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Abstract 

Background  The United Nations recently made a call to address the challenges of an estimated 300 million persons 
worldwide living with a rare disease through the collection, analysis, and dissemination of disaggregated data. Epide-
miologic Information (EI) regarding prevalence and incidence data of rare diseases is sparse and current paradigms of 
identifying, extracting, and curating EI rely upon time-intensive, error-prone manual processes. With these limitations, 
a clear understanding of the variation in epidemiology and outcomes for rare disease patients is hampered. This chal-
lenges the public health of rare diseases patients through a lack of information necessary to prioritize research, policy 
decisions, therapeutic development, and health system allocations.

Methods  In this study, we developed a newly curated epidemiology corpus for Named Entity Recognition (NER), 
a deep learning framework, and a novel rare disease epidemiologic information pipeline named EpiPipeline4RD 
consisting of a web interface and Restful API. For the corpus creation, we programmatically gathered a representative 
sample of rare disease epidemiologic abstracts, utilized weakly-supervised machine learning techniques to label the 
dataset, and manually validated the labeled dataset. For the deep learning framework development, we fine-tuned 
our dataset and adapted the BioBERT model for NER. We measured the performance of our BioBERT model for epide-
miology entity recognition quantitatively with precision, recall, and F1 and qualitatively through a comparison with 
Orphanet. We demonstrated the ability for our pipeline to gather, identify, and extract epidemiology information from 
rare disease abstracts through three case studies.

Results  We developed a deep learning model to extract EI with overall F1 scores of 0.817 and 0.878, evaluated at the 
entity-level and token-level respectively, and which achieved comparable qualitative results to Orphanet’s collection 
paradigm. Additionally, case studies of the rare diseases Classic homocystinuria, GRACILE syndrome, Phenylketonu-
ria demonstrated the adequate recall of abstracts with epidemiology information, high precision of epidemiology 
information extraction through our deep learning model, and the increased efficiency of EpiPipeline4RD compared to 
a manual curation paradigm.

Conclusions  EpiPipeline4RD demonstrated high performance of EI extraction from rare disease literature to aug-
ment manual curation processes. This automated information curation paradigm will not only effectively empower 
development of the NIH Genetic and Rare Diseases Information Center (GARD), but also support the public health of 
the rare disease community.
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Introduction
In the United States of America, a rare disease is defined 
as one that affects fewer than 200,000 people [1]. The 
European Union defines a rare disease as one that afflicts 
less than or equal to 5 per 10,000 persons or one which 
is life-threatening, seriously debilitating, or chronic 
[2]. Though 84.5% of rare diseases have a prevalence 
of < 1/1,000,000, the collection of an estimated 7,000 rare 
diseases[3] is estimated to affect 263–446 million peo-
ple globally, or 3.5–5.9% of all humans [4]. Rare disease 
patients face numerous challenges negatively impacting 
their quality of life, such as a scarcity of accessible health 
information [5], a small disease-specific community, and 
a lack of available treatments due to economic limitations 
in the private sector [6]. To mitigate these challenges, 
policy makers, funding agencies, and the pharmaceutical 
industry require information about the epidemiology of 
a rare disease to estimate the number of patients poten-
tially benefiting from therapeutic development, research 
funding, and clinical trials [7]. Healthcare systems need 
such knowledge to address the specific needs of rare 
disease patients, families, and caregivers. With better 
understanding of rare disease population burdens, strate-
gies from public health such as screening and prevention 
could be better implemented [8].

For many common diseases, epidemiology information 
is collected through regional [9, 10] or national surveys 
[11–17]. The economies of scale and statistical signifi-
cance associated with these methods allow for simpli-
fied collection, aggregation, and analysis. In contrast, 
due to their rarity and wide range of prevalence rates, 
epidemiologic information (EI) on rare diseases must be 
amalgamated from case reports, epidemiologic studies 
(ES), and expert opinions [18]. Thus, the methods used 
to estimate those metrics and the reporting of the met-
rics, vary significantly. For instance, rare diseases with 
higher incidence and prevalence, such as cystic fibro-
sis which affects more than 30,000 people in the United 
States as of February 2022, can be estimated through 
the Recommended Uniform Screening Panel [19] and a 
national patient registry [20]. Syndromes with features 
that overlap with other diseases usually must be veri-
fied from genetic or epigenetic investigations on indi-
vidual patients suspected of the disease [21]. Thus their 
incidence and prevalence, such as in the case of Wolf–
Hirschhorn syndrome with an incidence rate between 
1/20,000 and 1/50,000 in 2008, can only be extrapolated 
from a small sample [22]. Diseases which are overrepre-
sented in specific subpopulations, such as Hansen’s dis-
ease with prevalence of 11.7:10,000 in the Marshallese 
population in Arkansas between 2003 and 2017, can be 
estimated from surveillance reports submitted to their 
local health department [23]. Others with extraordinarily 

sparse populations, such as acute flaccid myelitis which 
had an annual incidence of 30 cases in the United States 
for 2021, are counted when suspected patients are 
reported to the Centers for Disease Control and Preven-
tion (CDC) and verified [24]. The variety of methods uti-
lized to gather incidence and prevalence of rare diseases 
increases the complexity of accessing, recognizing, and 
analyzing the data [25]. Consequently, the data is often 
incomplete [26], which hinders the standardization of 
reporting and ease of compilation of EI in a centrally 
accessible database. Furthermore, continually updating 
this information manually for a staggering number of 
rare diseases requires a complex system and significant 
resources for an organization.

On December 16, 2021, the United Nations adopted 
a resolution to address “the challenges of persons liv-
ing with rare diseases and their families.” Specifically 
expressing concern at the lack of granular data available 
to nations, they encouraged all member states to “collect, 
analyze and disseminate disaggregated data on persons 
living with a rare disease” “which would help identify 
and address the barriers faced in exercising their human 
rights.”[27] We aim to act upon this resolution through 
the efficient and sustainable curation and dissemina-
tion of epidemiology data for rare disease patients. The 
Genetic and Rare Disease Information Center (GARD) 
[28] managed by the National Center for Advancing 
Translational Sciences (NIH/NCATS) in the United 
States aims to compile and curate this information for 
over 10,000 rare diseases. Currently, GARD curators 
manually identify and review rare disease related ES from 
PubMed and genetic and rare diseases databases such as 
Orphanet [29] and OMIM [30], extract relevant EI from 
those studies to update GARD, which is tedious and dif-
ficult to maintain at scale. Orphanet, whose 41 member 
countries include much of the European Union as well as 
Canada, Kazakhstan, and Russia [29], also aims to com-
pile and curate EI for rare diseases and currently follows 
a similar labor-intensive procedure at a large-scale [18]. 
The objective of this study is to design and implement 
Natural Language Processing (NLP) algorithms to iden-
tify and extract EI programmatically from rare disease 
related PubMed articles. We aim for this system to not 
only aid in internal research efforts and rare disease cura-
tion, but also serve as a resource to the public.

