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of CD4™ cytotoxic T cells via the VEGF-receptor
1/VEGF-receptor 2/AKT/mTOR pathway
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Minggian He', Bingyin Shi'" and Yue Wang'#*"

Abstract

Background CD4" cytotoxic T cells (CD4 CTLs) are CD41 T cells with major histocompatibility complex-Il-restricted
cytotoxic function. Under pathologic conditions, CD4 CTLs hasten the development of autoimmune disease or viral
infection by enhancing cytotoxicity. However, the regulators of the cytotoxicity of CD4 CTLs are not fully understood.

Methods To explore the potential regulators of the cytotoxicity of CD4 CTLs, bulk RNA and single-cell RNA sequenc-
ing (scRNA-seq), enzyme-linked immunosorbent assay, flow cytometry, quantitative PCR, and in-vitro stimulation and
inhibition assays were performed.

Results In this study, we found that VEGF-A promoted the cytotoxicity of CD4 CTLs through scRNA-seq and flow
cytometry. Regarding the specific VEGF receptor (R) involved, VEGF-R1/R2 signaling was activated in CD4 CTLs with
increased cytotoxicity, and the VEGF-A effects were inhibited when anti-VEGF-R1/R2 neutralizing antibodies were
applied. Mechanistically, VEGF-A treatment activated the AKT/mTOR pathway in CD4 CTLs, and the increases of cyto-
toxic molecules induced by VEGF-A were significantly reduced when the AKT/mTOR pathway was inhibited.
Conclusion In conclusion, VEGF-A enhances the cytotoxicity of CD4 CTLs through the VEGF-R1/VEGF-R2/AKT/mTOR
pathway, providing insights for the development of novel treatments for disorders associated with CD4 CTLs.
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Introduction

CD4" cytotoxic T cells (CD4 CTLs) are CD4t T cells
with major histocompatibility complex (MHC)-II-
restricted cytotoxic function possessing a variety of sur-
face markers. Since their discovery in vitro in 1981 and
ex vivo in 2004, CD4 CTLs have been reported to be
present in both healthy and pathologic conditions [1,
2]. Taniuhi et al. discovered that healthy individuals of
all ages (including supercentenarians) had CD4 CTLs in
their peripheral blood mononuclear cells (PBMCs) [3].
Additionally, autoimmune diseases, malignancies, and
acute and chronic viral infections make up the disorders
in which CD4 CTLs play roles [2, 4, 5]. By killing target
cells, CD4 CTLs under pathologic conditions, which
exhibit upregulated cytotoxic and proinflammatory mol-
ecules (e.g., granzyme, perforin, interferon-y, etc.), are
able to control tumor growth and viral infection as well
as hasten the progression of autoimmune diseases [6, 7].
Therefore, to better understand the pathogenesis of vari-
ous diseases and develop novel treatments, it is crucial to
investigate the effects and regulatory mechanisms of CD4
CTLs.

Recently, an increasing number of researchers have
paid attention to the regulators of the cytotoxicity of
CD4 CTLs and revealed that the T cell receptor (TCR),
costimulatory/inhibitory molecules and cytokines are
potential mediators. Constant exposure to antigens has
been shown to enhance the levels of cytotoxic molecules
in CD4™" T cells, accompanied by loss of T-helper-induc-
ing POZ/Krueppel-like factor (ThPok, a crucial tran-
scription factor for phenotype maintenance in CD4" Th
cells), which implied a potential role for TCR signaling in
the cytotoxicity of CD4 CTLs [8]. Moreover, when ago-
nists specific for the costimulatory molecules CD134 and
CD137 were applied in mouse tumor models, eomeso-
dermin (Eomes), which promotes the production of
granzyme (Grm)B, was upregulated in CD4 CTLs [9].
Regarding cytokines, IL-15, IL-2, interferon (IFN)-I and
IL-18 may enhance the cytotoxic function of CD4 CTLs
via the Janus kinase (JAK)/signal transducers and activa-
tors of transcription (STAT) pathway [10-12]. However,
even after numerous studies have been carried out, the
regulators of the cytotoxic function of CD4 CTLs have
still not been completely elucidated.

