes to T2DM, the plasma 
lipid that may be used to diagnose T2DM has not been 
precisely determined. These molecules can influence the 

interaction along the gut-brain axis, hence contributing 
to the pathogenesis of T2DM. Furthermore, it has been 
shown that some lipids such as triglycerides and sphin-
golipids modulate insulin resistance and T2DM. [25–28]. 
The current review summarizes the effect of dietary fats 
and lipidomics on the gut-brain axis, the role of lipidom-
ics, and possible mechanisms of action in T2DM.

Dietary lipids
Dietary fats are divided into three subgroups: unsatu-
rated FA, saturated fatty acids (SFA), and trans fatty acids 
(TFA). Unsaturated FA consists of monounsaturated fatty 
acids (MUFA) and polyunsaturated fatty acids (PUFA) 
[29]. Although the fatty acid composition of the diet 
plays a significant role in enhancing insulin sensitivity 
and reducing T2DM and T2DM-related complications, 
the underlying mechanisms remain unclear. In terms of 
dietary fat, the Food and Agriculture Organization of 
the United Nations (FAO) concluded in 2010 that a high 
dietary intake of SFA is a "possible" risk factor for T2DM, 
while a high intake of TFA is also a "possible" risk factor 
for T2DM. It has been claimed that PUFA intake was a 
"possible" positive effect on T2DM, whereas the available 
evidence for MUFA was insufficient [30]. The widespread 
view is that the fatty acid composition of the diet might 
alter cell membrane function [31]. The fatty acid content 
of the cell membrane regulates several physiological sys-
tems, including membrane fluidity, cellular activities, ion 
permeability, insulin receptor affinity, translocation of 
glucose transporters interacting with second messengers, 
and membrane fluidity. All of these alterations can alter 
the tissue and organ insulin sensitivity [32].

The literature has shown the processes through 
which FAs exert a direct regulatory influence on gene 
expression and enzyme function [33]. In  vitro, while 
PUFA (arachidonic acid (AA) > eicosapentaenoic acid 
(EPA) > docosahexaenoic acid (DHA) > linoleic acid (LA)) 
activates nuclear receptors, including peroxisome prolif-
erator-activated receptor (PPAR), SFA and MUFA have 
only a minimal influence on lipogenic gene expression 
[34, 35]. Furthermore, SFA alters glucose metabolism by 
regulating inflammatory gene expression, transcription 
factor activity, and enzyme activity [36]. LA prevents DM 
through its anti-inflammatory properties. Omega 3 and 
omega 6 FAs rich in diet can increase insulin sensitivity 
by suppressing hepatic lipogenesis and promoting FAs 
oxidation [37].

Many foods contain SFA, but only in low amounts; 
those of animal origin, including milk, butter, cheese, 
and meat, are the main sources of SFA in the typical diet. 
Exceptions include fats derived from tropical plants, 
which are usually low in SFA but high in the palm and 
coconut oil. Lauric acid (C12:0), myristic acid (C14:0), 
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palmitic acid, and stearic acid (C18:0) are the majority of 
dietary SFAs [38]. Palmitic acid and foods derived from 
animals induce inflammation, oxidative stress, and inflict 
irreversible harm to cardiometabolic health by interfer-
ing with nitric oxide and insulin signaling [39, 40].

A high dietary intake of SFA adversely impacts glu-
cose and lipid metabolism by increasing hyperglycemia, 
hyperinsulinemia, and insulin resistance in metabolic 
organs such as the liver, pancreas, adipose tissue, and 
kidney. A diet rich in SFAs decreases the number of large 
islets in the pancreas, resulting in a more intense insulin 
response to a glucose load. The structure and function of 
the islets are altered, resulting in glucose sensitivity and 
T2DM [41, 42]. It impacts lipid homeostasis, differentia-
tion of adipocytes, fat cell volume and number, and pro-
motes weight gain by increasing the white adipose tissue 
(WAT) in adipose tissue. All of these alterations acceler-
ate the development of inflammation and leukocyte infil-
tration in adipose tissue. The accumulation of hepatic 
triacylglycerol, glucose intolerance, elevated blood sugar, 
and elevated insulin levels are all consequences of this 
condition. Increased blood lipid concentrations result in 
insulin resistance in peripheral tissues, impaired glucose 
absorption and usage and lipid metabolism, blood circu-
lation and lipid aggregation in various tissues, and meta-
bolic signaling pathways that regulate insulin secretion 
in pancreatic β-cells. Maintaining the homeostasis of the 
organism requires tight regulation of glucose and lipid 
catabolism [43–45].

Epidemiological, case–control, and prospective cohort 
studies have demonstrated that an increase in dietary 
SFA consumption is associated with the development of 
T2DM [46–48]. Short-term intervention studies indicate 
that a high SFA diet raises insulin, fasting blood glucose, 
and Hba1c levels relative to a high MUFA or PUFA diet 
[49, 50]. However, there are other research suggests that 
there is no relationship between SFA intake and the onset 
of T2DM [51–53]. It is considered that dietary SFAs 
influence glucose metabolism and T2DM by inducing 
insulin resistance.

Trans fatty acids (TFA) are found in ruminant milk and 
meats, as well as in partially hydrogenated vegetable oils 
[54]. Some of the metabolic impacts of TFA include an 
increase in obesity, and insulin resistance, inflammation, 
and a reduction in endothelial function. TG and lipopro-
tein (a) levels are increased, whereas total cholesterol 
(TC):HDL ratio, apoB: apoA ratio, and TC: HDL ratio are 
all decreased by TFAs [55, 56]. TFA inhibits the antilipol-
ytic impact of insulin in adipose tissue and insulin-medi-
ated glucose transport in animal models. Resistin reduces 
insulin sensitivity by increasing messenger RNA (mRNA) 
expression and decreasing PPAR and lipoprotein lipase 
expression [57, 58].

Olive oil, canola oil, and some plant oils are among the 
richest sources of MUFA in the diet, whereas red meat, 
milk, and dairy products also contain MUFA. Olive oil, 
which is rich in oleic acid (C18:1n-9), and erucic acid 
(C22:1n-9) are the two most prevalent dietary sources 
of MUFA in regions where rapeseed oil consumption is 
prominent [38]. Oleic acid enhances FA oxidation by pro-
tein kinase A (PKA)-mediated deacetylation of the Sir-
tuin1 (SIRT1)-peroxisome proliferator-activated receptor 
co-activator-1α (PGC1α) complex. Oleic acid exerts 
an anti-inflammatory effect by participating in several 
metabolic pathways. Upregulation of M2 expression, the 
elevation of adiponectin level, the diminution of phos-
phate and tensin homolog, downregulation of protein 
phosphatase 2A, and induction of macrophage polari-
zation are all effects of E-selectin, soluble intercellular 
adhesion molecule-1 (ICAM-1), interleukin (IL)-6, and 
tumor necrosis factor alpha (TNF-α). Additionally, oleic 
acid regulates insulin resistance and T2DM by lowering 
glucolipotoxicity, oxidative stress, and enhancing β-cell 
function and endothelial and hypothalamus function [45, 
59, 60]. A diet that is rich in MUFA increases insulin sen-
sitivity by lowering the glycemic load and insulin require-
ment. Through an increase in the number of hepatic LDL 
receptors, it accelerates the turnover of LDL cholesterol. 
Many beneficial compounds, including phenolic com-
pounds, phytochemicals, and fat-soluble vitamins, are 
concentrated in foods high in MUFA [61–63].

LA and alpha-linoleic acid (ALA) are the only types of 
necessary FAs that may be obtained from food due to the 
absence of desaturase enzymes in the human body [64]. 
Both LA, which is the precursor of omega 6 FAs, and 
ALA, which is the precursor of omega 3 FAs, are con-
verted to other PUFAs through the addition of double 
bonds and acyl chains by the enzymes desaturase and 
elongases, respectively [65, 66]. Omega 3 and omega 6 
are both types of FAs that are found in PUFA. Omega 3 
FAs consist of long-chain EPA and DHA, both of which 
are often found in fish, and ALA, which is present in 
some plant oils such as flaxseed, rapeseed, and canola 
oil. Canola oil, soybean oil, corn oil, and sunflower oil are 
just a few of the various plant oils rich in omega 6, par-
ticularly LA and dihomo γ LA [67].

Gene expression, the metabolism of prostaglandin and 
leukotriene, and the synthesis of interleukin (IL)-1 are all 
significantly impacted by the ratio of omega 6 to omega 3 
FAs that exist in the organism under physiological condi-
tions. Omega 3 and omega 6 FAs are in constant compe-
tition for desaturation enzymes. In enzymatic processes, 
fatty acid desaturases 1 (FADS1) and 2 (FADS2) prefer 
ALA to LA.

A disruption in the ratio of omega 6 and omega 3 initi-
ates a prothrombotic and proinflammatory process that 
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favors omega 6 in the organism and leads to the devel-
opment of atherosclerosis, obesity, and DM [68, 69]. 
Long-chain PUFAs improve adipocyte membrane fluid-
ity, GLUT4 RNA and protein levels, hence increasing the 
number of insulin receptors. Insulin stimulates the activi-
ties of desaturases 5 and 6. This increases the amount of 
insulin receptors on the cell membrane and the affinity of 
insulin for its receptor, so enhancing the effects of insulin 
on the organism. However, in the presence of an excess 
of omega 6 and a deficiency of omega 3, external stimuli 
release AA from the cell membrane and the formation 
of proinflammatory mediators [70]. It has been reported 
that the ratio of omega 6 to omega 3 in the diet should be 
1:1 or 2:1 for optimal health [71].

Omega 3 FAs improve insulin sensitivity by reducing 
ER stress in mitochondria and enhancing the β-oxidation 
of FAs, thus decreasing the accumulation of lipids 
and reactive oxygen species (ROS) [59]. Additionally, 
omega-3 FAs have a beneficial impact on mitofusin 2, a 
protein implicated in mitochondrial dynamics, homeo-
stasis, and the preservation of the membrane integrity of 
mitochondria [72]. EPA and DHA modulate insulin sen-
sitivity via Akt phosphorylation, AMP-activated protein 
kinase, and activating PPARγ [73]. Also, omega-3 FAs 
regulate pancreatic β-cell insulin secretion by acting on 
the function and structure of lipid rafts and indirectly 
reducing the development of proinflammatory media-
tors in adipose tissue and increasing adipokine synthesis. 
Omega 3 FAs inhibit inflammatory cytokines, induce adi-
pose tissue to produce adipokines, and increase insulin 
secretion by directly influencing β-cell activity by bind-
ing to PPARs, G protein-coupled receptor 40 (GPR40), 
and GPR120. PUFA binds to GPR120 in adipose tissue, 
resulting in increased GLUT4 translocation and glucose 
uptake in adipose tissue [74, 75].