Early attempts to extract EI from observational studies 
utilized rule-based approaches [31]. To ascertain new EI 
without direct measurements, DisMod II, a tool which 
calculates a number of different epidemiologic values 
given a disease’s prevalence and/or incidence, was cre-
ated [26, 32]. With the digitization of healthcare, elec-
tronic medical records have been utilized to estimate 
epidemiologic rates. However, this has not been easily 
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possible in this domain, as only a limited number of rare 
diseases are accurately represented with currently exist-
ing International Classification of Diseases codes [33, 34]. 
Automated approaches to clinical epidemiology include 
“Data extraction for epidemiological research” or DExtER 
[35]. NLP approaches to information extraction include 
analyzing social media to analyze drug abuse epidemiol-
ogy[36] and detecting cancer cases to calculate epidemio-
logic prevalence [37, 38].

Recently, multiple deep learning approaches to NLP 
have used Bidirectional Encoder Representations from 
Transformers[39] (BERT)[40] with self-supervised pre-
training on PubMed and PubMed Central and fine-tuned 
them in a fully-supervised manner to achieve state-of-
the-art performance on several biomedical named entity 
recognition (NER) [41, 42] and entity normalization 
tasks [43]. In the related clinical domain, pre-training 
on clinical notes [44–46] and fine-tuning on electronic 
health records [47] have been demonstrated to identify 
semantically similar sentences for note summarization 
[48], classify relations between bleeding events and clini-
cal entities for better detection of bleeding [49], perform 
clinical entity normalization [47], and predict diseases 
[50]. Based on the bidirectional transformer’s ability to 
transfer deep contextual learning and its recent success 
on a wide variety of NLP tasks, we hypothesize that a 
BioBERT-based model will be effective for EI extraction 
[41], particularly given that rare diseases have less train-
ing data available. Training this deep learning model for 
NER requires a dataset labeled at the token level. From 
querying PubMed and Google Scholar, no datasets 
labeled with any EI for NER exist. Thus, we believe that 
weakly-supervised machine learning techniques [51] 
coupled with manual validation will allow us to create a 
task-dynamic, high quality dataset for EI extraction with 
high efficiency. Weakly supervised machine learning [52] 
encompasses a broad set of techniques such as distant 
supervision or labeling from existing knowledge sources, 
prescriptive supervision or labeling using heuristic 
rules, and noisy supervision or labeling using existing 
NER models such as spaCy [53]. These approaches have 
recently become a popular method for achieving analo-
gous results on tasks where the creation of a fully super-
vised training dataset is not feasible [54]. Our hybrid 
approach balances the need for high quality annotations 

in this first-of-a-kind dataset with the labor intensive 
nature of labeling a dataset from scratch.

Here, we present the first dataset with labeled EI 
intended for a variety of NLP tasks. To our knowledge, 
this work also represents the first attempt of using a deep 
learning framework to extract EI from rare disease epi-
demiology publications, as well as epidemiology publica-
tions in general.

Methods
To construct an integrated pipeline to extract EI from 
rare disease ES, we performed four steps sequentially, 
which are depicted as A to D in the Fig. 1.

Dataset preparation
We considered the fine-grained EI extraction task as a 
multi-type token classification or NER task. Training a 
machine learning model for this task requires a corpus 
with labeled rare disease epidemiologic information as 
training data. As no such dataset exists, we created the 
EI labeled corpus, which is publicly accessible via GitHub 
(https://​github.​com/​ncats/​epi4G​ARD/​tree/​master/​epi_​
extra​ct_​datas​ets) and Hugging Face (https://​huggi​ngface.​
co/​datas​ets/​ncats/​EpiSe​t4NER-​v2).

Data retrieval
We randomly selected 500 rare diseases and their syn-
onyms from the NCATS GARD Knowledge Graph 
(NGKG) [56], which is an integrative knowledge graph 
containing data from GARD and various biomedical 
resources, including Orphanet, OMIM, and then we que-
ried the EBI RESTful API [57] to obtain a maximum of 50 
PubMed abstracts for each disease. In our previous work 
[58], we developed ES_Predict, an epidemiologic study 
predictor based on a long short-term memory based 
recurrent neural network [59], to predict if a study is ES. 
We applied the ES_Predict[58] to identify ES related Pub-
Med abstracts, and excluded those with an epidemiologic 
probability less than 0.5.

Data preprocessing
To ensure no false positive ES moved to the next step, 
we manually reviewed and excluded any irrelevant ES 
from the dataset. We then split the dataset into training, 
validation, and test sets. Fifty abstracts were randomly 

(See figure on next page.)
Fig. 1  Implementation workflow of EpiPipeline4RD. A Steps applied to prepare ES data for deep learning model training. EMBL-EBI refers to the 
EBI API for gathering abstracts. ES_Predict is a Long Short-Term Memory Recurrent Neural Network for ES prediction. B Methods applied for the 
epidemiology corpus generation. Distant supervision draws upon the NGKG from Neo4J and Wikipedia. Noisy supervision draws upon a spaCy NER 
model. Prescriptive supervision is dependent upon rules described in the Additional file 2. C Transformer model architecture. Positional embeddings 
are added to the WordPiece embeddings. “Add” refers to the addition of the sub-layer output to its input (residual connection). “Norm” refers to 
sub-layer normalization after employing a residual connection [55]. D EpiPipeline4RD implementation. Output of the EI extraction via the User 
Interface

https://github.com/ncats/epi4GARD/tree/master/epi_extract_datasets
https://github.com/ncats/epi4GARD/tree/master/epi_extract_datasets
https://huggingface.co/datasets/ncats/EpiSet4NER-v2
https://huggingface.co/datasets/ncats/EpiSet4NER-v2
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Fig. 1  (See legend on previous page.)
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selected as the test set. The remaining abstracts were split 
into a training set and a hold-out validation set with an 
approximate 80:20 ratio.