In a previous study, we discovered that CD4 CTLs had
elevated cytotoxic function in patients with Graves orbit-
opathy (GO), indicating that there might be regulators of
the cytotoxicity of CD4 CTLs in GO [13]. Here, by ana-
lyzing RNA-sequencing (RNA-seq) data for PBMCs from
patients with GO or Graves hyperthyroidism (GH), we
identified the vascular endothelial growth factor (VEGF)
A gene as a regulator of the cytotoxic function of CD4
CTLs in GO. Furthermore, single-cell RNA sequencing
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(scRNA-seq) and in vitro VEGF-A stimulation assay
data analysis demonstrated that VEGF-A enhanced the
cytotoxicity of pan CD4 CTLs. Mechanistically, we dis-
covered that VEGF-A, via the VEGF-receptor (R)1/2 and
AKT/mTOR pathway, enhanced the cytotoxic activity
of CD4 CTLs. These findings suggest that VEGF-A con-
tributes to the enhancement of the cytotoxic function of
CD4 CTLs and may serve as a therapeutic target in disor-
ders involving CD4 CTLs.

Material and methods

Study subjects

Twenty-seven treatment-naive GO patients, 24 treat-
ment-naive GH patients, and 14 healthy controls (HCs)
were enrolled in this study. Regarding those recruited
samples from GO patients, 20 were used for RNA-
sequencing, 4 were for in-vitro VEGF-A stimulation
assays, 3 were for ELISA assays, 7 were for VEGF-R-
related assays, and 5 were for phosphorylated molecules-
related assays. The GO and GH patients were recruited
from the Department of Endocrinology, The First Affili-
ated Hospital of Xian Jiaotong University. This study
was approved by the Ethics Committee of the First Affili-
ated Hospital of Xi’an Jiaotong University. We obtained
informed consent from each patient and HC after
explaining the purpose of our study.

Primary CD4* T-cell isolation and culture

For primary CD4" T-cell isolation, PBMCs were acquired
utilizing Ficoll Paque Plus (GE Healthcare, USA) gradient
cell separation according to the manufacturer’s instruc-
tions. Next, the CD4™ T Cell Isolation Kit, human (Milte-
nyi Biotec, Germany) was utilized to isolate CD4* T cells.
Then, the cells were resuspended at 1 x 10° cells/mL and
cultured in advanced RPMI1640 medium (Gibco, USA)
supplemented with 10% fetal bovine serum (FBS; Gibco),
1% 2-mercaptoethanol (2-ME; Gibco) and 1% penicil-
lin—streptomycin (Gibco) in 48-well plates precoated
with 2 pg/mL anti-human CD3 antibody (BioLegend,
USA). For VEGF-R-related assays, after incubation with
5 pg/mL anti-VEGF-R1 antibody (R&D Systems, USA)
and/or 10 pg/mL anti-VEGF-R2 antibody (Abcam, USA)
for 1 h, CD4" T cells were treated with blank (CON)
or 15 ng/mL VEGF-A (R&D Systems, USA) for 2 days
respectively. GolgiPlug Protein Transport Inhibitor (BD
Bioscience, USA) was administered for the last 6 h to
detect the cytotoxic molecules. Regarding AKT/mTOR
inhibition assays, CD4" T cells were treated with blank
(CON), 15 ng/mL VEGF-A, VEGF-A 410 uM MK-2206
2HCI1 (AKT inhibitor, MedChemExpress, USA), VEGEF-
A +100 nM rapamycin (mTOR inhibitor, Selleck, China)
or VEGF-A +10 uM MK-2206 2HCl+ 10 uM MHY1485
(mTOR activator, MedChemExpress, USA) for 2 days in
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the presence of GolgiPlug Protein Transport Inhibitor for
the last 6 h.

Flow cytometry

Cells were resuspended at a final concentration of 1 x 107
cells/mL in flow cytometry staining buffer (eBioscience,
USA). After blocking with TruStain FcX PLUS (BioLeg-
end), surface staining was performed at 4 °C for 30 min.
For intracellular staining, a transcription factor buffer
set (BD Bioscience) was used to fix and permeabilize
cells according to the manufacturer’s instructions, and
the cells were then stained for intracellular molecules at
4 °C for 45 min. Stained cells were run on a Canto II (BD
Bioscience) and analyzed using FlowJo software version
10.7.2 (TreeStar).