In randomized controlled trials examining the impact 
of omega 3 FAs on glycemic control [EPA (2 g/day, 95% 
pure EPA), fish oil per day (2 g/day EPA + DHA), omega 3 
FAs (1.6 g/day EPA and 0.8 g/day DHA)], fasting plasma 
glucose, HbA1c, and HOMA-IR were reported to be 
reduced [76–78]. Prospective cohort studies have shown 
that consuming lean fish reduces the incidence of T2DM. 
It has been observed that consuming lean seafood and 
fish improves insulin sensitivity and lowers insulin resist-
ance in individuals with insulin resistance [79–82]. Stud-
ies have revealed that EPA and DHA play a significant 
part in lowering the risk of lipotoxicity and preserving 
insulin sensitivity [83–85]. In several investigations, there 
was no significant correlation between omega 3 FAs and 
glycemic indicators such as fasting plasma glucose, insu-
lin, and HbA1c [86–88].

There was not enough evidence on the relationship 
between dietary omega 6 intake, desaturase enzymes, and 

the incidence of T2DM [67]. In dietary intervention and 
prospective cohort studies using omega 6 biomarkers/
food consumption frequency forms, however, an inverse 
association was observed between LA and T2DM preva-
lence [40, 89]. It has been determined that whereas high 
levels of γ-LA and Di-homo-γ-LA increase the risk of 
T2DM, high levels of LA diminish this risk. According to 
research findings, omega 6 may be an indicator of hyper-
insulinemia rather than a risk or protective factor for 
T2DM [90, 91]. In intervention studies that replaced die-
tary SFA with MUFA, one research revealed that insulin 
sensitivity was enhanced [92], Other studies have shown 
that fasting insulin and insulin sensitivity are unchanged 
[93, 94]. Table 1 shows the classification and nutritional 
importance of dietary lipids in T2DM. To sum up, it was 
shown that hepatic fat deposition was reduced and insu-
lin sensitivity increased in interventions involving the 
consumption of omega 6 instead of dietary SFA [95, 96].

Molecular regulations, and homeostasis of dietary 
lipids in T2DM
T2DM as a systemic disease as is characterized by hyper-
insulinemia, insulin resistance, and relative insulin defi-
ciency [6]. The pathogenesis of diabetic complications 
involves genetic and epigenetic changes, dietary factors, 
and a sedentary lifestyle [97, 98].

The metabolism of proteins, lipids, and glucose are all 
significantly regulated by insulin. It participates in the 
regulation of glucose uptake in muscle, adipose tissue 
lipolysis, and muscle proteolysis, as well as the metabo-
lism of hepatic glucose and triglycerides [99]. The regu-
lation of lipid metabolism is impacted by increased 
oxidative and ER stress, hyperglycemia, lipidemia, insulin 
resistance, and impaired pancreatic beta-cell function in 
T2DM [100]. Lipid metabolism includes both the bio-
synthesis and breakdown  of lipids like cholesterol, tri-
glycerides, and FAs. Specialized lipoproteins carry lipids 
from the intestine to the liver (where most lipid con-
version occurs) and from the liver to peripheral tissues 
[101]. Dyslipidemia, T2DM, and obesity are all linked 
to abnormalities in lipid metabolism, which frequently 
result in metabolic complications like insulin resistance, 
DM, ectopic lipid accumulation, non-alcoholic fatty 
liver disease, and atherosclerosis [102]. The regulation 
of lipid metabolism is greatly influenced by nutrients, 
particularly sugars and FAs [103]. Triglycerides account 
for 90.0% of all dietary lipids (TG). Phospholipids are 
also present in cholesterol and cholesterol esters in the 
diet, in addition to triglycerides [104]. The lingual lipase 
enzyme and gastric lipase enzymes in the mouth and 
stomach emulsify the digestion of dietary lipids in adults, 
but digestion hardly ever occurs. Chyme, a form of lipid, 
enters the small intestine [105, 106]. The mixture, known 
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as Chyme, causes intestinal cells to secrete the hormone 
secretin. Secretin facilitates the breakdown of lipids by 
encouraging the pancreas to secrete bicarbonate, pancre-
atic lipase, cholesterol esterase, and phospholipase A2. 
Additionally, cholecystokinin increases bile secretion by 
promoting gallbladder contraction. Lipids are emulsified 
in the duodenum with bile salts released from the gall-
bladder, increasing the surface area of the lipid droplet 
and improving the efficiency of digestive enzymes [107]. 
Non-esterified fatty acids (NEFA), CD36, and Niemann-
Pick C1-like 1 protein (NPC1L1) for cholesterol are three 
specific transporters that enable enterocytes to absorb 
dietary lipids. Triacylglycerols (triglycerides), cholesteryl 
esters, and other lipids (phospholipids and trace amounts 
of unesterified cholesterol) come together in enterocytes 
to form chylomicrons, which are then combined with 
apolipoprotein (Apo)B-48 (also ApoA-IV and ApoA-I) 
[108]. Liquid triglycerides make up 90% of the chylomi-
cron mass. These chylomicrons travel from the intesti-
nal mucosa to the lymphatic system via exocytosis, and 
the large chylomicrons travel from the blood to the liver 
and adipose tissue [109]. In particular, lipoprotein lipase 
(LPL) mediates intravascular lipolysis of triglyceride-
rich lipoproteins (TGs in chylomicrons are broken down 
into FFA and glycerol) and forms chylomicron remnants, 
which are important for lipid homeostasis and chylomi-
cron clearance [110]. Insulin increases the amount of LPL 
mRNA, which stimulates LPL. As a result, they control 
apoC-II and LPL activities in concert through both tran-
scriptional and post-translational mechanisms [111]. The 
liver cells’ ApoE receptors can detect chylomicron rem-
nants. Chylomicrons are more likely to bind to heparan 
sulfate proteoglycans (HSPGs) on hepatocyte surfaces 
and be taken up into the liver by LDL receptor-associated 
protein (LRP) or LDL-R when ApoE is present. In the 
process of removing lipoprotein residues, apoE is stored 
in heparan sulfate proteoglycans. In apoB-48, the ligand 
binding site is missing [112]. Insulin increases the uptake 
and clearance of chylomicron residues by inducing the 
translocation of lipoprotein receptor-related protein to 
the plasma membrane [113]. By increasing the expres-
sion and activity of LDL-receptors, it also encourages 
LDL clearance [114]. When the  125I-labeled activated 
α2M (α2M ∗)  pathway is activated by  insulin secre-
tion  increases LRP and LDL-R’s function by 2–3 times. 
Insulin increased the liver’s LRP-specific uptake of chy-
lomicron residues, according to a rat study. Postprandial 
lipoprotein metabolism may suffer if insulin-mediated 
signaling pathways are disrupted [115]. In HepG2 cells, 
insulin forms heterodimers with ER small subunit pro-
tein disulfide Isomerase to catalyze the transfer of lipid 
to nascent apoB, a rate-limiting step in the produc-
tion of hepatic very low-density lipoprotein (VLDL). 

Additionally, insulin controls the hepatic microsomal tri-
glyceride transfer protein (MTP) metabolism by separat-
ing the complex formed by the mitogen-activated protein 
kinase (MAPK) pathway, Foxa2, which is phosphorylated 
in response to insulin action, and PGC-1β [116]. In this 
study, it was determined  that subjects who were insu-
lin resistant had excessive VLDL production and unre-
stricted MTP expression [117].

The free cholesterol that HDL absorbs from tissues 
is esterified using lecithin cholesterol acyl transferase 
(LCAT). Free cholesterol is quickly esterified by LCAT 
after being absorbed by HDL. They serve as an Apo C and 
Apo E circulating store for HDL, VLDL, and chylomi-
crons. They use scavenger receptor B1 (SR-B1) receptors 
to remove and esterify free cholesterol from extra hepatic 
tissues and transport it to the liver [118]. Small size HDL 
(commonly known as HDL3) grows via ester transfer 
(usually called HDL2) [119]. Also, HDL demonstrates 
anti-inflammatory, antioxidant, anti-thrombotic, and 
anti-apoptotic properties [120]. Additionally, VLDL and 
LDL can exchange lipids via the cholesteryl ester transfer 
protein (CETP) provided by HDL. In this manner, tria-
cylglycerols are reciprocally transferred from VLDL to 
HDL and cholesterol esters from HDL to VLDL [121]. 
The physiological control of HDL cholesterol metabolism 
depends on insulin. It directly affects the liver, encour-
aging the transition from HDL2 to HDL3 (through its 
action on hepatic lipase) [122].

Circulating carbohydrates are transformed into FAs 
through the intricate process known as de novo lipogen-
esis (DNL), which is then used to create triglycerides or 
other lipid molecules. The primary carbon source for 
the synthesis of FAs comes from the glucose metabo-
lites created during glycolysis [123]. After consuming a 
large of carbohydrates, circulating glucose is absorbed 
by adipocytes via insulin-stimulated GLUT4, where it 
is converted to pyruvate by glycolysis in the cytosol and 
then transported to the mitochondria for further oxida-
tion in the tricarboxylic acid cycle (TCA). In the cytosol, 
novo lipogenesis uses citrate, an intermediate of the TCA 
cycle, as a substrate. Adipocyte lipogenesis is significantly 
regulated at the transcriptional level by the protein car-
bohydrate response element-binding protein (ChREBP). 
In addition to activating ATP-citrate lyase (ACLY), 
acetyl-CoA carboxylases 1 (ACC1), fatty acid synthase 
(FASN), and stearoyl-CoA desaturase-1 (SCD1), insulin 
activates Max-like protein X (MLX) and ChREBP-, which 
in turn promote the expression of target genes that sup-
port the synthesis of FAs [123]. Disruptions in lipid and 
glucose metabolism and a decline in hepatic glycogen 
synthesis are brought on by problems with insulin secre-
tion and insulin resistance. Ectopic lipid-induced muscle 
insulin resistance comes first, followed by liver insulin 
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resistance, which directs ingested glucose to the liver, 
increasing hepatic de novo lipogenesis and hyperlipi-
demia [124]. The active role of insulin in normoglycemia 
and normolpidemia is presented in Fig. 1.