To prepare the data for labeling, we removed HTML 
remnants and extraneous punctuations (i.e. *, ^, $) pre-
sent in the abstracts. Additionally, we removed commas 
from numbers to avoid mis-tokenization in the next 
step. Notably, we did not remove stopwords nor stand-
ardize spaCy entities, including organizations, times, 
events, persons, quantities, and times, as BERT-based 
models applied in this study consider them as contextual 
information to improve predictions [60]. We split each 
abstract into sentences using Natural Language Tool-Kit 
(NLTK) [61] and tokenized each sentence using spaCy 
[53, 62]. We then corrected errata introduced by the 
spaCy and NLTK tokenizers to ensure that special char-
acters (e.g. a, b, β) were accurately presented, removed 
whitespace tokens and corrected those incorrect sen-
tence splits, and re-combined numbers split across 
tokens (e.g. the number “1 000 000” might be split into 3 
tokens).

Data labeling
Eight EI relevant entity classes were initially suggested by 
our subject matter experts (SMEs) (co-authors, GA and 
ES): epidemiologic type, epidemiologic rate, location, 
ethnicity/nationality/race, date, sex, disease name and 
synonym, and disease abbreviation (Table  1). Detailed 
descriptions of entity classes can be found in Additional 

file 3. To mitigate a labor-intensive manual labeling pro-
cess, we developed an algorithm to effectively label the 
dataset with seven entity classes in the inside-outside-
beginning 2 (IOB2) format [63], using NLP and weakly 
supervised machine learning techniques [51, 52] (Fig. 2). 
For instance, a location entity of “the United States and 
Canada” would be split into five individual tokens, “the”, 
“United”, “States”, “and”, and “Canada” and labeled as 
“B-LOC”, “I-LOC”, “I-LOC”, “O”, “B-LOC” accordingly, 
given the definition of IOB2 where “B-(tag)” indicates 
the beginning of a phrase, “I-(tag)” anything inside the 
phrase, and the “O” tag indicates anything outside of the 
phrase.

Figure 2 shows an example of weakly supervised labe-
ling. Only four epi rate (STAT) phrases with incomplete 
forms (missing “per 100,000 live births”) were missed.

Manual validation
To ensure the accuracy and quality of the labeled dataset 
for the BERT model development, we conducted a man-
ual validation by eight biomedical researchers (GA, HC, 
JS, AY, EM, CQ, YX and QZ) with PhD and MD degrees 
and one medical school student with BS degree (WK). 
With the help of our SMEs (GA and ES), we drafted man-
ual validation guidelines (Additional file 3) with detailed 
descriptions of each entity class and our inclusion/exclu-
sion criteria applied for labeling. We scheduled a train-
ing session with all reviewers to assure their processes 
were consistent with each other and aligned with our 

Table 1  Description of eight entity classes in the manually validated dataset

Detailed descriptions are listed in Additional file 3

Entity Class Label Definition Example

Disease terms DIS Rare and non-rare disease names and synonyms including 
those which have a unique ID or code (ICD, GARD, UMLS). 
Includes pathogenic diseases, but not pathogens. Does not 
include symptoms, features of diseases, phenotypes, nor 
abbreviations of disease names

“Wegener’s granulomatosis”,
“Metachromatic leukodystrophy”,
“Krabbe disease”

Disease abbreviations ABRV Abbreviations of the disease names or synonyms described 
above

“MPS” (Mucopolysaccharidoses),
“FSHD” (Facioscapulohumeral muscular dystrophy)

Epidemiology Type EPI The epidemiologic metric being reported “Annualized incidence”, “point prevalence”, “esti-
mated occurrence rate”

Epidemiology Rate STAT​ The number of people afflicted. Usually expressed as a frac-
tion (rate), a percentage of the (sub)population, or an integer 
estimation/count of persons with the disease

“Approximately 1 in 40,000 live births”,
“50,000 people affected”

Location LOC Locations, including geopolitical entities, which indicate where 
the study took place

“North-Central Africa”,
“Salla region of northern Finland”,
“the United States”

Dates DATE When the study took place or when data was gathered “Between 1985 and 2006”,
“January 21, 1999”

Biological Sex SEX Terms that were likely to indicate the biological sex of the 
persons mentioned in the study

“Men”,
“women”,
“intersex”

Ethnicity/Nationality/Race ETHN Terms that are likely to indicate nationality, race, or ethnicity of 
the persons afflicted by the disease

“Italian”, “Ashkenazi Jew”, “Marshallese”
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requirements. More specifically, we went through the 
prepared manual validation guidelines and our require-
ments, which include reviewing each label, correcting 
any mis-labels, marking any uncertain labels for further 
review, labeling non-rare diseases as DIS, labeling rare 
and non-rare disease abbreviations as ABRV and adding 
any additional notes for further discussion.

Four consecutive validation iterations were performed 
by four subgroups formed from the aforementioned nine 
reviewers. For the first pass, we split the entire labeled 
dataset to three subsets and assigned three co-authors, 
WK, CQ and QZ, who have first-hand understood of this 
study and the whole implementation process, to manu-
ally validate a subset. For the next round, five co-authors 
(HC, JS, AY, EM and YX) with various backgrounds rang-
ing from bioinformatics to clinical informatics completed 
the same process as the first pass on five different subsets. 
After completing the first two passes, we were confident 
that most of the mis-labels had been corrected by eight 
reviewers. However, uncertain labels marked for further 
review or those with notes from the previous two passes 
were still unaddressed. One of our SMEs (GA) then took 
a third pass of the validation process by reviewing and 
addressing labels marked for review. During this pass, 
GA flagged any additional mis-labels she observed. In the 
final pass, WK reviewed all labels with flags from GA and 
ensured they were labeled optimally for the deep learning 
model.

Model development & evaluation
We conducted four steps to develop and evaluate a 
BioBERT model for EI extraction. (1) We fine-tuned 
a bidirectional transformer model on our rare disease 
epidemiology data set. (2) We fine-tuned the dataset by 
adjusting labels to improve performance. (3) We opti-
mized the model by tuning hyperparameters of the 

model and evaluating the model on the validation set. (4) 
We finally tested the model on the test set.