For phosphorylated protein analysis, cells were fixed
with 4% cold PFA for 10 min at room temperature, per-
meabilized and blocked with PBS buffer containing 0.1%
Triton X-100 and 2% BSA for 1 h at 4 °C. Next, the cells
were stained with primary antibodies for 1.5 h at 4 °C,
followed by incubation with secondary antibodies and
antibodies targeting cell-surface markers for 30 min at
4 °C. PBS buffer containing 0.1% Triton X-100 and 0.5%
BSA was utilized to wash the cells.

The following monoclonal antibodies were used: anti-
human CD4, anti-killer cell lectin-like G1 (KLRG1), anti-
human granzyme GrmB, anti-human GrmaA, anti-human
perforin (Prf), and anti-human neuropilin (NRP)-1 from
BioLegend; polyclonal anti-human VEGF-R1 from R&D
Systems; polyclonal anti-human VEGEF-R2 and an anti-
rabbit IgG (H+L) secondary antibody from Abcam;
anti-phosphorylated (p)-AKT from Cell Signaling Tech-
nology; anti-p-mTOR and anti-p-S6 kinase (S6K) from
eBioscience; and anti-goat IgG (H+L) from Proteintech.

Enzyme-linked immunosorbent assay (ELISA)

Plasma was collected from GO patients, GH patients,
and HCs for ELISA analysis to quantify the concentration
of VEGF-A. After dilution, plasma samples were added
to an ELISA plate precoated with 2 pg/mL anti-VEGF

Table 1 Sequences of primers in gPCR
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capture antibody (R&D Systems) and incubated for 4 h
at room temperature. Next, 0.25 pg/mL biotinylated anti-
VEGE-165 (the most common isotype of VEGEF-A in
humans) affinity-purified antibody (R&D Systems) was
added and incubated for 1 h at room temperature [14].
After incubation with an Av-HRP conjugate, TMB rea-
gent was added, and the optical density (O.D.) for each
well was read with a microplate reader (KHB, China) set
to 450 nm.

Quantitative PCR (qPCR)

A MACS bead system (Miltenyi) was used to sort
CD41KLRG1% and naive CD4™ T cells according to the
manufacturer’s guidelines. Sorted cells were confirmed
to be>85-95% pure. RNA used for reverse transcrip-
tion was extracted from approximately 100,000—500,000
sorted CD4"KLRG1" from GO patients and CON/
MHY1485 (an mTOR activator)/VEGF-A-stimulated
samples or HC naive CD4+T cells using the Direct-zol
RNA Microprep Kit (Zymo Research, USA). The Prime
Script Master Mix Kit (Takara, Japan) was used to syn-
thesize cDNA according to the manufacturer’s protocol,
followed by qPCR analysis (SYBR green; Takara). ACTB
mRNA expression was utilized as the normalization con-
trol. The primers used are listed in Table 1.

RNA-seq and analysis

PBMC samples from 20 GO and 20 GH patients were
subjected to RNA-seq as described in our previous
study [15]. After quality control, the “DESeq2” R pack-
age was used to identify differentially expressed genes
(DEGs) [16]. DEGs with a fold change > 2 (|log,FC|> 1)
and a false discovery rate (FDR)<0.05 were consid-
ered significant. A protein—protein interaction (PPI)
network was constructed with data from the STRING
database (https://string-db.org/) and visualized with
Cytoscape (version 3.8.0) [17]. The R package “clus-
terProfiler” (version 4.0.5) was used to perform gene
set enrichment analysis (GSEA) [18]. Gene sets in the
Molecular Signatures Database (MSigDB) were selected

Gene symbol Forward (5’-3') Reverse (5’-3')