The metabolism of glucose and lipids are intercon-
nected in numerous ways. Diabetic dyslipidemia, which 
is characterized by elevated triglycerides, low HDL-C, 
and a predominance of small-dense LDL particles, is the 
most significant clinical manifestation of this interac-
tion [125]. Triglyceride-rich lipoproteins (TRLs) tend 
to accumulate more frequently in diabetic dyslipidemia 
[126]. The combination of a defect, excessive production 
of TRL-apoB-100, also known as very low-density lipo-
protein (VLDL, primarily VLDL1) from the liver, and 
removal of TRL-apoB-48, also known as chylomicrons, 

from the gut results in diabetic dyslipidemia [127]. Phos-
phatidylinositol 4,5-biphosphate (PIP2) is converted to 
phosphatidylinositol 3,4,5-triphosphate (PIP3) when 
insulin binds to its receptor, which causes tyrosine phos-
phorylation, activation of PI3K, and other processes 
(PIP3). Serine/threonine kinase Akt is activated by PI3K 
activation, which also inhibits the insulin-mediated inhi-
bition of phospholipase D1 and ARF-1, two components 
involved in the formation of VLDL1, and decreases the 
synthesis of ApoB [128]. Both TNF-receptor 1 (TNFR1) 
and TNF-receptor 2 (TNFR2), as well as the Src homol-
ogy 2 domain containing RS-1, Akt S473, and T308, and 
the (Shc) adapter, are less phosphorylated and more insu-
lin resistant because of TNFα induction [129]. Impaired 
insulin metabolism results in dyslipidemia, which is 

Fig. 1  The active role of insulin in normoglycemia and normolipidemia. An overview of Interaction between impared glucose and lipids 
metabolisim inT2DM. (1) increased chylomicron production, (2) reduced catabolism of both chylomicrons and VLDLs (diminished LPL activity), 
(3)increased VLDL production (mostly VLDL1), (4) reduced LDL turnover (5) increased production of large VLDL (VLDL1) preferentially taken up 
by macrophages; LDL (qualitative and kinetic abnormalities): (6) low plasma adiponectin favouring the increase in HDL catabolism. (7) increased 
number of glycated LDLs, small, dense LDLs (TAG-rich) and oxidised LDLs, which are preferentially taken up by macrophages; (8) increased CETP 
activity (increased transfer of triacylglycerols from TAG-rich lipoproteins to LDLs and HDLs), (9) increased TAG content of HDLs, promoting HL 
activity and HDL catabolism, (10) İmpaired glucose metabolisim. (11) İmpaired de novo lipid metabolisim (Acetyl CoA and NADPH inhibit pyruvate 
dehydrogenase as a result of B oxidation. The lactate and alalnin thus formed increase hyperglycemia because of gluconeogenesis (ketone 
bodies formation increases) in the liver.) CE cholesterol ester, CETP cholesteryl ester transfer protein, HDLn nascent HDL, HL hepatic lipase, HSL 
hormone-sensitive lipase, LPL lipoprotein lipase, SR-B1 scavenger receptor B1, TAG​ triacylglycerol, PP protein phosphatase, PK protein kinase, NEFA 
non-esterified fatty acids DNL: de novo lipogenesis, LCAT​ Lesitin-kolesterol acil transferaz, G3P gliserol 3-fosfat protein kinase
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accompanied by increased apoB stability, MTP, and 
TNFα release [130]. LPL activity is increased by insu-
lin and decreased by insulin resistance. Chylomicron 
levels are typically higher in T2DMs with insulin resist-
ance because of both chylomicron overproduction and 
decreased catabolism. Additionally, through the activa-
tion of FOXO1, insulin resistance promotes the produc-
tion of apoC3, an inhibitor of LPL. The decreased VLDL 
catabolism is impacted by rising apoC3 serum levels and 
their impact on LPL metabolism [131].

The treatment of disorders of lipid and insulin metabo-
lism depends on maintaining the ideal dietary balance. 
Oleic acid consumption that is adequate and well-bal-
anced lowers leukotriene B4 levels and boosts insulin 
sensitivity, improving insulin sensitivity [60]. LDL-R 
activity declines and LDL turnover deterioration because 
of disruption of insulin metabolism. A decline in LDL B/E 
receptors may be the cause of impaired LDL catabolism 
(LDL receptor capable of binding apoB and apoE) [132]. 
In a study, insulin plays a significant role in the expres-
sion of LDL-R in  vivo and that, in patients with T2DM 
and poor metabolic control compared with non-diabetic 
patients, LDL-R expression decreases despite oral anti-
diabetic therapy and returns to normal after 3  months 
of insulin therapy [133]. While macrophages are essen-
tial for preserving normal tissue homeostasis, they also 
play a significant role in the emergence of low-grade 
inflammation. Insulin resistance results from low-grade 
inflammation, and low-grade inflammation develops 
and progresses because of both insulin resistance and 
hyperinsulinemia [134, 135]. The activation of mac-
rophages with the IL-4 and interferon-γ (INFγ) signaling 
pathways is influenced by insulin-activated IRS-MAPK-
PI3K and its modulating protein kinase B (PKB)/Akt 
kinase pathway [136]. IL-1, IL-2, IL-4, IL-5, IL-6, IL-12, 
IFN-γ,  TNF-α,  IL-10, and lipopolysaccharide are other 
proinflammatory cytokines that are linked to increased 
FoxO1 activity brought on by impaired insulin metabo-
lism. It also influences how macrophages are stimulated 
[137]. There is various oxidation levels in LDL particles in 
people with T2DM, from minimally oxidized LDL (MM-
LDL) to fully oxidized LDL (Ox-LDL). Due to its negative 
effects on -cells, an elevated Ox-LDL concentration is also 
linked, and this creates a vicious cycle, to an increased 
risk of DM. Initial oxidative changes in LDL lipids occur 
when apoB-100, also referred to as MM-LDL, is not pre-
sent. LDL lipids undergo oxidation at a later stage, where 
they turn cytotoxic and proapoptotic [138]. Because of 
impaired insulin metabolism, induced regulation of gly-
cated and oxidized LDLs (PI3K/PKB/PPARγ) results in 
the formation of lipid peroxidation products, cytokine 
release, ROS production, and inflammation [139, 140]. 
With their hypolipidemic effect, omega 3 FAs in the diet 

control how VLDLs are formed in the liver and lower 
lipogenesis by releasing less TAG [141]. EPA and DHA 
acids, two long chain omega 3 PUFA, are beneficial for 
controlling lipid metabolism. apo B is degraded and fatty 
acid β-oxidation is increased, while TRL apoB-48 secre-
tion and diacylglycerol acyltransferase, fatty acid syn-
thase, and de novo lipogenesis are inhibited, increased, 
and acetyl CoA carboxylase is carboxylated, respectively, 
by omega 3 PUFAs [142]. A randomized controlled study 
found that supplementing with -3 PUFAs (4  g/day, 46% 
EPA and 38% DHA) significantly decreased the release of 
TRL apoB-48 [143]. Another randomized controlled trial 
found that in people with impaired glucose regulation, 
omega 3 FAs or their combination (2-g fish oil (1000-mg 
EPA + 400  mg DHA)) significantly reduced inflamma-
tion, reduced insulin resistance, and improved glucose 
and lipid metabolism [144]. Through the inhibition of 
DNL, an increase in fatty acid oxidation, and a reduction 
in ApoB synthesis, dietary omega 3  PUFAs prevent the 
secretion of VLDL [[145]. Additionally, omega 3 PUFAs 
reduces the production of the proinflammatory cytokines 
IL-1, IL-6, TNF-α, and TNF- β in response to an inflam-
matory stimulus, indirectly regulating lipid metabolism 
[146]. Because they bind to PPARs, GPR40, and GPR120, 
omega 3 PUFAs have a direct impact on -cell function 
and increase insulin secretion by inhibiting the produc-
tion of inflammatory cytokines and eicosanoids and 
adipokines from adipose tissue [74]. According to the 
study, supplementing omega 3  PUFAs improves insulin 
sensitivity and glucose homeostasis regulation, thereby 
reducing the risk of developing T2DM [147]. White adi-
pose tissue (WAT) inflammation is increased by high-fat 
diet models, which also decreases insulin sensitivity and 
activates Toll-like receptor 4 signaling [148]. A systematic 
review of the evidence from HFD interventions found 
that administering HDF for 2  days to 6  weeks to both 
lean individuals and those with a fat intake of 45–83% as 
well as overweight or obese individuals increased fatty 
acid oxidation and maintained impaired insulin sensitiv-
ity [149]. In a rat experiment, giving non-glandular Goto-
Kakizaki rats HFD increased beta cell dysfunction [150].

Adipocytokines are signaling proteins that play key 
roles in the regulation of lipid and glucose metabolism, 
the neuroendocrine system, and the immune system, as 
well as energy homeostasis [151]. Adiponectin is also 
an anti-inflammatory adipokine that regulates the syn-
thesis of FAs, glucose uptake, and fatty acid β-oxidation 
[152]. The expression of adiponectin, its induction by 
insulin, and its modulation of β-cell function form the 
basis of the association between adiponectin and insulin 
resistance/hyperinsulinemia [153]. According to stud-
ies, high TNF-α  levels and hypoadiponectinemia both 
contribute to insulin resistance [154]. The study found 
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that people with T2DM have significantly lower serum 
adiponectin concentrations, which can be a therapeutic 
parameter for treating people with T2DM [155]. Serum 
HDL concentrations and circulating adiponectin lev-
els exhibit a strong positive correlation [156]. The major 
HDL ApoA-I and the ATP-binding cassette transporter 
A1 (ABCA1), which has the nuclear receptors liver X 
receptor and PPARγ, are produced more often in the 
liver when adiponectin is present. Additionally, the for-
mation of large HDL particles (HDL2) from small HDL 
particles, which is adiponectin’s mechanism for reducing 
HL activity, increases HDL-C (HDL3). In particular, tri-
glyceride hydrolysis in VLDL particles may be increased 
by adiponectin via upregulation of LPL, reducing tri-
glyceride transfer to HDL [157]. Adiponectin release is 
influenced by impaired insulin metabolism, which in 
turn affects lipid metabolism. The development of low 
HDL-C concentrations is influenced by insulin resistance 
through many mechanisms. First off, as IR’s influence on 
CETP, which controls insulin, declines, HDL-C levels 

rise, possibly because of decreased apo A-I production 
and secretion from the liver and intestine and increased 
HL. The formation of TG-rich lipoprotein-derived HDL 
particles is reduced, and HL formation is increased, 
because of decreased LPL activity. This is because less 
TG is hydrolyzed from chylomicrons and VLDL [158]. 
The pathogenesis of T2DM in relation to glucose and 
lidipi metabolism may also be influenced by adipokines 
like chemerin, leptin, fetuin-A, retinal binding protein 
4, vaspin apelin, nesfatin-1, and dipeptidyl peptidase-4 
[159]. Impaired insulin metabolism in T2DM increases 
lipogenesis, which disrupts lipid metabolism by decreas-
ing glycogen synthesis and glucose metabolism via the 
TCA cycle [160]. The effect of the regulation of impaired 
insulin on glucose and lipid metabolism is presented in 
Fig. 2.