Model development
Using the transformers Python package [67], we adapted 
BioBERT large cased v1.1 for NER by concatenating a 
fully-connected output layer of 13 neural nodes to the 
end of the transformer encoder because 2n + 1 nodes are 
required in the output layer for n entity classes labeled in 
the IOB2 format. BioBERT large v1.1 is an architecture 
that produces bidirectional encoder representations from 
transformers after being pre-trained on English Wikipe-
dia, BooksCorpus, and PubMed abstracts for 1  M steps 
each. Its tokenizer utilizes the WordPiece algorithm with 
a vocabulary size of 58,996 [68]. The positional embed-
dings are absolute. The transformer architecture utilized 
for this study is illustrated in Fig.  1C. Unless otherwise 
indicated, the default parameters of BioBERT large v1.1 
were utilized.

We then fine-tuned this model using hyperparameters: 
epochs = 4, learning rate = 5e−5, weight decay = 0.01, 
maximum sequence length = 128 tokens, training batch 
size = 16, evaluation batch size = 8, and seed = 42 within 
the PyTorch framework. Before training, the weight 
matrices of the nodes were initialized with a stand-
ard deviation of 0.02. We tokenized the dataset with a 
maximum sequence length of 128. The trainer utilized 
the AdamW stochastic optimization function (β1 = 0.9; 
β2 = 0.99; ϵ = 1e−8) [69]. To reduce the probability of 
overfitting to the small training dataset, each of the hid-
den layers had a dropout probability of 0.1 [70] and the 
attention probabilities had a dropout ratio of 0.1 [39].

We initially trained the PyTorch model [71] for 4 
epochs with learning rate of 5e−5; weight decay of 0.01; 
maximum sequence length of 128 tokens; training batch 
size of 16; seed = 42 on the training set and predicted 
on the validation set with an evaluation batch size of 

Fig. 2  An example of labeling using weakly supervised ML techniques and NLP. Correct labeling is bolded on the left. Actual programmatic output 
is on the right. Abstract is from [66]
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8. We calculated precision, recall, and F1 scores at the 
entity- and token-levels for each individual entity class. 
Entity-level evaluation considers all tokens in a multi-
token entity as a single unit. Thus, if one token in an 
entity is misclassified, the prediction on the entire entity 
is marked incorrect. For instance, if one token within a 
multi-token phrase such as “1 per 50,000 people”, which 
would be labeled as “B-STAT”, “I-STAT”, “I-STAT”, 
“I-STAT” is misclassified, the whole entity is marked 
incorrect. The denominator for precision, recall, and F1 
is also the number of entities. We utilized the seqeval 
Python framework to get entity-level metrics [72]. For 
token-level evaluation, we evaluated each token’s classi-
fication independently. For instance, if the phrase “inci-
dence at birth” should be labeled as “B-EPI”, “I-EPI”, and 
“I-EPI” (See Methods 1C for more details about those 
labels), but the model incorrectly predicts it as “B-EPI”, 
“I-EPI”, and “O”, the recall score for those three tokens 
would be 2/3. Overall token-level evaluation uses micro-
averaging [73]. We developed our own algorithm to com-
pare the model’s classification of each individual word to 
the validated dataset. The algorithm ignored the begin-
ning/inside (“B-”/“I-”) component of the IOB2 tag and 
calculated precision, recall, and F1 scores for each token 
in each class.

To assess the performance of BioBERT large cased 
v1.1 compared to related pretrained models, BioBERT 
base cased v1.2 [41], PubMedBERT base, PubMed-
BERT + PMC base [42], as well as BlueBERT base and 
large [46], which are models pretrained similarly on all of 
PubMed abstracts. PubMedBERT and BlueBERT mod-
els were uncased. We calculated overall F1 score at the 
entity-level and overall precision at the token-level using 
micro-averaging for the assessment [73].

Dataset finetuning
The complexity and the number of tokens correspond-
ing to eight defined entity classes in the dataset varies 
significantly among the entity classes, which may nega-
tively impact the overall performance of the model. Thus, 
we investigated the impact of each entity class on per-
formance of the model of BioBERT large v1.1. It showed 
that the model had poor performance on DIS, ABRV, 
and ETHN entities, due to great variation of presenta-
tions of disease names and abbreviations as well as lim-
ited ethnicity/nationality/racial information available in 
our training dataset shown in Table 1. We created three 
variants of the dataset and conducted experiments to 
identify the optimal dataset variant. They are “Data-
set with DIS and ABRV merged”, which was created by 
converting ABRV labels into DIS labels; “Dataset with-
out ABRV and DIS”, created by replacing disease (DIS) 
and abbreviation (ABRV) labels with the null label (“O”); 

and “Dataset without ABRV, DIS, and ETHN”, created by 
replacing abbreviation (ABRV), disease (DIS), and eth-
nicity/nationality/race (ETHN) labels with the null label 
(“O”). BioBERT large v1.1 was then fine-tuned on each 
dataset variant and then predicted on its respective vali-
dation set. The variant dataset with the highest statistical 
results, i.e., precision, recall and F1 model was chosen for 
model optimization.

Model optimization
In addition, we conducted a few experiments to identify 
optimal hyperparameters to fine-tune BioBERT large 
cased v1.1 on our chosen variant dataset. We kept the 
dataset constant and changed the following hyperparam-
eters: AdamW epsilon (1e−2, 1e−4, 1e−6, 1e−8) [74], 
weight decay (0.01, 0.05, 0.1), training batch size (16, 
32), learning rate (2e−5, 3e−5, 4e−5, 5e−5), warm-up 
ratio (0.0, 0.05, 0.06) [75], learning rate scheduler (linear, 
cosine), gradient accumulation steps (1, 2, 4) [76], gradi-
ent checkpointing (On, Off) [77, 78], 16-bit mixed preci-
sion training (On, Off) [79], training epochs (1,4,5,7). We 
evaluated each model on the validation set at entity- and 
token-levels for the entire set as well as the individual 
entity classes. The model with the highest F1 score was 
chosen as the final model.

Model testing and Orphanet Comparison
The final model was then tested on the test set of 50 
abstracts. Precision, recall and F1 score were calculated 
at entity- and token-levels overall and for the individual 
entity classes.

To qualitatively assess the validity of the final model 
for EI extraction, we compared our model’s output to 
epidemiologic data released by Orphanet [80]. To com-
pare equitably, we excluded Orphanet entries with expert 
opinions as sources, entries without PubMed IDs, and 
entries with no listed epi rates (STAT). We limited our 
comparison to abstracts with mentions of EI, and only 
compared our extractions that contained at least one epi 
rate (STAT) and no more than one GARD ID (identified 
with the disease identification function) to Orphanet’s 
curated data. To compare epidemiologic rates, we manu-
ally normalized the in-text prevalence to per 100,000. We 
also assigned a location of “Worldwide” to any abstract 
that did not contain location information to be compara-
ble to Orphanet’s extrapolations [18]. The comparison is 
presented in the Result section.