VEGFR1 TTTGCCTGAAATGGTGAGTAAGG TGGTTTGCTTGAGCTGTGTTC
VEGFR2 GGCCCAATAATCAGAGTGGCA CCAGTGTCATTTCCGATCACTTT
NRP1 GGCGCTTTTCGCAACGATAAA TCGCATTTTTCACTTGGGTGAT
GZMB CCCTGGGAAAACACTCACACA GCACAACTCAATGGTACTGTCG
GZMK GGTGTTCTGATTGATCCACAGT TGTGCGCCTAAAACCACAGT
PRF1 GTGGGACAATAACAACCCCAT TGGCATGATAGCGGAATTTTAGG
ACTB GCCTCGCCTTTGCCGA CCCACCATCACGCCCTGG
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as the reference gene sets, and a P value<0.01 was set
as the threshold [19]. The RNA-seq data reported in
this paper have been deposited in the OMIX, China
National Center for Bioinformation / Beijing Institute
of Genomics, Chinese Academy of Sciences (https://
ngdc.cncb.ac.cn/omix: accession no.OMIX002526).

scRNA-seq data analysis

Three scRNA-seq datasets containing CD4 CTLs,
GSE106543, GSE149652, and GSE179292, were
obtained from the Gene Expression Omnibus (GEO)
database [20-22]. The details for the 3 datasets are
listed in Table 2. Our previous scRNA-seq dataset for
CD4" T cells from GO patients (SRP226183) com-
bined with the 3 scRNA-seq datasets were integrated
for analysis by the “Seurat” R package via the canoni-
cal correlation analysis (CCA) method (version 4.0) [13,
23]. The DEGs were ranked by P value from smallest
to largest. The top 20 significant genes for each cluster
were selected for display in a heatmap. The “cluster-
profiler” R package was utilized to perform GSEA [18].
Pseudotime trajectory analysis was conducted with the
“monocle” R package (version 2.22.0) [24]. Single-sam-
ple (ss)GSEA was executed with the R package escape
(version 1.4.0), and the results were visualized with the
“dittoSeq” R package (version 1.6.0) [25].

Statistical analysis

Statistical analyses were performed with GraphPad
Prism 9.3.1 (GraphPad Software) or R 4.1.2. After a
normality test was performed, 2-group data were ana-
lyzed using Student’s t test or the Mann—Whitney test.
For multigroup data, one-way ANOVA was utilized.
Data are presented as mean+SEM. A P value<0.05
was considered statistically significant.

Table 2 Details of scRNA-seq datasets analyzed

Dataset Subject Cell type References
GSE106543 HC PBMC Temra [20]
GSE149652 Bladder tumor/normal CD4™ T cells [21]

tissue
GSE179292 CRSwWNP nasal polyp CD4TTcells &ILC2  [22]

tissue
SRP226183  GO/GH PBMC CD4* Tcells [13]

HC Healthy controls, PBMC Peripheral blood mononuclear cells, T,,,,,, Effector
memory T cells re-expressing CD45RA, CRSWNP Chronic rhinosinusitis with nasal
polyps, ILC2 Group 2 innate lymphoid cells, GO Graves orbitopathy, GH Graves

hyperthyroidism

Page 4 of 13

Results

VEGF-A contributes to the enhanced cytotoxicity of CD4
CTLsin GO

In a prior work, we found that GO patients contained
CD4 CTLs that expressed more cytotoxic molecules than
those from GH patients [13]. To investigate the regu-
lators of the cytotoxicity of CD4 CTLs, transcriptome
sequencing was carried out on PBMCs from GO and
GH patients. There were 476 upregulated genes and 94
downregulated genes detected (Fig. 1A). After PPI analy-
sis of the DEGs, VEGFA was identified as a potential key
gene in GO (Fig. 1B). Furthermore, in the GO patients
with higher VEGFA expression, the cellular response to
the calcium ion process was upregulated (Fig. 1C). Addi-
tionally, VEGF-A was shown to be elevated at the protein
level in the plasma of GO patients compared to that of
GH patients and HCs (Fig. 1D; P=0.0359 and 0.0284).
Considering that the calcium ion response is involved
in the synthesis and release of cytotoxic molecules in T
cells, we hypothesized that VEGF-A contributed to the
increased cytotoxic function of CD4 CTLs in GO [26].
Reanalyzing scRNA-seq data for GO patients was per-
formed to confirm this theory, and it was discovered
that GO CD4 CTLs with greater levels of GZMB, PRF1,
NKG7, and GZMK expression had upregulated VEGFR1
(Fig. 1E). Furthermore, GSEA results showed that cyto-
toxic granule, cytolysis, and cell killing processes were
enriched in GO CD4 CTLs with upregulated VEGFR1
expression (Fig. 1F). In addition, the proportions of cells
expressing cytotoxic molecules such as GrmB, GrmA,
and Prf were significantly increased after administrat-
ing VEGF-A to CD4" T cells from GO patients (Fig. 1G;
P<0.0001,=0.0286 and 0.0066, respectively). In this way,
VEGE-A contributes to the enhanced cytotoxicity of CD4
CTLs in GO and can increase the production of cytotoxic
molecules by these cells.