Lipidomics, or, more generally, metabolomics, is sensi-
tive to various variables, including the host genotype, s 
gut microbiota, and diet [161]. The immune system and 
many other processes, including inflammation, incretin 

Fig. 2  Interaction between impared glucose and lipids metabolism in T2DM. An overview of Interaction between impared glucose and lipids 
metabolisim inT2DM. (1) increased chylomicron production, (2) reduced catabolism of both chylomicrons and VLDLs (diminished LPL activity), 
(3)increased VLDL production (mostly VLDL1), (4) reduced LDL turnover (5) increased production of large VLDL (VLDL1) preferentially taken up 
by macrophages; LDL (qualitative and kinetic abnormalities): (6) low plasma adiponectin favouring the increase in HDL catabolism. (7) increased 
number of glycated LDLs, small, dense LDLs (TAG-rich) and oxidised LDLs, which are preferentially taken up by macrophages; (8) increased CETP 
activity (increased transfer of triacylglycerols from TAG-rich lipoproteins to LDLs and HDLs), (9) increased TAG content of HDLs, promoting HL 
activity and HDL catabolism, (10) İmpaired glucose metabolisim. (11) İmpaired de novo lipid metabolisim (Acetyl CoA and NADPH inhibit pyruvate 
dehydrogenase as a result of B oxidation. The lactate and alalnin thus formed increase hyperglycemia because of gluconeogenesis (ketone 
bodies formation increases) in the liver.) CE, cholesterol ester, CETP cholesteryl ester transfer protein, HDLn nascent HDL, HL hepatic lipase, HSL 
hormone-sensitive lipase, LPL lipoprotein lipase, SR-B1 scavenger receptor B1, TAG​ triacylglycerol, PP protein phosphatase, PK protein kinase, NEFA 
non-esterified fatty acids, DNL de novo lipogenesis, LCAT​ Lesitin-kolesterol açil transferaz, G3P gliserol 3-fosfat protein kinase
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secretion, glucose homeostasis, production of short-
chain fatty acids (SCFAs), and bile acid metabolism, are 
regulated by the intestinal microbiota. Intestinal barrier 
integrity, pancreatic β-cell proliferation, and short-chain 
fatty acid synthesis, which supports insulin biosynthesis, 
can all be negatively impacted by the dysbiosis of the gut 
microbiota, which can disrupt glucose homeostasis and 
lead to the onset of T2DM [162, 163]. Different microor-
ganisms can produce different products in metabolomics 
and lipidomics because each has unique properties [164]. 
The development of insulin resistance and T2DM may be 
significantly influenced by FAs. FAs’ long-term impact 
on T2DM is not yet been fully understood, though. 
Although lipidomics is a relatively underutilized tool, it 
is used more frequently than genomics, transcriptom-
ics, and proteomics to advance our understanding of 
obesity and T2DM. A subfield of metabolomics called 
lipidomics may help us better understand how FAs and 
lipids, particularly insulin resistance and T2DM, con-
tribute to the emergence of health-related complications 
[165]. Research on T2DM-related gut flora disorders will 
advance with the integration of gut metabolomics and 
metagenomics [166].

Dietary lipids and lipidomics in T2DM via gut‑brain 
axis
Although dietary lipids and lipidomics play an important 
role in the development of type T2DM, their effect mech-
anisms have not yet been fully elucidated. However, the 
gut-brain axis plays a role in glucose homeostasis [167]. 
The gut-brain axis is a bidirectional communication path-
way. Signals from the brain communicate with the gut via 
the autonomic nervous system and the hypothalamic-
pituitary axis to regulate many physiological processes. 
Signals from the gut to the brain are mediated by vagal 
and spinal afferent neurons [168]. The gut-brain axis con-
tains numerous components, containing highly special-
ized cells responsible for transmitting the information. 
These are the enteroendocrine cells (EEC), central nerv-
ous system (CNS), enteric nervous system (ENS), vagus 
nerve, and gut microbiota. EECs are specialized trans-
epithelial cells found throughout the gut [169]. The ENS, 
the nervous system of the gastrointestinal tract, consists 
of various types of neurons, including intrinsic primary 
afferent and motor neurons [170]. It contains 200 to 400 
million neurons and enteric glial cells. It also extends 
throughout the gastrointestinal tract from the esopha-
gus to the anus [169]. Glucose homeostasis is provided 
via the CNS and ENS in the gut-brain axis. Ghrelin and 
glucagon-like peptide-1 (GLP-1) have emerged as the 
key factors that can transmit metabolic information to 
the brain and stimulate endogenous glucose production 
and usage [171]. The vagus nerve transmits information 

related to food intake to the brain to regulate energy and 
glucose homeostasis [169]. Therefore, it is thought that 
changes in the gut-brain axis may cause T2DM [170].

Gut microbiota is also considered an important part 
of the gut-brain axis, so the microbiota-gut-brain axis 
is emerging as a prominent factor nowadays [169]. Gut 
microbiota is a collection of more than 100 trillion 
microorganisms (bacteria, fungi, protozoa, and viruses) 
and their genomes found in the gastrointestinal tract 
[172]. Intestinal microorganisms colonize the gastro-
intestinal tract and contribute to homeostatic balance 
under healthy physiological conditions [173]. While the 
host provides a nutrient-rich environment for micro-
organisms, microorganisms also affect host physiology, 
immunology, and metabolism [174]. Gut microbiota is 
the main mediator of the gut-brain axis in the regulation 
of glucose homeostasis. It contributes to glucose homeo-
stasis by regulating the immune system, inflammatory 
response, modulation of incretin secretion, production 
of SCFA, and metabolism of bile acids [171]. Gut micro-
biota produces several metabolites that directly and indi-
rectly affect the gut-brain axis. GLP-1 is an endocrine 
factor that may be involved in the control of the gut-
brain axis by the gut microbiota [170]. Cani et al. (2006) 
demonstrated that the modulation of gut microbiota 
improves glucose metabolism via a GLP-1-dependent 
mechanism [175]. Gut microbiota can affect serotonin 
(5-HT) production by EECs, altering ENS vagal affer-
ent activation. Bile acids can also alter the expression of 
Takeda-G-protein-receptor-5 (TGR5) and affect intesti-
nal peptide release from EECs. SCFAs can alter nutrient 
receptor expression and intestinal peptide production by 
EECs or can directly activate vagal afferents. Lipopoly-
saccharides (LPS), a products of pathogenic microorgan-
isms, can impair gut-brain signaling by preventing the 
activation of vagal afferents or the ENS [168].

Microbiota dysbiosis is the disruption of intestinal 
homeostasis by altering the composition of the gut 
microbiota [172]. A direct causal relationship between 
gut dysbiosis and the development of has not been 
identified. However, immunomodulatory mechanisms 
mediated by microbiota-derived lipids have been dis-
covered. The most well-known is the release of LPS 
and decreased SCFA production, which have pro-
inflammatory effects. Other suggested mechanisms 
include altered bile acid metabolism, altered secretion 
of incretin hormones such as GLP-1, altered circulat-
ing branched-chain amino acids, and impaired adi-
pose tissue, liver, or skeletal muscle functions [163, 
176]. This results in increased colonic permeability, 
colon, liver, and adipose tissue inflammation, impaired 
insulin secretion, the occurrence of insulin resist-
ance, impaired glucose and lipid metabolism, and the 
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development of T2DM [163]. Microbiota dysbiosis 
in T2DM is characterized with decreased numbers of 
SCFA-producing gram-positive bacteria and increased 
numbers of LPS-producing gram-negative opportunis-
tic pathogens [176]. In a recent study, T2DM patients 
exhibited a higher Firmicutes/Bacteroidetes ratio 
than healthy individuals. Bacterial diversity in the gut 
microbiota was reduced in patients with prediabetes 
or T2DM compared with healthy individuals [163]. In 
another study, it was observed that T2DM patients had 
a decreased concentration of Faecalibacterium praus-
nitzii. It has anti-inflammatory properties, promotes 
the proliferation and growth of epithelial cells and 
increases the synthesis of tight junction proteins. Rumi-
nococcus bromii, which contributes to the production 
of SCFAs, was also reduced in T2DM patients [177]. A 
study showed that the colonization of germ-free (GF) 
mice with healthy gut microbiota caused the restora-
tion of neuronal GLP-1 and ENS signaling pathways in 
the gut. However, it was indicated that this effect was 
eliminated by colonization with the diabetic gut micro-
biota [178]. Another study showed that transplanta-
tion of fecal microbiota from lean donors to individuals 
with metabolic syndrome caused improved insulin sen-
sitivity in the recipients. This suggests that healthy gut 
microbiota can improve metabolic outcomes [179]. 
Furthermore, the improvement in glucose homeosta-
sis is associated with GLP-1R signaling, indicating that 

prebiotic-induced changes in the microbiota restore the 
gut-brain axis [175]. Promoting the growth of beneficial 
bacteria using indigestible carbohydrates can improve 
glucose tolerance [180]. The gut-brain axis pathways 
related to T2DM was shown in Fig. 3.

Dietary lipids in T2DM via gut‑brain axis
Dietary lipids affect the gut microbiota composition, 
metabolic-end products, other enzymatic markers, 
and all microbiota-related diseases [181]. However, the 
mechanisms of the interplay between dietary lipids and 
gut microbiota in glucose homeostasis have not been 
well defined. Many dietary FAs are absorbed in the small 
intestine; however, some of them directly affect the 
colonic microbiota composition. It has been shown that 
gut microbiota can affect glucose and lipid metabolism 
and may even cause T2DM by disrupting the balance 
between pro-inflammatory and anti-inflammatory effects 
in the liver. A diet rich in saturated FAs can adversely 
affect the microbiota composition and reduce insulin 
sensitivity [182]. A high-fat diet increases the amount of 
Firmicutes and decreases the amount of Bacteroidetes, 
which may lead to the development of T2DM [183]. Con-
versely, a diet high in omega 3 FAs and MUFA may pro-
mote a favorable alteration of microbiota composition in 
T2DM patients [87, 184]. Table 2 summarizes the role of 
dietary lipids on gut microbiota and T2DM.

Fig. 3  Gut-brain axis pathways related to T2DM. ENS enteric nervous system, SCFA short-chain fatty acid, LPS lipopolysaccharide



Page 13 of 29Ağagündüz et al. Journal of Translational Medicine          (2023) 21:240 	

High fat
High-fat diets cause decreased gut microbiota diversity, 
increased number of gram-negative bacteria, increased 
LPS translocation, increased intestinal permeability, sys-
temic inflammation, and impaired immune system [184].