EI extraction pipeline implementation
To enable the full capabilities of an automated rare dis-
ease EI identification and extraction paradigm, we inte-
grated the aforementioned components into a pipeline 
named EpiPipeline4RD, which is publicly accessible via 
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a user interface developed on Hugging Face Spaces and 
API developed with FastAPI: https://​rdip2.​ncats.​io/​epiho​
me/​docum​entat​ion.​html. A screenshot of the EpiPipelin-
e4RD user interface is shown in Fig. 3.

EpiPipeline4RD takes GARD ID(s) or rare disease 
name(s) as input(s), and it retrieves all synonyms of the 
input disease(s) from the NGKG. The PubMed search 
component then automatically invokes the NCBI and 
the EBI APIs to gather the input disease(s) relevant Pub-
Med abstracts. During the PubMed searching process, 
the abstract matching filter can be specified to further 
filter false positive articles for EI extraction through the 
UI, i.e., STRICT, excluding articles without mentions 
of input disease names or synonyms as a whole in the 
abstracts; LENIENT, excluding articles without mentions 
of individual tokens composed of input disease names 
or synonyms in the abstracts; and NO, no filter applied. 
After that, ES_Predict is initiated to identify ES from 
the retrieved disease relevant articles, from which the 
BioBERT model is applied to extract the EI. The extracted 
EI along with the source PMIDs and their abstracts are 
shown on the UI in table format and Sankey plot.

Results
Dataset Preparation
The EBI RESTful API [57] returned 7,699 unique 
abstracts for 470 diseases. ES_Predict classified 620 
abstracts of the 7,699 abstracts as ES. Notably, 32.8% of 
the 500 rare diseases had no associated ES. We manu-
ally reviewed the 620 abstracts and excluded 11 abstracts 
which were neither related to rare diseases nor ES. 
The remaining 609 abstracts were split randomly: fifty 
abstracts in the test set, 113 abstracts in the hold-out 

validation set, and 446 abstracts in the training set. After 
initial pre-processing and labeling the dataset in IOB2 
format (Methods 1C) [51, 52], there were 163,060 tokens 
with labels, of which 7,223 tokens (4.43% of the entire 
set) were in one of seven entity classes.

Thereafter, SMEs manually reviewed and validated the 
labels generated for seven classes of entities and manually 
labeled the ABRV entity class. Descriptions of the entity 
classes are included in Methods 1C. For the first round 
of validation, 1,693 labels were marked with uncertainty 
and 441 attached notes explained their uncertainty or 
the rationale behind the changes made to the labels. For 
the second round of validation, 1,273 labels were marked 
with uncertainty and 300 notes added. In the third round, 
937 labels were marked as uncertain and attached 339 
notes with questions regarding labeling. We further com-
pared those annotations labeled as ETHN to the Eth-
nicity Ontology [81, 82] and SNOMED Ethnic Group 
[83] gathered from NCBO BioPortal, and found 74.3% 
of them overlapped with those two ontologies. Notably 
“African Americans”, “Brazilian”, “Nepalese”, “Yupik”, and 
“Roma”, were annotated as ETHN in our dataset, but not 
found in either of the aforementioned Ethnicity Ontolo-
gies. Figure  4 and Table  2 show the composition of the 
labels in the validated dataset.

Model development and fine‑tuning
After adapting BioBERT large cased v1.1 for NER, we val-
idated our selection of this pre-trained model by assess-
ing the performance of several existing pre-trained BERT 
models for NER at the token-level and entity-level. The 
performance of these models fine-tuned on the data-
set is presented in Table 3. BioBERT large v1.1 attained 

Fig. 3  A screenshot of EpiPipeline4RD User Interface

https://rdip2.ncats.io/epihome/documentation.html
https://rdip2.ncats.io/epihome/documentation.html
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the highest entity-level precision, recall, and F1 scores 
on predicting locations (LOC), epi types (EPI), epi rates 
(STAT), dates (DATE), and biological sex (SEX) (Addi-
tional file 1), so we chose it as the final pretrained model.

Dataset fine‑tuning
The F1 comparison results to fine turn BioBERT large 
cased v1.1 on three dataset variants and the standard 
dataset are shown in Table 4. The “Dataset without DIS 
and ABRV” with the highest F1 score, was selected as the 
final dataset for model development.

Model optimization
Fine-tuning the BioBERT model achieved the best entity-
level results on the holdout validation set after training 
for 4 epochs (AdamW learning rate = 3e−8 and epsi-
lon = 1e−6 with a linear learning rate scheduler, weight 
decay = 0.01, warm up ratio = 0.06, gradient checkpoint-
ing = True, gradient accumulation = False, 16-bit mixed 
precision training = False) with a batch size of 16 sen-
tences at a time. The model re-trained with the same 
hyperparameters and evaluated on the validation set with 
a batch size of 8 sentences had a loss of 0.0368 and an 

Fig. 4  Composition of the entire rare disease epidemiology dataset for named entity recognition (NER)

Table 2  Number of labels in the rare disease epidemiology 
dataset for NER

Labels Counts (% of Labels on Tokens)

Train set Validation set Test set

DIS 5051 (48.96%) 1019 (42.46%) 432 (33.44%)

ABRV 1808 (17.53%) 421(17.54%) 272 (21.05%)

DATE 660 (6.40%) 175 (7.29%) 96 (7.43%)

LOC 764 (7.41%) 262 (10.92%) 118 (9.13%)

EPI 747 (7.24%) 230 (9.58%) 116 (8.98%)

ETHN 192 (1.86%) 33 (1.38%) 16 (1.24%)

SEX 282 (2.73%) 77 (3.21%) 36 (2.79%)

STAT​ 812 (7.87%) 183 (7.63%) 206 (15.94%)

Sum of all 
labels (% of 
Total Labels)

10,316 
(9.02% = 10,316/114,425)

2,400 (7.79%) 1,292 (9.29%)

Total 
(including O 
tag)

114,425 30,807 13,909

Table 3  Comparison metrics of biomedically related pre-trained 
BERT-based models

The highest scores in each category are bolded. The second highest are 
underlined