VEGF-A promotes the cytotoxic function of CD4 CTLs

Three scRNA-seq datasets containing enriched CD4
CTLs (effector memory T cells re-expressing CD45RA,
Temra) or CD4" T cells were downloaded from the GEO
database, and integrated analysis was performed with
our previous scRNA-seq data (SRP226183) related to
GO to further explore the role of VEGF-A in pan CD4
CTLs (Fig. 2A, Table 2). In total, 14 clusters were found
(Fig. 2A). Among them, cluster 2, 6, 7, and 10 were rec-
ognized as CD4 CTLs due to the upregulated expres-
sion of cytotoxic molecules (Fig. 2B). In the HC and GO
datasets (GSE106543 and SRP226183), CD4 CTLs with
increased cytotoxicity (cluster 2 and 7) predominated,
but these cells did not predominate in the bladder cancer
or chronic rhinosinusitis with nasal polyps (CRSwNP)
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Fig. 1 VEGF-A contributes to the enhanced cytotoxicity of CD4 CTLs in GO. A Volcano plot showed differentially expressed genes between GO and
GH group. Blue dots represented downregulated genes and red dots were upregulated genes. B PPl network of potential key genes. The shade of
colors denoted the degree of the corresponding gene. C Gene set enrichment analysis (GSEA) showed cellular response to calcium ion process was
obviously enriched in GO patients with higher expression of VEGFA compared with lower VEGFA expression. D Bar plot exhibited the O.D. value of
VEGF-A in serum from HC, GH and GO patients (N = 3). E Dot plots showed the expression of GZMB, PRF1, NKG7, GZMK and VEGFR1 in CD4 CTLs
and non-CD4 CTLs (other) group from GO patients respectively. Color scale represented z-score and dot size represented percentages of cells. F
GSEA showed cytotoxic related processes were obviously enriched in CD4 CTLs from GO patients with higher expression of VEGFR1 compared
with lower VEGFR1 expression. G Representative flow cytometry plots showed the ratios of GrmB™, GrmA™ and Prft cells in CD41 T cells in the CON
and VEGF-A group (N=4). The red rectangle and number denoted in it meant GrmB™, GrmA™ and Prf* subsets and specific ratio respectively. The
quantification of the proportions of GrmB™, GrmA™ and Prf* in CD4™ T cells was displayed on the right. Blue was CON and red for VEGF-A treated.
Error bars showed SEM. The data were representative of at least three biological replicates. HC: healthy control; GH: Graves hyperthyroidism; GO:
Graves orbitopathy; CON: control; Grm: granzyme; Prf: perforin. *P < 0.05, **P<0.01, ****P < 0.0001
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datasets (GSE149652 and GSE179292; Fig. 2C&E). It
was assumed that CD4 CTLs in lesions tended to be
exhausted with decreased cytotoxicity given that pseu-
dotime trajectory analysis suggested that cluster 6 and
10 might differ from cluster 2 and 7 (Fig. 2D; Additional
file 1: Fig. S1). Notably, CD4 CTLs with greater cytotox-
icity had upregulated VEGFR1 (clusters 2 and 7; Fig. 2E).
Through GSEA, it was discovered that cluster 2 and 7,
which had higher VEGFRI1 expression, exhibited upreg-
ulation of processes related to VEGF_VEGEFR signal-
ing and cytotoxicity (Fig. 2F). Furthermore, in contrast
to cells treated with the blank control, VEGF-A-treated
CD4 CTLs from HCs produced more GrmB and Prf
(CON; Fig. 2G; P<0.0001 and P=0.0211). These findings
demonstrate that VEGF-A is involved in the cytotoxicity
of CD4 CTLs and promotes their cytotoxic function.