High-fat diets cause the loss of beneficial microorgan-
isms and disrupt the symbiotic relationship between 
the gut microbiota and the host [185]. High-fat diets 
are associated with lower Bifidobacterium species and 
higher plasma LPS concentration. Likewise, it has been 
observed that the growth of Desulfovibrio bacteria, which 
are gram-negative, opportunistic pathogens and pro-
duce LPS, during high-fat feeding in mice [148]. LPS, 
also known as endotoxin, is a structural compound in the 
outer membrane of gram-negative bacteria [103]. LPS 
initiates low-grade inflammation by activating Toll-Like 
Receptor 4 (TLR-4), which is expressed in macrophages, 

hepatocytes, and adipocytes [172]. This mechanism 
includes several steps. In the first step, LPS binds to 
lipopolysaccharide-binding proteins (LBP) and interacts 
with a cluster-of-differentiation 14 (CD14), which is a 
glycosyl-phosphatidylinositol-anchored protein. In the 
second step, TLR-4 is activated, triggering a signaling 
cascade that ends with phosphorylation and activation of 
focal adhesion kinase (FAK) in enterocytes. In the third 
step, FAK increases intestinal permeability by regulat-
ing IL-1R-associated kinase 4 (IRAK4)-related myeloid 
differentiation primary response gene 88 (MyD88) acti-
vation. In the final step, LPS translocates into the sys-
temic circulation and causes the release of interleukins. 
IL-6 causes a low-grade inflammation that affects insulin 
signaling and triggers insulin resistance. This step con-
stitutes the onset of pancreatic β-cell dysfunction [177]. 
Additionally, LPS stimulates the innate immune signaling 

Table 2  Role of dietary lipids in gut microbiota in T2DM

Dietary lipids Effects on the gut microbiota Outcomes of glucose homeostasis References

High fat Gut microbiota diversity ↓
Gram-negative bacteria ↑
Bifidobacterium ↓
Desulfovibrio ↑
Firmicutes/Bacteriodetes ratio ↑
Intestinal mucus thickness ↓
LPS translocation ↑
Intestinal permeability ↑
Metabolic endotoxemia ↑
Proinflammatory cytokines ↑
Low-grade inflammation ↑

GLP-1 release ↓
Pancreatic β-cell function ↓
Hyperinsulinemia ↑
Hyperglycemia ↑
Glucose intolerance ↑
Insulin resistance ↑
T2DM ↑

[146, 167, 178, 182, 183, 187–189, 197]

Saturated fatty acids Gut microbiota diversity ↓
Firmicutes ↑
Bacteroidetes ↓
Proteobacteria ↑
Bifidobacterium ↓
Akkermansia muciniphila ↓
Lactobacillus ↓
Intestinal mucus thickness ↓
Intestinal permeability ↑
Butyrate production ↓
Systemic inflammation ↑

Insulin sensitivity ↓
Glucose intolerance ↑
Insulin resistance ↑
T2DM ↑

[179, 186, 198–201]

Omega 3 fatty acids Gut microbiota diversity ↑
Enterobacteriaceae ↓
Bifidobacterium ↑
Akkermansia ↑
Firmicutes ↓
Firmicutes/Bacteriodetes ratio ↓
LPS translocation ↓
Proinflammatory cytokines ↓
Intestinal inflammation ↓
SCFA production ↑
Metabolic endotoxemia ↓

Insulin resistance ↓
T2DM ↓

[85, 179, 203–206, 208, 209]

Omega 6 fatty acids Gut microbiota diversity ↓
Firmicutes ↑
Actinobacteria ↑
Proteobacteria ↑
Bacteroidetes ↓
SCFA production ↓
Secondary bile acid production ↑

Glucose intolerance ↑
T2DM ↑

[199, 210, 211]
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cascade by enhancing the expression of inducible nitric 
oxide synthase (iNOS), which is an effector of the innate 
immune system and synthesizes nitric oxide. iNOS dis-
rupts insulin receptor substrate-1 (IRS-1) expression. 
Thus, this can result in hyperinsulinemia, insulin resist-
ance, and T2DM [172].

A healthy intestinal epithelium acts as a barrier to pre-
venting the migration of bacterial-derived factors and 
prevents LPS from entering the systemic circulation 
[103]. However, high-fat diets disrupt intestinal bar-
rier function, allowing LPS translocation. This condi-
tion, called metabolic endotoxemia, can cause decreased 
pancreatic β-cell function, insulin resistance, and T2DM 
[184].

Animal studies have revealed that long-term high-fat 
feeding is associated with increased circulating LPS [186, 
187]. Cani et  al. (2007, 2008) reported that endotoxins 
were approximately 1.5 times higher in lean and obese 
mice fed a high-fat diet (72% of total energy) than in mice 
fed a normal diet for four weeks [180, 188]. In previous 
studies, mice fed a high-fat diet developed hyperglyce-
mia, hyperinsulinemia, glucose intolerance, and insulin 
resistance, which are associated with decreased intestinal 
mucus thickness and increased intestinal permeability 
[180, 189, 190]. In an animal study, mice were fed a low-
fat (10% of total energy) or high-fat (60% of total energy) 
diet for eight weeks. High-fat diets increased proinflam-
matory cytokines, plasma endotoxin levels, and Firmi-
cutes/Bacteriodetes ratio, resulting in intestinal dysbiosis. 
Additionally, fasting blood glucose and insulin concen-
trations were higher in high-fat-fed mice than in low-fat-
fed mice [191]. Richards et al. (2016) showed that GLP-1 
release was reduced in mice fed a high-fat diet (60% of 
total energy) for two weeks. They also found that the 
expression of L-cell-specific genes decreased in mice fed 
a high-fat diet for sixteen weeks. This suggests a disrup-
tion in enteroendocrine cell function and gut-brain axis 
[169].

High-fat diets have been associated with increased LPS 
levels in humans [192, 193]. Ghanim et al. (2009) showed 
that a high-fat and high-carbohydrate meal increased the 
LPS levels and TLR-4 expression [194]. Liang et al. (2013) 
reported that high LPS levels were negatively associated 
with skeletal muscle insulin sensitivity in obese individu-
als with or without T2DM [195]. A study conducted in 
humans found that endotoxin levels increased in indi-
viduals with glucose intolerance and T2DM (respectively, 
20% and 125%) [193]. Gomes et al. (2017) reported that 
LPS levels in patients with diabetes were 66.4% higher 
than in nondiabetic patients. Additively, it was shown 
that TLR-4 expression was higher in patients with dia-
betes compared to nondiabetic patients [196]. It was evi-
denced that mice lacking CD14, a co-receptor of TLR-4, 

were more hyperinsulinemia-resistant and insulin resist-
ance induced by a high-fat diet or LPS [188]. Therefore, 
deletion or mutation of the gene encoding TLR-4 may 
protect against fatty acid-induced insulin resistance and 
T2DM [197, 198]. Hulston et  al. (2015) reported that a 
high-fat diet (65% of total energy) impaired insulin sen-
sitivity in healthy and non-obese individuals. Besides, 
probiotic supplementation (Lactobacillus casei) for four 
weeks maintained normal insulin sensitivity [199]. Ani-
mal and human studies indicate that high-fat diets may 
cause the development of T2DM by affecting the gut-
brain axis and gut microbiota.

Saturated fatty acids
SFAs have been associated with increased non-commen-
sal bacteria (Firmicutes and Proteobacteria), intestinal 
barrier dysfunction, decreased gut microbiota diversity, 
thinning of the mucus layer, decreased butyrate-pro-
ducing bacteria, chronic inflammation, and develop-
ment of T2DM [181]. addition SFAs cause ER stress. ER 
stress-associated systemic inflammation also induces dis-
ruptions in insulin signaling pathways. Systemic inflam-
mation is considered a precursor to the development and 
progression of insulin resistance [172].

Animal studies have found that a high-fat diet increased 
Firmicutes and decreases Bacteroidetes in the gut micro-
biota. This is associated with insulin resistance resulting 
from intestinal inflammation [188, 200, 201]. An animal 
study showed that a saturated fat diet increased insulin 
resistance, intestinal permeability, and mesenteric fat 
inflammation [202]. Caesar et  al. (2015) compared rats 
fed a high-fat diet rich in SFAs as lard to an isocaloric 
high-fat diet rich in omega 3 FAs as fish oil. It was found 
that Akkermansia muciniphila, Lactobacillus, and Bifido-
bacterium, which are beneficial bacteria, were less in the 
microbiota of the mice fed a high-fat lard diet. Moreover, 
a high-fat lard diet activates TLR-4 signaling, reducing 
insulin sensitivity and increasing inflammation in white 
adipose tissue [203]. In an animal study comparing lard-
based and palm oil-based diets, lard-based diets were 
associated with impaired glucose tolerance. Lard-based 
diets also alter gut microbiota composition and function, 
acting on lipid metabolism [204]. Although there is a lim-
ited number of human intervention studies on SFAs, data 
from animal studies suggest that SFAs causes intestinal 
dysbiosis, leading to insulin resistance and T2DM.

Omega 3 fatty acids
Omega 3 FAs can prevent insulin resistance and T2DM 
development by increasing the diversity of the gut micro-
biota, reducing LPS and proinflammatory cytokines, and 
increasing SCFA production. Omega 3 FAs may exert 
beneficial effects on the gut microbiota by reducing the 
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proliferation of Enterobacteriaceae, increasing the pro-
liferation of Bifidobacterium, and subsequently inhibit-
ing the inflammatory response associated with metabolic 
endotoxemia [205]. Besides, it was reported that a high 
intake of omega 3 FAs was associated with an increased 
translocation of commensal bacteria (Bifidobacterium 
and Akkermansia) and a decreased Firmicutes/Bacte-
roidetes ratio [181]. Omega 3 FAs inhibit LPS-induced 
pro-inflammatory cytokine production in human blood 
monocytes and attenuate intestinal inflammation [206]. 
However, omega 3 fatty acid supplementation has not yet 
been demonstrated to affect insulin metabolism and gut 
microbiota [87].

Patterson et  al. (2014) showed that a flaxseed/fish oil 
diet for sixteen weeks significantly increased the intesti-
nal population of Bifidobacterium in mice [207]. Admin-
istration of omega 3 FAs to Salmonella-infected mice 
increased the amount of SCFAs, altered the gut microbi-
ota, and supported host resistance to pathogens [208]. In 
a prospective study, thirty-five patients with T2DM were 
randomly assigned to a standard T2DM diet group and 
a standard T2DM diets enriched with 100 g of sardines 
group. There was no significant difference between the 
glycemic controls of the patients in either groups. Plasma 
insulin and insulin resistance (HOMA-IR) decreased 
from baseline in both groups. Firmicutes decreased in 
both groups after six months of intervention. Patients 
fed a standard T2DM diet enriched with sardines had a 
decreased Firmicutes/Bacteroidetes ratio [87]. The die-
tary intake of fish oil has increased the diversity of intes-
tinal flora more than sunflower oil [209]. A diet high in 
omega 3 FAs has been observed to increase the num-
ber of several SCFA-producing bacteria in the human 
gut microbiota, including Blautia, Bacteroides, Rose-
buria, and Coprococcus [210]. An animal study showed 
that alpha-linolenic acid-rich flaxseed oil significantly 
reduced fasting blood glucose, HbA1c, LPS, IL-1β, TNF-
α, and IL-6 levels. Additionally, flaxseed oil interven-
tion increased acetate, propionate and butyrate levels. 
Flaxseed oil eased T2DM by suppressing inflammation 
and regulating the gut microbiota. Firmicutes and Firmi-
cutes/Bacteroidetes ratios decreased, while Bacteroidetes 
increased [211]. All these studies suggest that omega 3 
FAs reduces the risk of T2DM development by increas-
ing SCFA production. However, data from both animal 
models and human interventions are not enough and 
uncertain.