Model Overall token-level 
precision

Overall entity-
level precision

BioBERT large cased v1.1 0.834 0.720

BioBERT base cased v1.2 0.825 0.698

PubMedBERT base 0.824 0.713

PubMedBERT + PMC base 0.824 0.715

BlueBERT base 0.829 0.722
BlueBERT large 0.818 0.690

Table 4  Comparison results on Dataset Fine-tuning Variants

Dataset Entity-level F1

Standard Dataset (with 8 entity classes) 0.755

Dataset with ABRV and DIS merged (with 7 entity 
classes)

0.750

Dataset without ABRV and DIS (with 6 entity classes) 0.836

Dataset without ABRV, DIS, ETHN (with 5 entity classes) 0.819
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overall token-level accuracy of 0.992. Precision, recall, 
and F1 scores are presented at the entity-level and token-
level overall and for each entity in Table  5. Clearly, the 
entity classes with lower degree of variation, are associ-
ated with better performance, such as EPI, DATE and 
SEX. However, because the STAT entity class has various 
representations in the literature, it increases the complex-
ity/difficulty of recognizing those numbers in the text, 
and results in comparable low performance. It is worthy 
to note that the performance of STAT on token-level is 
better than entity-level, because it is more challenging to 
recognize the entity of STAT (e.g., “1 in 25 000”) instead 
of individual tokens (e.g., “1” and “25 000”).

Model testing
The model was tested on the “Dataset without ABRV and 
DIS” test set. The results are presented at the entity-level 
and token-level in Table  6. The overall accuracy of the 
model was 0.988.

Model evaluation by comparing epidemiology data 
from Orphanet
To qualitatively evaluate the performance of our model 
for EI extraction, we compared our extracted EI with 
EI presented in Orphanet [80], and presented five com-
parisons in Table 7. More comparisons can be found in 
Additional file  1. For the first three examples shown in 
Table 7, EI extracted by our model significantly overlaps 
with EI from Orphanet, although STAT from Orphanet 
is further normalized in standard range classes and EPI 
is interpreted (e.g., prevalence at birth or point preva-
lence vs. prevalence) from the text, which are beyond the 
scope of this study. The last two examples, Fibrodysplasia 

ossificans progressiva and Wegener granulomatosis, out-
put two epidemiology statistics without enough context 
to disambiguate between the prior estimate of prevalence 
rate and the prevalence rate presented in the study.

Case studies
To demonstrate the capability and performance of our EI 
extraction pipeline, we performed three case studies via 
our developed user interface. Our pipeline takes an input 
of a rare disease term or GARD ID as well as several 
parameters including the maximum number of abstracts 
returned from PubMed, type of abstracts filtering, and 
outputs extracted EI.

Classic homocystinuria (GARD:0006667) is an auto-
somal recessive metabolic disorder caused by mutations 
in genes necessary for amino acid processing that leads 
to abnormalities in the ocular, skeletal, and central nerv-
ous system if left untreated [93]. Our pipeline searched 
for 500 studies using all GARD name and synonym term: 
“homocystinuria due to cystathionine beta-synthase 
deficiency”, “cystathionine beta-synthase deficiency”, 
“homocystinuria due to cbs deficiency”, “classic homo-
cystinuria”, and “cbs deficiency”; gathered 105 Pub-
Med IDs; identified 3 ES among them and extracted EI 
from the abstracts. With our tool, it is easy to overview 
the incidence of classic homocystinuria across differ-
ent countries during different time frames. As shown in 
Table 8, Kuwait has much higher incidence rate than the 
Czech Republic even with a shorter study time frame. It 
is worthy to note relation extraction [94–98] is beyond 
the scope of this study, thus the relationship among those 
entity classes to the reported ES was not captured. For 
instance, in the second entry, “Qatar” is extracted as a 

Table 5  The performance of BioBERT large cased v1.1 on the 
Validation Set

Evaluation level Entity class Precision Recall F1

Entity-level Overall 0.824 0.851 0.837

EPI 0.905 0.953 0.929

STAT​ 0.688 0.559 0.617

LOC 0.765 0.761 0.763

DATE 0.857 0.889 0.873

SEX 0.949 0.987 0.968

ETHN 0.571 0.848 0.683

Token-level Overall 0.921 0.865 0.892

EPI 0.962 0.962 0.962

STAT​ 0.906 0.729 0.808

LOC 0.936 0.801 0.863

DATE 0.962 0.989 0.975

SEX 0.963 0.987 0.975

ETHN 0.559 0.868 0.680

Table 6  The performance of BioBERT large cased v1.1 on the 
test set

Evaluation level Entity Precision Recall F1

Entity-level Overall 0.813 0.821 0.817

EPI 0.938 0.958 0.948

STAT​ 0.522 0.444 0.48

LOC 0.746 0.770 0.758

DATE 1.0 1.0 1.0

SEX 0.923 1.0 0.960

ETHN 0.65 0.813 0.722

Token-level Overall 0.932 0.831 0.878

EPI 0.959 0.967 0.963

STAT​ 0.900 0.689 0.780

LOC 0.959 0.843 0.897

DATE 1.0 1.0 1.0

SEX 0.923 1.0 0.960

ETHN 0.696 0.941 0.800
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LOC entity, however it was actually a geographical loca-
tion which the authors used to compare the incidence 
rate at Kuwait, rather than the location where the ES was 
conducted. We also observed that the two ES identified 
from this case study do not overlap with those listed in 
Orphanet for classic homocystinuria, since none of the 
PubMed articles included in the Orphanet were retrieved 
from PubMed APIs.

GRACILE syndrome (GARD:0000001) is a deadly 
metabolic disease often afflicting infants with iron over-
load, lactic acid in the bloodstream, amino acids in 
the urine, and bile stoppage in the liver which leads to 
growth retardation and early death [103]. Our pipeline 
identified one ES from a search for 500 PubMed results 
(search terms: “’growth restriction-aminoaciduria-chol-
estasis-iron overload-lactic acidosis-early death syn-
drome”, “growth retardation, aminoaciduria, cholestasis, 
iron overload, lactic acidosis and early death”, “growth 
delay-aminoaciduria-cholestasis-iron overload-lactic aci-
dosis-early death syndrome”, “finnish lactic acidosis with 
hepatic hemosiderosis”, “finnish lethal neonatal metabolic 
syndrome”, “gracile syndrome”, “fellman syndrome”,and 
“fellman disease”) and extracted the EI (Table 9). Similar 
to the first case, we observed that the article [104] refer-
enced for EI extraction by Orphanet is different from the 

one[105] we retrieved in this case, although both of them 
are associated with the geographical location of Finland. 
In addition, no EI for GRACILE syndrome was men-
tioned in the abstract [105] from Orphanet.