VEGF-R1/R2 correlates with the cytotoxic function of CD4
CTLs

Although preliminary evidence suggests that VEGEF-
A regulates CD4 CTLs, the specific VEGF-R involved
remains unknown. To clarify the downstream receptors,
qPCR was performed to measure the expression of well-
known VEGEF-A receptors including VEGFR1, VEGFR2,
and NRP1 on CD4 CTLs with increased cytotoxicity.
Because GO CD4" T cells expressed much more cyto-
toxic molecules than those from HCs, GO CD4 CTLs
were used as an example of CD4 CTLs with increased
cytotoxicity (Additional file 2: Fig. S2; GrmB: P=0.0083;
Prf: P=0.0301). The results revealed that VEGFR1
and VEGFR2 were upregulated in GO CD4 CTLs with
increased cytotoxicity compared with HC naive CD4%
T cells (Fig. 3A; P=0.0286, 0.0409 and 0.4857, respec-
tively). In contrast, there were lower proportions of
VEGF-R1* and VEGF-R2" cells in GO CD4 CTLs with
higher cytotoxicity than in HC CD4 CTLs, as measured
by flow cytometry (Fig. 3B; VEGF-R1: P=0.0001; VEGEF-
R2: P=0.0016; NRP-1: P=0.9240). We hypothesized that
the decrease in the level of VEGF-R1/R2 expression on
GO CD4 CTLs with increased cytotoxicity was caused
by binding with overexpressed VEGF-A because VEGF-
R1/R2 levels were reported to be diminished following
binding to VEGF [27]. As expected, GO CD4 CTLs with
higher cytotoxicity had higher levels of phosphorylated
(p)-VEGEF-R2 than CD4 CTLs from HCs or GH patients
(Fig. 3C; P=0.0480 and 0.0041), indicating that VEGF/
VEGEF-R? signaling was upregulated in CD4 CTLs with
enhanced cytotoxicity.

Furthermore, the relationships between the expression
of VEGF-R1/R2 and cytotoxic molecules were examined.
When VEGF-R1" GO CD4 CTLs with higher cytotox-
icity were compared to VEGF-R1t HC CD4 CTLs, it
was revealed that the proportions of GrmB™ cells were
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increased, while no differences were detected between
GO and HC CD4 CTLs with VEGF-R1~ or VEGF-R2*
(Fig. 3D&E; P=0.0184, 0.1594, 0.9745 and 0.7348). With
respect to the proportion of Prf' cells, there were no dif-
ferences between VEGF-R1T or VEGF-R2* GO and HC
CD4 CTLs (Fig. 3D&E; P=0.6380, 0.1858, and 0.9856).
Interestingly, VEGF-R1™ GO CD4 CTLs had higher Prf
expression than VEGF-R1~™ HC CD4 CTLs (Fig. 3D;
P=0.0230). Hence, VEGF-R1/R2 signaling is upregulated
in CD4 CTLs with increased cytotoxicity and correlated
with higher cytotoxicity to some extent.

VEGF-A enhances the cytotoxic function of CD4 CTLs via
VEGF-R1/R2

To identify the functional downstream receptors of
VEGF-A in CD4 CTLs with increased cytotoxicity,
CD4" T cells from GO patients were treated with anti-
VEGEF-R1/R2 neutralizing antibodies. After VEGF-R1
was blocked, the enhancement of GrmA and Prf produc-
tion in CD4 CTLs induced by VEGF-A was suppressed
(Fig. 4A, C, D; P=0.0055 and 0.0128). Furthermore, only
the proportion of GrmA™ cells in CD4 CTLs was dimin-
ished in the VEGF-A +anti-VEGF-R2 group compared
to the VEGF-A group (Fig. 4A, C; P=0.0450). Addition-
ally, the expression of GrmB, GrmA and Prfin CD4 CTLs
was significantly decreased in the group with VEGF-R1
and VEGF-R2 blocked simultaneously in comparison to
the VEGF-A group (Fig. 4A-D; P=0.0283, 0.0226 and
0.0468, respectively). These findings suggest that VEGEF-
A concurrently activates VEGF-R1 and VEGF-R2 to
induce the production of cytotoxic molecules in CD4
CTLs.