Omega 6 fatty acids
Animal studies have shown that high-fat diets contain-
ing large amounts of omega 6 FAs increase Firmicutes, 
Actinobacteria, and Proteobacteria and decrease Bacte-
roidetes [201, 212]. Thus, omega 6 FAs may cause T2DM, 

raising intestinal dysbiosis. Miao et  al. (2020) showed 
that both dietary omega 6 FAs and circulating omega 6 
FAs (gamma-linolenic acid) could increase the risk of 
T2DM through a mechanism that alters the diversity and 
composition of the gut microbiota. Additionally, gamma-
linolenic acid was inversely related to butyrate-produc-
ing bacteria in this study. Omega 6 FAs can increase 
the secretion of bile acid, which may act as an impor-
tant signaling molecule linking omega 6 FAs and the gut 
microbiota. Bile acids can be metabolized in the gut to 
deoxycholic acid, which can disrupt hepatic ER stress. 
Therefore, it can disrupt glucose homeostasis and cause 
T2DM [213]. Although omega 6 FAs may play a role in 
the development of T2DM by the microbiota-gut-brain 
axis, more animal and human studies are needed in this 
field.

Lipidomics in T2DM via gut‑brain axis
Lipidomics plays a major role in glucose homeostasis and 
the development of T2DM. It has been shown that the 
gut microbiota composition is altered in individuals with 
T2DM. However, the relationship between gut microbi-
ota and lipidomics needs to be clarified in T2DM [214]. 
Animal studies suggest that the gut microbiota may mod-
ulate the lipidomics of the host. Homeostasis between 
lipidomics and gut microbiota is also known to affect 
the metabolic state of the host [204]. Furthermore, gut 
microbiota can synthesize lipids and their metabolites 
that may impact human health. Changes in gut micro-
biota and host lipidome appear to be associated with the 
development of T2DM [215]. However, there are few 
studies on lipidomics and its relationship to the gut-brain 
axis in T2DM [216].

Sphingolipids
Sphingolipids are bioactive lipids that regulate cellular 
processes such as cell differentiation, proliferation, apop-
tosis, and inflammation. Sphingolipids can be obtained 
either by diet or de novo synthesis [215]. However, it has 
been reported recently that the commensal gut micro-
biota (Bacteroides, Prevotella, and Porphyromonas) also 
produces sphingolipids. Ceramide phosphoinositol and 
deoxy-sphingolipids are synthesized by gut microbiota. 
These sphingolipids can exacerbate intestinal inflamma-
tion and regulate the amount of ceramide in animals. 
Sphingolipids may be an early marker of impaired glu-
cose metabolism, but there are limited human studies 
with conflicting results [217].

Ceramides are precursors to sphingolipids [218]. Cera-
mides may be associated with insulin resistance because 
they may interfere with insulin signaling. It has been 
reported that ceramide levels are increased in serum, 
liver, and skeletal muscle in T2DM patients. Ceramides 
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can trigger adipose tissue inflammation and diabetic 
pathology, activating pro-inflammatory cytokines [219]. 
In another study, ceramides were found to be positively 
associated with HOMA-IR in patients with T2DM [220]. 
Holland et  al. (2011) showed that ceramides mediated 
saturated FAs-induced insulin resistance by TLR-4 sign-
aling in skeletal muscle [218]. In 435 American-Indian 
participants in the Strong Heart Family Study, higher 
levels of ceramides, including stearic acid, arachidic acid, 
and behenic acid, were associated with T2DM [221]. In 
another study conducted in China, ceramides (18:1/18:1, 
18:1/20:0, 18:1/20:1, 18:1/22:1), saturated sphingomyelins 
(C34:0, C36:0, C38:0, C40:0), unsaturated sphingomyelins 
(C34:1, C36:1, C42:3), hydroxyl-sphingomyelins (C34:1, 
C38:3) and hexosylceramide (d18:1/20: 1) was associated 
with T2DM. This study demonstrated that high levels of 
ceramides and sphingomyelins accompany pancreatic 
β-cell dysfunction [23].

Many lipidomics other than ceramides has been 
defined in T2DM patients. Thirty-five newly diag-
nosed T2DM patients had higher levels of sphingomy-
elins (d18:1/18:0, d18:1/18:1), ceramides (d18:1/18:0, 
d18:1/16:0, d18:1/20:0, d18:1/24:1), lysophosphati-
dylcholines (15:0, 16:0, 17:0), phosphatidylcholines 
(19:0/19:0), lysophosphatidylethanolamines (18:0), and 
phosphatidylethanolamines (16:0/22:6, 18:0/22:6) than 
the control group. Conversely, phosphatidylethanola-
mines (17:0/17:0) and phosphatidylcholines (18:1/18:0) 
were lower in T2DM patients. Levels of serum sphin-
gomyelins (d18:1/18:0, d18:1/18:1), lysophosphatidyl-
choline (16:0), and lysophosphatidylethanolamines 
(18:0) decreased after administration of GLP-1 analog 
[222]. Floegel et  al. (2013) associated diacyl-phos-
phatidylcholines C32:1, C36:1, C38:3, and C40:5 lev-
els with an increased risk of T2DM. On the contrary, 
sphingomyelin C16:1, acyl-alkyl-phosphatidylcholines 
C34:3, C40:6, C42:5, C44:4, C44:5 and lysophosphati-
dylcholine C18:2 were associated with a reduced risk of 
T2DM [223]. Lysophosphatidylcholine, phosphatidyl-
choline, phosphatidylethanolamine, and diacylglycerol 
have been associated with an increased risk of T2DM. 
Unlike, sphingomyelins have been related to a reduced 
risk of T2DM [26]. In the Metabolic Syndrome in Men 
(METSIM) cohort consisting of 10.197 men in total, 
it was found that levels of triacylglycerol and di-acyl-
phospholipids were higher in T2DM patients [224]. 
Lysophosphatidylcholine was determined to stimu-
late glucose uptake in 3T3-L1 adipocytes in a dose- 
and time-dependent manner [225]. Prada et  al. (2020) 
informed a negative correlation between lysophos-
phatidylcholine and T2DM risk in females. There was 
a positive correlation between lysophosphatidylcholine 

and T2DM risk in males. In addition, cholesteryl esters, 
monoacylglycerols, and diacylglycerols showed an 
inverse association with T2DM. A positive correlation 
was found between FFA and T2DM risk [226].

Although sphingolipids seem to be related to glucose 
metabolism, the effect of the gut-brain axis on this rela-
tionship is not yet known. Liu et  al. (2019) presented 
that gestational diabetes was strongly associated with 
a specific gut microbiota composition and lipidomics. 
This study showed that Faecalibacterium and Prevotella 
species were related to lysophosphatidylethanolamine 
and phosphatidylglycerol [214]. Further and larger 
studies are required to investigate the effect of the gut-
brain axis on lipidomics and glucose metabolism.

Bile acids and derivatives
Primary bile acids are synthesized from cholesterol in 
hepatocytes [168]. Primary bile acids are conjugated 
with glycine or taurine to form bile salts. About 95% of 
bile acids are reabsorbed in the ileum into the hepatic 
portal vein and then into the liver sinusoids. About 
400–600  mg of bile salts reach the colon. They are 
converted to secondary bile acids such as deoxycholic 
acid, lithocholic acid, and ursodeoxycholic acid by the 
colonic microbiome [176]. However, secondary bile 
acids are produced or biotransformed by the gut micro-
biota. Conjugated primary bile acids are deconjugated 
by Bacteroides, Clostridium, Lactobacillus, and Bifido-
bacterium species. The gut microbiota plays an impor-
tant role in bile acid metabolism. In addition, both 
primary and secondary bile acids affect host metabo-
lism [215]. Bile acids regulate glucose homeostasis, 
lipid metabolism, and gut microbiota [227].

It has been suggested that secondary bile acids may 
cause T2DM through the gut microbiota. Taurine-
conjugated bile acids have been associated with insulin 
resistance in nondiabetic individuals. They have been 
significantly higher in patients with T2DM than those 
without T2DM [228, 229]. In a study, insulin resistance 
was associated with increased levels of secondary bile 
acids [230]. In addition, deoxycholic acid, a second-
ary bile acid, was positively correlated with Firmicutes 
levels [231]. In particular, a high-fat diet alters the gut 
microbiota, increasing intestinal, brain, and blood lev-
els of taurine-conjugated bile acids such as taurocheno-
deoxycholic acid, a Farnesoid X receptor (FXR) agonist. 
Increased taurochenodeoxycholic acid may cause insu-
lin resistance by increasing TCDCA-FXR signaling 
[232]. There is evidence that microbiota dysbiosis can 
cause T2DM by increasing secondary bile acids; how-
ever further animal and human studies are required.
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Endocannabinoids
The endocannabinoid system consists of lipid-derived 
endogenous ligands, enzymes involved in their synthesis 
and degradation, and cannabinoid receptors [215].

Gut microbiota has close linked to the endocannabi-
noid system. It has been suggested that the gut micro-
biota and endocannabinoids may communicate with 
signaling pathways involving the gut-brain axis for home-
ostasis of energy, lipid, and glucose metabolism. N-acyl 
phosphatidylethanolamine-specific phospholipase D 
regulates lipid absorption and metabolism. Its disruption 
causes insulin resistance, glucose tolerance, and intesti-
nal dysbiosis [215]. Muccioli et  al. (2010) demonstrated 
a relationship between the gut microbiota and the endo-
cannabinoid system that modulates host adipogenesis 
[233]. Everard et  al. (2013) showed that Akkermansia 
muciniphila intervention in obese mice increased intes-
tinal levels of 2-oleoylglycerol, 2-arachidonoylglycerol, 
and 2-palmitoyl-glycerol [189]. More recently, it was 
reported that the endocannabinoid-like molecule N-acyl-
3-hydroxypalmitoyl-glycine was synthesized by Bacte-
roides species [234]. These studies suggest that the gut 
microbiota generates lipidomics that influences signaling 
pathways of host metabolism. The mechanisms related 
to the gut microbiota that mediate the increase in intes-
tinal permeability have not been fully elucidated. How-
ever, overactivation of the endocannabinoid system may 
play an important role in intestinal permeability [235]. In 
addition, endocannabinoids can affect the composition 
of the gut microbiota. Deletion of the endocannabinoid-
synthesizing enzyme in adipose tissue may cause obesity, 
glucose intolerance, altered lipid metabolism, and adi-
pose tissue inflammation [236].