Phenylketonuria (GARD:0007383) is an autosomal 
recessive metabolic disorder characterized by an inability 
to convert excess phenylalanine to tyrosine that is treat-
able, but can lead to early mental retardation, aggression, 
and persistent worry if not identified or left untreated. 
Our pipeline identified three ES from the first 50 
returned PubMed results (Search terms: “phenylalanine 
hydroxylase deficiency”, “oligophrenia phenylpyruvica”, 
“phenylketonuria”, and “folling disease”) and extracted 
the EI from the abstracts (Table 10). As mentioned in the 
first case study, relations among the entity classes were 
no captured by our pipeline, so correspondences among 
them are missing, for instance, in the first article with 
PMID: 34082800, “0.64 per 10, 000 births” (STAT) is the 
“birth prevalence” (EPI) rate at the “global” (LOC) level, 
while “0.03 per 10,000 births” (STAT) and “1.18 per 10, 
000 births” is the range of “birth prevalence” (EPI) in “the 
middle east/north africa” (LOC). Similarly, the second 
article with PMID: 35023679 has “6.002 in 100,000 new-
borns” (STAT) as the “prevalence” rate (EPI) for “global” 
(LOC) region and “1 in 4698” (STAT) as the “prevalence” 
(EPI) in “iran” (LOC).

Discussion
Epidemiologic studies provide valuable information to 
patient groups, researchers, and policy makers. However 
extraction and curation of epidemiologic information 
continues to rely primarily on labor-intensive human pro-
cesses. This study was designed with the intention of aug-
menting and improving the current paradigm, in order 
to fulfill the UN resolution for collection and analysis of 
disaggregated data on rare disease persons [27]. Here we 
presented a newly generated EI corpus and a rare dis-
ease based EI extraction pipeline named EpiPipeline4RD 

Table 8  EI Extraction of classic homocystinuria, a subtype of homocystinuria [99]

PubMed 
Article 
Title

Newborn population screening for classic 
homocystinuria by determination of total 
homocysteine from Guthrie cards [100]

Early diagnosis of classic homocystinuria 
in Kuwait through newborn screening: a 
6-year experience [101]

Vascular presentation of cystathionine 
beta-synthase deficiency in adulthood 
[102]

Epi Prob 0.997 0.986 0.862

EPI Incidence Incidence Incidence

STAT​ 1:1800 1:50,000 1:311,000

LOC Qatar Kuwait, Gulf country, Qatar, global The, Czech Republic

DATE None October 2014, between January 2015 and 
December 2020

Between 1980 and 2009

SEX None None None

ETHN Qatari Arabian, Qatari Czech

Table 9  EI extraction of GRACILE syndrome

Title The GRACILE syndrome, a neonatal lethal 
metabolic disorder with iron overload 
[105]

Epi Prob 0.998

EPI Incidence

STAT​ Least, 1/47,000

LOC Finland

DATE None

SEX None

ETHN Finnish
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consisting of ES_Predict, a long short-term memory 
recurrent neural network for ES identification, and a 
bidirectional, transformer-based, deep learning model 
for EI extraction. Furthermore, we developed a user 
interface to freely access our pipeline. Identifying and 
extracting EI from rare disease literature at scale is an 
exceptionally difficult challenge, but this work represents 
the state of the art in an effort to reduce the human effort 
required to curate and analyze EI from rare disease litera-
ture. Ultimately, we hope this effort can begin to shift the 
paradigm towards an integrative approach to rare disease 
support that mitigates the efficiency and sustainability 
challenges for rare disease epidemiology posed by Halley 
et al. [109]

We created the first-in-class dataset for rare disease 
epidemiology NER in the IOB2 format which not only 
effectively supports EI extraction, but also offers more 
opportunities to improve predictive performance [110], 
support multi-label sentence classification, and be an 
NLP benchmark dataset for future studies. In our corpus, 
we labeled eight entity classes relevant to EI based on 
consultation with our SMEs and prior literature [64, 111]. 
Although disease concepts (DIS) and disease abbrevia-
tions (ABRV) were not included in our BioBERT model, 
as disease extraction is beyond the scope of this study, 
they were captured and included in our corpus due to 
three reasons for our future enhancement. First, it allows 
related diseases or possible comorbidities which might be 
co-factors considered in the ES to be captured. Second, it 
helps to disambiguate complicated relationships of mul-
tiple diseases and their associated EI in text. For instance 
in the abstract, “Krabbe disease was the most common 
(one in 39 000) followed by Gaucher disease (one in 47 
000), metachromatic leukodystrophy and Salla disease” 
[112]. In this case, identifying those disease terms will 

be the first step for relation extraction [113] linking the 
diseases to their EI, ultimately to construct knowledge 
graphs for the epidemiology of each rare disease. Third, 
given the fact that a disease term is normally mentioned 
at the beginning of the abstract, and then referenced 
again with its abbreviation in the subsequent sentences 
where the EI is stated [114]. In this case, coreference res-
olution [115, 116] is required to unambiguously link the 
disease abbreviation with its corresponding disease.

As shown in Tables 6, 7, 8, 9, our BioBERT model illus-
trated high quantitative and qualitative performance of 
extracting EI from PubMed articles. Understanding the 
model’s performance on individual entity classes reveals 
important information which highlights possible routes 
for future improvement. The model performed well on 
identifying entities in the EPI and SEX classes which have 
little variation in their representations. EPI reaches an F1 
of 0.948 at the entity-level and an F1 of 0.962 the token-
level. Though there were fewer SEX entities labeled in the 
training set (2.73%) and relatively low diversity of pres-
entation of SEX entities in the training, validation, and 
test sets, it would result in good performance on com-
mon biological sex phrases. However, it may not be able 
to identify more complex phrases of biological sex such 
as “XYY” and “intersex”. Thus, we propose extending our 
current corpus by adding more SEX and other annota-
tions from diverse literature to improve the performance 
of our model.