AKT/mTOR signaling is upregulated in CD4 CTLs

with increased cytotoxicity

The scRNA-seq data was used to further investigate
downstream signaling through ssGSEA of the enriched
pathways between CD4 CTLs with higher and lower
cytotoxicity. In CD4 CTLs with enhanced cytotoxic-
ity, the AKT pathway was upregulated in addition to
the VEGF signaling pathway (Fig. 5A; P<0.0001). AKT
signaling might be involved in the impact of VEGF-A-
VEGF-R2 on CD4 CTLs with increased cytotoxicity,
as evidenced by the MFI of p-AKT being considerably
increased in GO CD4 CTLs with increased cytotoxicity,
particularly in p-VEGF-R2* GO CD4 CTLs (Fig. 5B-C;
P=0.0006 and 0.0290). In addition, the MFIs of p-mTOR
and p-S6K were obviously elevated in CD4 CTLs with
enhanced cytotoxicity (Fig. 5D-E; P=0.0016 and
0.0394), which indicated the activation of mTOR signal-
ing. Therefore, the AKT/mTOR pathway may contribute
to the effects of VEGF-A on CD4 CTLs with elevated
cytotoxicity.
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VEGF-A promotes the cytotoxic function of CD4 CTLs via the
AKT/mTOR pathway

To determine whether the impacts of VEGF-A on CD4
CTLs were the cause of the activated AKT/mTOR sign-
aling observed, the expression of p-AKT, p-mTOR and
p-S6K was examined in CD4 CTLs treated with the blank
control (CON) or VEGF-A. As anticipated, the MFIs of
p-AKT, p-mTOR, and p-S6K were dramatically increased
in the VEGF-A-treated CD4 CTLs (Fig. 6A; P=0.0460,
P=0.0344 and 0.0047). In addition, at the gene expression
level, there were obvious enhancements of GZMB, PRF1,

and GZMK in the mTOR activator group compared with
the CON group (Fig. 6D; P=0.0048, 0.0010 and 0.0004
respectively). Moreover, after treating CD4 CTLs with
an AKT inhibitor (MK-2206 2HCI) or mTOR inhibi-
tor (rapamycin), the increases in the MFI of p-mTOR as
well as the proportions of GrmB* and Prf* cells in CD4
CTLs induced by VEGEF-A were significantly diminished,
indicating that VEGF-A activates mTOR signaling via
AKT and the facilitating effects of VEGF-A on the cyto-
toxicity of CD4 CTLs were achieved by AKT and mTOR
signaling (Fig. 6E-H; AKT inhibitor: P<0.0001,<0.0001
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and=0.0137; mTOR inhibitor: P<0.0001,=0.0002
and=0.0140). Meanwhile, when an mTOR activator
(MHY1485) was administered, the decrease in the MFI of
p-mTOR as well as the proportions of GrmB™* and Prft
cells in VEGF-A treated CD4 CTLs caused by the sup-
pressed AKT could be rescued, implying the crucial role
of mTOR in the downstream of AKT pathway in CD4
CTLs (Fig. 6E-H; P=0.0296,<0.0001 and=0.0003).
These results suggest that VEGF-A can enhance the cyto-
toxicity of CD4 CTLs via the AKT/mTOR pathway.

Discussion
In the current study, we identified that VEGF-A could
induce the expression of cytotoxic molecules in CD4
CTLs via its receptors VEGF-R1/2 and this effect was
achieved via the AKT/mTOR signaling pathway. These
data reveal that VEGF-A is a regulator of the cytotoxicity
of CD4 CTLs and provide insights for the development
of novel treatments for disorders associated with CD4
CTLs.

VEGE-A, which is produced by the majority of cells, is a
crucial member of the VEGF cytokine family, along with
VEGE-B, VEGF-C, VEGF-D and placental growth factor