Specialized pro‑resolving mediators
Specialized pro-resolving mediators (SPMs) are synthe-
sized from AA, eicosapentaenoic acid, docosahexaenoic 
acid, and docosapentaenoic acid during inflammation. 
These endogenous lipids promote the clearance of patho-
genic bacteria and macrophages associated with micro-
biota dysbiosis. They also enhance tissue regeneration by 
increasing the secretion of anti-inflammatory mediators 
and inhibiting proinflammatory cytokines. These lipid 
mediators play a crucial role in eliminating inflammation, 
maintaining intestinal integrity, and preventing T2DM 
[181].

Short chain fatty acids
SCFA, which are organic FAs containing 2–6 carbon 
atoms, are synthesized in the host’s colon by the micro-
biota following fermentation of indigestible dietary fib-
ers, proteins, and glycoproteins. Acetate, propionate, and 
butyrate account for 95% of SCFAs present in the colon 

[170]. SCFA-producing commensal bacteria include 
Lachnospira, Akkermansia, Bifidobacterium, Lactobacil-
lus, Ruminococcus, Roseburia, Clostridium, Faecalibac-
terium, and Dorea. SCFAs, which are used as substrates 
for energy production, lipogenesis, gluconeogenesis, and 
cholesterol synthesis, affect host metabolism. SCFAs act 
as signaling molecules by stimulating G protein-coupled 
receptors GPR43/FFAR2 and GPR41/FFAR3. GPR43 
increases GLP-1 expression by affecting L cells. Acetate 
regulates glucose and lipid metabolism via GPR43 [215]. 
Acetate and propionate exert anti-inflammatory effects 
by FFAR2. This receptor signaling results in the inhibition 
of NF-kB nuclear translocation and decreased expression 
of proinflammatory cytokines such as TNF-α, IL-1, and 
IL-6. Preventing inflammation can also reduce the risk of 
T2DM [177].

Microbiota dysbiosis can cause T2DM development 
by decreasing SCFA concentrations [237]. The compo-
sition of the gut microbiota and diet affect the type and 
amount of SCFA. High-fat diets and some FAs can result 
in decreased SCFA production and increased harm-
ful secondary metabolite production. Increased intesti-
nal permeability can cause low-grade inflammation and 
metabolic endotoxemia. Metabolic endotoxemia can 
also cause insulin resistance, β-cell dysfunction, hyper-
glycemia, and T2DM [238]. High-level endotoxemia 
has been found to increase TNF-α and IL-6 concentra-
tions and insulin resistance [239]. Recent evidence sug-
gests that dietary lipids and lipidomics can cause T2DM 
by reducing SCFA production. However, the effect of 
SCFAs on the pathophysiology of T2DM has generally 
been observed in animal studies, but these results should 
be confirmed in larger, long-term studies with clinical 
endpoints.

Nutritional strategies modulating gut microbiota 
through lipidomics for T2DM
To promote health, it is now essential to understand 
how nutrients impact metabolic control [240]. It is well 
known that a wide range of exogenous and intrinsic fac-
tors affect the intestinal microbiota. The human gut 
microbiota can be shaped and modified by a number of 
factors, but diet is one of the most potent [241]. Food is 
the primary source of energy for microorganisms in the 
gut, and changes in the host’s diet can result in rapid 
changes in the microbiota’s composition [241, 242]. Up 
to 57% of changes in the gut microbiota may be attrib-
uted to dietary factors, but host genes are only thought to 
be responsible for 12% or less of those changes [243]. To 
combat noncommunicable diseases like T2DM, includ-
ing understanding how diet and dietary nutrient intake 
affect the gut microbiome, is crucial [244]. This makes it 
crucial to identify the dietary components that influence 
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the gut microbiome, where dietary lipids play a signifi-
cant role [181, 244]. Roles and mechanisms of lipidomics 
in T2DM were discussed in the sections before this one. 
It is possible that T2DM can be prevented and treated 
by modulating lipidomics, according to this. A key role 
in the modulation of lipidomics is played by nutritional 
status and dietary nutrients. It is stated that especially 
dietary lipid intake may have anti-diabetic effects with 
the changes it has created on the composition of the 
intestinal microbiota through metabolic end products 
[211, 245–247]. The possible roles that some nutritional 
strategies may play in T2DM through lipidomics and gut 
microbiota were shown in Fig. 4.

Fatty acids
Omega 3 fatty acids
High consumption of fish and seafood is associated 
with a significantly lower risk of T2DM [248, 249]. It is 
reported that high omega 3 FAs content may be effective 
in this situation through different mechanisms such as 
anti-inflammatory and antioxidant [249–251]. Another 
potential mechanism is that it lowers the risk of devel-
oping T2DM by influencing the intestinal microbiota 
through lipidomics, which is a substance produced in the 
intestine as a result of the metabolism of omega 3 FAs 
[248, 252].

It is known that the intestinal microbiota can be mod-
ulated through SCFAs, and in this way, the microbial 
diversity of the intestine can be changed [253]. SCFAs 
increase insulin signaling and insulin sensitivity with 
their curative effects on systemic inflammation and 
endotoxemia by decreasing intestinal permeability [248]. 
Additionally, SCFA enhances glucose uptake in skeletal 
muscle and adipose tissue by boosting GLUT4 expres-
sion via AMP Kinase (AMPK) activity [254]. Bacteria that 
produce butyric acid contribute significantly to main-
taining health by converting unfermented dietary fibers 
into SCFAs such as butyrate [248]. It has been reported 
that supplementation of omega 3 FAs helps modulate the 
intestinal microbiota by increasing the level of SCFAs in 
the intestine [252]. In addition, a diet rich in omega 3 FAs 
is noted to significantly increase butyrate-producing bac-
teria, including Blautia, Bacteroides, Roseburia, and Cop-
rococcus [248, 252].

Another of the main mechanisms of the protective 
function of omega 3 FAs is their influence on the lipi-
dome, including eicosanoids and membrane lipids [255]. 
Yan et  al. (2020) found that omega 3 fatty acid supple-
mentation in healthy individuals added glycerophos-
pholipidome levels [255]. In a study carried out with 
non-obese T2DM rats and Wistar rats, it was detected 
that dysbiosis occurred and higher glycerophospholipids 
were present in non-obese T2DM rats when compared 

Fig. 4  Some nutritional strategies in T2DM considering lipidomics and gut microbiota interaction
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with Wistar rats. Another outcome of the study was that 
omega 3 supplementation significantly affected plasma 
glycerophospholipids [256]. Considering their effects on 
the lipidome, these data suggest that omega 3 FAs may 
influence the intestinal microbiota and subsequently 
T2DM. In research, the effects of supplements contain-
ing varying doses of EPA + DHA and dietary sources of 
omega 3 such as fish and flaxseed oil on intestinal micro-
biota were investigated. The research outcomes are influ-
enced by sample size, methodological variations, the 
study group, and the dose and amount of the supplement 
or nutritional source utilized.

Omega 6 fatty acids
Vegetable oils, nuts, and seeds are the main dietary 
sources of omega 6 PUFAs. The essential omega 6 FAs in 
the diet are LA and AA. LA makes up the majority (about 
90%) of dietary PUFAs, while AA has a lower intake 
[257]. In the body, the majority of LA is transformed into 
AA [258]. For several enzymes, AA serves as a substrate 
[181]. Different biosynthetic pathways (i.e., cyclooxyge-
nases (COX), lipoxygenases (LOX), or cytochrome P450) 
of these enzymes are used to produce various eicosa-
noids, including various prostaglandins, thromboxanes, 
and leukotrienes [259]. According to recent research, 
the majority of immune cells and intestinal epithelial 
cells synthesize eicosanoids [181, 260]. Additionally, it is 
claimed that by metabolizing AA, intestinal bacteria can 
produce eicosanoid metabolites [181]. Particularly, it has 
been reported that proteobacterial lipoxygenases can 
generate a variety of prostaglandins in the intestine by 
fermenting other bacterial byproducts, primarily SCFAs 
[181, 261].

Cyclooxygenase pathway metabolites of AA, espe-
cially prostaglandins, increase the risk of T2DM by caus-
ing pancreatic β-cell destruction and β-cell dysfunction 
[262]. In line with such data, dietary omega 6 FAs may be 
considered to role in the development of T2DM through 
enzyme systems and eicosanoid metabolites produced as 
a result of their metabolism by intestinal bacteria.

Dietary sterols
Sterols are lipophilic substances that can be divided into 
synthetic sterols, phytosterols (derived from plants), 
zoosterols (derived from animals), and mycosterols 
(derived from fungi) [263]. About 30–60% of dietary 
cholesterol is absorbed, while the rate of absorption for 
plant sterols is much lower (2–3%) [264]. This means that 
unabsorbed sterols can reach the colon and be further 
processed by the gut microbiota [181, 264]. Among the 
common phytosterols, β-sitosterol, stigmasterol, campes-
terol, and brassicasterol can be found in both plant cells 
and cytoplasmic membranes of many fruits, vegetables, 

nuts, cereals, and vegetable oils [263]. Western nations 
consume about 250 mg of phytosterols per day on aver-
age [265].

Metabolites produced as a result of transformation by 
the gut microbiota of unabsorbed sterols, including cho-
lesterol and plant sterols, have significant effects on the 
host’s health, including in T2DM, through modulation of 
the gut microbiota [264]. Coprostanol, coprostanone and 
cholestanol are cholesterol metabolites formed in the gut 
by the gut microbiota [264, 266]. Coprostanol is the most 
abundant animal sterol in feces, followed by copros-
tanone and cholesterol, which can be converted to lesser 
cholestanol [264].

Plant sterol supplementation was found to increase 
the production of SCFAs and decrease the production 
of coprostanol and ethylcoprostanol in a study where the 
researchers evaluated the effects of plant sterols on the 
intestinal microbiota (acetate and butyrate). Additionally, 
it was reported that this supplement could improve the 
gut microbial profile by raising the percentage of some 
genera from the phylum Firmicutes [267]. In another 
study, in which half of 40 postmenopausal women were 
given a 2  g/day plant sterol-enriched beverage and the 
remaining half a placebo for six weeks, it was found that 
the coprostanol levels were lower in the feces of the plant 
sterol group, and it was concluded that plant sterols 
could be used to modulate the gut microbiota [268]. In 
addition, Weststrate et  al. discovered that plant sterol-
enriched margarine (8.6  g/day) decreased the amount 
of cholesterol that was converted to coprostanol during 
metabolism [269]. In line with the data obtained from 
these studies, it can be concluded that while plant ster-
ols decrease the production of some lipidomics such as 
coprostanol, they increase the production of SCFAs. As 
mentioned in earlier sections, SCFAs lower the risk of 
developing T2DM via a variety of mechanisms, includ-
ing modulation of the gut microbiome. Furthermore, the 
gut microbiota and glucose homeostasis are known to be 
influenced by cholesterol metabolites like coprostanol 
[268, 270–273]. These results in the literature suggest 
that some sterols (especially plant sterols) may improve 
glucose homeostasis and reduce the risk of T2DM by the 
modulating gut microbiota through lipidomics.