The entity classes of LOC, ETHN, and STAT showed 
high disparities between token-level and entity-level 
results (Fig. 5), due to the lower degrees of variation and 
complexity of token representations rather than entity 
representations. Though the training dataset contained 
more LOC labels than EPI, DATE, and SEX, the model 
achieved lower performance on LOC than each of those 

Table 10  EI Extraction of Phenylketonuria

Title Birth prevalence of phenylalanine 
hydroxylase deficiency: a systematic 
literature review and meta-analysis [106]

Frequency of PAH Mutations Among 
Classic Phenylketon Urea Patients in 
Mazandaran and Golestan Provinces, 
North of Iran [107]

Epidemiology of Phenylketonuria Disease 
in Jordan: Medical and Nutritional 
Challenges [108]

Epi Prob 0.998 0.997 0.907

EPI Birth prevalence, birth prevalence, preva-
lence, birth prevalence estimates, prevalence 
estimates, birth prevalences

Prevalence Prevalence

STAT​ 0.64, per 10,000 births, 0.03, per 10,000 births, 
1.18, per 10,000 births, per 10,000 births

6.002 in 100,000 newborns, 1 in 4,698, %, % 1/5263

LOC global, Southeast Asia, the Middle East/North 
Africa

of Iran, global, Iran, Mazandaran, north Jordan, Amman

DATE None None between 2008 and 2021

SEX None None None

ETHN None Iranian Jordanians
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classes with token-level and entity-level F1 scores of 
0.897 and 0.758 respectively on the test set. This is likely 
attributed to the wide diversity of location information as 
well as a large number of multi-word entities. Due to a 
sparsity of ETHN training data (1.86%) and ETHN enti-
ties often overlap with LOC entities, the model some-
times misclassified LOC and ETHN. For instance, in the 
first abstract of the Classic Homocystinuria case study, 
the token “Ara” is common to the location “Arabian Gulf” 
and the word “Arab” which was labeled as ETHN in the 
training set, so the model misclassified the whole word 
“Arabian” as an ETHN rather than as a LOC. Obviously 
contextual information is critical for the model to dis-
criminate between LOC and ETHN, so it requires more 
training data. More training data from rare disease litera-
ture or bootstrapped from existing sources such as the 
CoNLL +  + dataset [117, 118] may provide avenues to 
algorithmically improve noisy and distantly supervised 
learning as well as increase the robustness of the model 
in the future study.

As BERT-based models use word-pieces to encode dig-
its, the limited performance of the model on STAT enti-
ties at the entity-level may be further explained through 
an understanding of its numeracy. BERT-based models 
have been shown to have some limitations on numeracy, 
thus the BERT-based model relies much more heavily 
on contextual information and the attention mechanism 
rather than sub-word embeddings to differentiate the 
significance between different numbers [119]. Without 
numeracy, floating point numbers which dominate the 
STAT entity class in cases such as “0. 50 / 10, 000 girls.” 
[65], are not determinically represented. Utilizing Deter-
ministic, Independent-of-Corpus Embeddings [120], 

NumBERT’s scientific notation [121], or a combination 
in NumGPT [122] may strengthen the model’s ability to 
differentiate numbers on the basis of numeration and 
magnitude.

Rare disease names and synonyms represent an 
extremely diverse, unique, lengthy nomenclature. On the 
other extreme, the ABRV entity class often represents a 
complex disease concept in a few characters which may 
overlap with other concepts when uncased (i.e. “ChILD” 
[123] being represented as “child”, MS [124], and CS 
[125]). The model’s initial performance on the DIS and 
ABRV entity classes, which were labeled in the data-
set but not utilized in the final model’s training, could 
potentially be attributed to BioBERT’s limited WordPiece 
embeddings for rare disease and disease abbreviation 
concepts.

Qualitatively, the comparison with Orphanet in Table 6 
indicated that our model can achieve comparable results 
to Orphanet on some extractions. Given the primary 
focus of GARD is to manage rare disease following the 
US definition [1], our model would effectively assist the 
GARD curation effort to systematically capture U.S.-
based EI with specificity at the state level. This is exempli-
fied by the comparison of “Rett Syndrome” as our model 
extracted “1 in 40, 760” as STAT and “North Dakota” as 
LOC compared to Orphanet curating “1-9/100,000” as 
the prevalence rate and “United States” as the location 
because they report epidemiologic rates as range classes 
when they do not have enough data to give an accurate 
value for the larger regions and normalize their location 
data to country, continent, or worldwide [4].

The performed case studies demonstrated efficiency, 
validity, and thoroughness of our integrated pipeline 

Fig. 5  Absolute difference between token-level and entity-level test results
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to extract relevant EI for rare diseases with high preci-
sion. Interestingly, we found that a few PubMed articles 
referenced by Orphanet for the diseases presented in 
the three case studies were not identified in our pipe-
line due to the EBI and NCBI APIs, whereas we identi-
fied articles which were not present in Orphanet either. 
Furthermore, we noticed that the results returned from 
these two APIs differed significantly and, based on 
a small sample of searches, quantified the difference 
using the Jaccard index [126]. For instance, the highest 
similarity between the lists of PubMed articles returned 
from these two APIs is about 0.52 by searching ‘Mor-
phea’, and the lowest similarity score is about 0.025 
by searching ‘Santos Mateus Leal syndrome’. Thus, we 
opted to combine the EBI and NCBI APIs to increase 
the number of PubMed articles for further analysis. In 
addition, we implemented two searching strategies to 
further exclude false positives: 1) given the high per-
formance of the LSTM RNN based ES_Predict, only 
disease terms and ES_Predict were applied to invoke 
the EBI and NCBI APIs for rare disease epidemiology 
article retrieval and identification from PubMed. 2) 
STRICT filtering with an in-text rare disease identifica-
tion algorithm (Additional file 2) allows the pipeline to 
be robust when the EBI and NCBI APIs return articles 
unrelated to the queried search term.

With the aforementioned limitations, several exten-
sions are proposed for the next step. We will focus on 
decreasing the latency of the pipeline; increasing the 
variety of EPI such as R0, prevalence rate ratio, pooled 
frequency, etc.; implementing superior machine learn-
ing algorithms such as Knowledge-supervised Deep 
Learning [52]; utilizing larger language models trained 
in the biomedical domain; and building upon yet-to-be 
invented artificial intelligence architectures. Further-
more, in order to capture EI beyond epidemiologic 
studies, our model framework with improved numeracy 
could be applied to extract information and aggregated 
case or family counts from case reports. In a similar 
manner, due to the generalizability of pre-trained deep 
bidirectional transformers, our approach could also be 
repurposed for multi-type token classifiers for clini-
cal trials, natural history studies, or literature types in 
domains beyond rare diseases.
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