(PIGF) [14]. Although its canonical biological function is
angiogenesis mediated by regulating endothelial growth
and vascular permeability, VEGF-A is also a mediator of
T-cell function. When present in tumor-bearing individ-
uals, VEGF-A has an immunosuppressive function that
can inhibit the antitumor activity of CD8" T cells within
tumors by aggravating the hypoxic microenvironment,
activating an exhaustion-specific transcription program
and prompting the proliferation and activity of regulatory
T cells [28—30]. Furthermore, various effects of VEGF-A
on T cells have been identified by several researchers. In
combination with a cognate antigen, VEGF-A has been
shown to trigger proinflammatory responses, including
Th1, Th2 and Th17 activities, in vitro and/or in vivo (an
asthma mouse model) [31-33]. Additionally, improved
T-cell adhesion was observed in inflammatory bowel
disease when high-dose VEGF-A was administered,
which subsequently accelerated disease progression
[34]. Notably, consistent with our findings that VEGE-
A could enhance the cytotoxic function of CD4 CTLs
(the majority of which exhibit a memory phenotype),
VEGF has been shown to boost the immune responses
of CD4TCD45RO™ memory T cells by upregulating the
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phosphorylation and activation of extracellular signal-
regulated kinase (ERK) and AKT [35]. Hence, VEGF-A
is a pluripotent regulator that can enhance the cytotoxic
function of CD4 CTLs.

Regarding VEGF-Rs, there are three major VEGF-A
receptors: VEGF-R1, VEGF-R2 and NRP-1. Canonical
VEGF signaling is transduced through VEGF-R1/R2,
with VEGF-R2 being regarded as the dominant recep-
tor, while NRP-1 is involved in increasing the binding
affinity of VEGF-A for VEGF-R2 [14]. Previous stud-
ies have revealed that CD4" and CD8™' T cells express
VEGEF-R1 and VEGF-R2 and that this expression
increases significantly after T cells are activated [36].
The effects of VEGF-A on the aforementioned T cells
are decreased after VEGF-R1/R2 are blocked, which is
consistent with our results showing that both VEGF-R1
and VEGF-R2 contribute to VEGF-A signaling [37]. In
addition, it was discovered that VEGF-R2 participates
in the impacts of VEGF-A on natural killer (NK) cells,
enhancing cytotoxic activity, which agrees with our
results showing that VEGF-A enhances the cytotoxicity
of CD4 CTLs via VEGF-R2 [38]. However, in this study,
neutralizing antibodies were applied to block VEGF-Rs,
and further investigation utilizing gene editing tech-
niques in vitro and in vivo is needed. Additionally, the
expression of VEGF-R1/R2 on the surface of CD4 CTLs

with increased cytotoxicity was found to be reduced,
while that of p-VEGF-R2 increased obviously, which
implied the existence of ligand-activated endocytosis of
VEGEF-R?2, as previously reported [27].

Given that AKT/mTOR signaling is a potential
downstream cascade of VEGF stimulation, we identi-
fied the activation of the AKT/mTOR/S6K pathway in
higher-cytotoxicity and VEGF-A-treated CD4 CTLs
[39]. Application of the mTOR inhibitor rapamycin
produced a reduction in the cytotoxicity of CD4 CTLs
caused by VEGEF-A, indicating that VEGF-A enhanced
the cytotoxic function of CD4 CTLs via the mTOR
pathway, which along with our findings that rapamycin
could improve GO and suppress CD4 CTLs [40]. It has
been reported that the antitumor immunity of CD8* T
cells with defective AKT signaling diminished during
the memory phase, and AKT cooperates with TCR- and
IL-2- signaling to induce transcriptional processes con-
trolling the expression of cytotoxic molecules in CTLs
[41, 42]. Similarly, proteomic data for CTLs showed
that mTORC1 preferentially repressed or promoted
the expression of approximately 10% of CTL proteins
[43]. Additionally, mTOR activation in CD8" T cells
from rheumatoid arthritis patients was identified, and
it was positively linked with the severity of the condi-
tion [44]. Therefore, AKT/mTOR signaling is involved
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in not only the cytotoxicity of CD8 CTLs but also that
of CD4 CTLs.

Conclusions

In conclusion, VEGF-A promotes the cytotoxicity of CD4
CTLs via VEGF-R1/2, and this regulation is achieved by
AKT/mTOR signaling. These data reveal that VEGF-A
is a mediator of the cytotoxic function of CD4 CTLs and
facilitate the development of novel treatments for disor-
ders associated with CD4 CTLs.
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Error bars showed SEM. HC: healthy control; GO: Graves orbitopathy; Grm:
granzyme; Prf: perforin. *P < 0.05, **P < 0.01.
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