Fat‑soluble vitamins
Vitamin A
Vitamin A (retinol) and its enzymatic oxidation prod-
uct, retinoic acid, play a role in gut health through inter-
actions with the gut microbiome [181, 274, 275]. It has 
been reported that significant changes in the gut micro-
biome profile in acute vitamin A deficiency and the abun-
dance of Bacteroides vulgatus increase rapidly [276]. Lv 
et al. (2016) concluded in their study that children with 
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vitamin A deficiency have less microbial diversity in 
their gut microbiota and are more likely to experience 
resistant diarrhea. Another outcome of the study was 
the detection of less butyrate-producing Clostridia bac-
teria in the stools of children with vitamin A deficiency 
[277]. Moreover, it is stated that bacterial diversity may 
decrease with the decrease in butyrate-producing bacte-
ria and the increase in opportunistic pathogens in case of 
vitamin A deficiency [277]. It may be considered due to 
the aforesaid roles that adequate dietary vitamin A intake 
may reduce the risk of T2DM by increasing butyrate pro-
duction, which is attributed to lipidomic. To draw firm 
conclusions, however, is challenging due to the paucity of 
studies on this topic in the literature.

Vitamin D
Vitamin D3 (cholecalciferol), belonging to the secosteroid 
family, has received increasing attention in recent years 
for its potential pleiotropic effects on lipid metabolism 
[278]. Vitamin D, which is known to regulate calcium 
and phosphate metabolism, also has important effects 
on blood glucose homeostasis and gut microbiota [279, 
280]. Thomas et al. (2020) found out that strong correla-
tions between the vitamin D metabolites 1,25-dihydroxy-
vitamin D (1,25(OH)2D), and 24,25-dihydroxyvitamin 
D (24,25(OH)2D) and intestinal microbial diversity. It 
has also been reported in the study that the increase in 
vitamin D metabolites was positively correlated with the 
increase in butyrate-producing bacteria, including Firmi-
cutes [281]. Oral vitamin D3 supplementation increases 
the levels of Bacteroides and Parabacteroides in the intes-
tine [282]. In a study, it was determined that vitamin D 
supplementation increased the levels of probiotic taxa 
Akkermansia and Bifidobacterium, which are known to 
have health-improving effects in the gut microbiome, 
and the ratio of Bacteroidetes/Firmicutes [283]. Haro 
et al. (2015) also revealed that an increase in Parabacte-
roides levels in the gut microbiome reduces the risk of 
T2DM [284]. Moreover, it has been reported that the Fir-
micutes/Bacteroidetes ratio is higher in T2DM individu-
als than in healthy individuals [285]. According to these 
data, it can be considered that vitamin D may reduce 
the risk of T2DM by affecting the intestinal microbiome 
through its metabolites.

Vitamin E
Vitamin E is a nutrient that can act as an antioxidant 
and is present in a number of foods, such as wheat 
germ oil, extra virgin olive oil, hazelnuts, peanuts, fish, 
oysters, eggs, and butter [244]. There are eight types 
of vitamin E: α-, β-, γ-, and δ-tocopherol; and α-, β-, 
y- and δ-tocotrienol. A common form of vitamin E, 
α-tocopherol, is the most biologically active form in 

humans [286]. Natural antioxidants are said to be able to 
regulate the gut microbiome by scavenging too many free 
radicals and enhancing the immune response [287, 288].

According to a study, mice that consumed high levels 
of vitamin E had a lower Firmicutes to Bacteroidetes ratio 
than mice in the control group and mice that consumed 
low levels of vitamin E [286]. In another study, vitamin 
E intake was linked to a relative decrease in Proteobac-
teria [289]. Contrarily, Tang et al. (2016) discovered that 
supplementing with vitamin E along with iron increased 
the relative abundance of the butyrate-producing genus 
Roseburia (phylum Firmicutes) [290]. Yang et  al. (2021) 
came to the conclusion that δTE-13′-carboxychromanol, 
a metabolite of vitamin E δ-tocotrienol (δTE), prevents 
Roseburia depletion, which is known to be reduced 
in people with inflammatory bowel diseases [291]. In 
an in  vitro study in which vitamin E was added to the 
rumen fluid, acetate and propionate concentrations were 
increased, but butyrate levels decreased in the rumen 
fluid [292]. Another in vitro study found that adding vita-
min E to the diet increased production of total SCFA, 
propionate, and tended to increase production of acetate 
and butyrate [293]. These findings lead to the conclu-
sion that vitamin E plays a role in T2DM by affecting the 
abundance of some bacteria and indirectly the produc-
tion of SCFAs.

Vitamin K
There are two molecular variations of vitamin K found 
in nature: vitamin K1 (phylloquinone) and vitamin K2 
(menaquinone). The main dietary source of vitamin K is 
phylloquinone, which is primarily present in green leafy 
vegetables [294]. Meat, eggs, curd, cheese, fermented soy-
beans, and dairy products are the main dietary sources of 
menaquinone. As well as its dietary sources, many bacte-
ria in the human gut also synthesize menaquinone [294, 
295]. It has been suggested that vitamin K supplementa-
tion may lower the risk of T2DM due to its benefits for 
improving insulin sensitivity, glucose tolerance, and pre-
venting insulin resistance [294, 296].

Vitamin K plays a role in the proliferation of Bacte-
roides melaninogenicus that contain sphingolipids in 
addition to sphingolipid metabolism [297]. It was found 
that Bacteroides melaninogenicus grown on vitamin 
K-deficient medium had lower synthase activity than bac-
teria grown on vitamin K-supplemented medium [297, 
298]. It is stated that inhibition of sphingolipid metabo-
lism (decreased sphingolipid metabolism) impairs pan-
creatic β-cell function and may contribute to the risk of 
T2DM [299]. On the contrary, there are studies reporting 
that sphingolipids may contribute to the risk of T2DM by 
disrupting the insulin signaling pathway and contributing 
to mitochondrial dysfunction [300, 301].
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Obese people with insulin resistance have different gut 
microbiota compositions, particularly a rise in the Firmi-
cutes/Bacteroidetes ratio [302]. Ellis et  al. (2021) found 
that dietary vitamin K levels affect the gut microbial 
community composition [303]. Menaquinones, in par-
ticular, play a crucial role in gut microbiota homeostasis 
by encouraging the growth of symbiotic bacteria [181]. 
Based on the findings of these studies, it is hypothesized 
that vitamin K may contribute to prevent of T2DM 
through its effects on the microbiome and sphingolipid 
metabolism, a lipidomic process. To be certain about the 
existence and direction of the relationship, new studies 
are necessary.

Dietary sphingolipids
Sphingolipids are lipids that, along with cholesterol, 
phospholipids, and proteins, play a role in the structure 
of the cell membrane. There are more than 4000 different 
subtypes of sphingolipids [304]. Sphingolipids are present 
in foods in various amounts, ranging from a few micro-
moles per kilogram in rich sources like dairy products, 
eggs, and soybeans to a few millimoles per kilogram in 
fruits. Furthermore, it is known that foods such as beef, 
pork, chicken, turkey and fish have different levels of 
sphingolipid content. Sphingolipid consumption per per-
son in the United States is estimated to be between 150 
and 180  mmol (∼115–140  g) annually, or between 0.3 
and 0.4 g/day, based on the scant information currently 
available [305]. Western diets contain 200–400  mg/
day of sphingolipids and the largest contribution comes 
from animal sources [305]. The amount of sphingolip-
ids consumed daily from plant sources is thought to be 
around 50 mg in western countries, but for vegetarians, 
that amount can be much higher [304]. Milk contains a 
variety of different types of lipids, such as triglycerides, 
diglycerides, glycerophospholipids, sphingolipids, NEFA, 
cholesterols, and glycolipids. Sphingomyelins are the 
most prevalent of the four types of sphingolipids found in 
milk, which also includes gangliosides, cerebrosides, and 
ceramides [306]. Although dietary sphingolipids are not 
essential for the continuation of life, they play a key role 
in health, especially their effects on the composition of 
the gut microbiome [304].

Sphingolipid production by bacteria exists in addi-
tion to dietary consumption. Prokaryotic sphingolipid 
production was found to occur first in members of 
the Bacteroidetes phylum (e.g. Bacteroides, Prevotella, 
Porphyromonas, Sphingobacterium) and later in some 
Proteobacteria (eg Sphingomonas, Bdellovibrio, Ace-
tobacter) [304]. The abundance of the Bacteroidetes 
phylum, which comprises 30–40% of the human gut 
microbiome, further increases the potential effects of 
bacterial sphingolipid production on the host [306]. 

Nutritional status can affect bacterial sphingolipid pro-
duction by altering the abundance of these bacteria in the 
gut microbiome [248, 304, 307].

Sphingolipids, which are known to affect the intestinal 
microbiome, are reported to play a role in the develop-
ment of insulin resistance and T2DM [300, 301, 304]. 
These findings suggest that diet may influence T2DM risk 
by influencing lipidomic sphingolipid intake and indi-
rectly influencing bacterial production.

Conclusion and future directions
In conclusion, dietary lipids and lipidomics seem to play a 
major role in glucose homeostasis, the development, and 
the progression of T2DM. Actually, it has been known 
for a long time that some dietary and plasma lipids like 
SFAs do not have positive effects on the development and 
prognosis of T2DMs, while PUFA and MUFA may have 
positive effects when intake in balance. The new subject 
we learned is the effects and mechanisms of action of 
metabolomics, which we call lipidomics on host health 
and the gut microbiome. Recent literature has noted 
that gut microbiota may modulate the lipid profiles and 
lipidomics in T2DM, however, the gut microbiota is 
altered in individuals with T2DM. Moreover, lipids and 
lipidomics may influence the gut-brain axis with certain 
mechanisms, hence contributing to the pathogenesis of 
T2DM. Furthermore, some studies in the literature sug-
gest that diet may influence T2DM risk by influencing 
lipid metabolism and lipidomics and directly or indi-
rectly influencing microbiota composition and forming 
metabolites because of microbiota modulation. In line 
with the data obtained from the literature, increasing 
omega-3 fatty acids, dietary sterols, fat-soluble vitamins, 
and dietary sphingolipids in the diet may be a promising 
nutritional strategy to reduce the risk of T2DM through 
the mechanisms specified. However, it can be said that 
there are still few studies on the relationship between 
lipidomics and the gut-brain axis in T2DM because lipi-
domics are relatively new technology products. It is yet 
early to decide on the uses of lipidomics in diet plans in 
T2DMs. So, future investigations should be addressed to 
clarify the relationship between diet, gut microbiota and 
lipidomics in T2DM. Examining the these dietary com-
ponents in future studies in different model morganisms 
and clinical trials at different doses and times will help to 
reveal possible relationships.
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